劉佳
?
抓住本質(zhì),理解概率
劉佳
概率滲透到現(xiàn)代生活的方方面面.正如19世紀(jì)法國著名數(shù)學(xué)家拉普拉斯所說:“對于生活中的大部分,最重要的問題實際上只是概率問題.你可以說幾乎我們所掌握的所有知識都是不確定的,只有一小部分我們能確定地了解.甚至數(shù)學(xué)科學(xué)本身,歸納法、類推法和發(fā)現(xiàn)真理的首要手段都是建立在概率論的基礎(chǔ)之上.”
概率是對一個事件發(fā)生的可能性大小的描述.以生活實際中的概率問題為背景,初步認(rèn)識概率,也為學(xué)習(xí)高中數(shù)學(xué)中的概率知識內(nèi)容打下基礎(chǔ).然而,正因為才初步接觸相關(guān)知識,在實際學(xué)習(xí)中同學(xué)們對這部分的內(nèi)容會有不少的混淆以及錯誤,下面就這些錯誤的成因以及解決策略進(jìn)行簡單的闡述.
易錯點1:對事件發(fā)生概率的理解不清晰
例1下列事件屬于必然事件的為().
①今天下雨的可能性為99%;②太陽從東方升起;③某種彩票平均每10張中有一張中獎,小紅買了10張這種彩票,肯定有一張獲獎;④南沙群島的某一天下了一場大雨.
A.②B.②③
C.②③④D.②④
【學(xué)生錯解】B.
【正解】D.
易錯點2:幾何概型的認(rèn)識錯誤
例2在一次晚會上玩飛鏢游戲,靶子設(shè)計如圖1所示,從里到外的三個圓的半徑之比為1∶2∶4,則打中陰影部分的概率為多少?
圖1
【學(xué)生分析】
【錯因分析】該題考查的內(nèi)容是幾何概率模型,根據(jù)幾何概型的意義,應(yīng)求出陰影部分的面積占總面積的比,要避免單純依靠公式機械計算.
易錯點3:利用樹狀圖解決問題缺乏靈活性
例3我市舉辦了首屆“漢字聽寫大賽”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時聽寫50個漢字,每正確聽寫出一個漢字得1分,根據(jù)測試成績繪制出頻數(shù)分布表和頻數(shù)分布直方圖如下:
(1)求表中a的值;
(2)請把頻數(shù)分布直方圖補充完整;
(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
(4)第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對抗練習(xí),且4名男同學(xué)每組分兩人,求小宇與小強兩名男同學(xué)能分在同一組的概率.
【正解】(1)a=50-4-8-16-10=12
(2)
(3)優(yōu)秀人數(shù)=12+10=22(人)
【學(xué)生錯解】(4)設(shè)四名同學(xué)分別為①②③④,其中①代表小宇,②代表小強,樹狀圖如下:
【錯因分析】這與摸球問題的區(qū)別在于,當(dāng)③號和④號出現(xiàn)在一組時,小宇和小強也恰好是在同一組的,所以符合題意的等可能情況共有4種.
(作者單位:江蘇省常州外國語學(xué)校)