• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    正交電場作用型自旋場效應(yīng)管的自旋極化控制

    2016-08-16 02:47:28肖運(yùn)昌彭濤朱昌勇王日興朱明旱
    關(guān)鍵詞:場效應(yīng)管文理學(xué)院電場

    肖運(yùn)昌, 彭濤, 朱昌勇, 王日興, 朱明旱

    正交電場作用型自旋場效應(yīng)管的自旋極化控制

    肖運(yùn)昌1, 彭濤1, 朱昌勇2, 王日興1, 朱明旱1

    (1. 湖南文理學(xué)院 電氣與信息工程學(xué)院, 湖南 常德, 415000; 2. 韶關(guān)學(xué)院 物理系, 廣東 韶關(guān), 512005)

    研究了電場調(diào)控型自旋場效應(yīng)管的量子輸運(yùn)過程。該場效應(yīng)管主要由雙正交電場和Rashba自旋軌道耦合共同調(diào)制。運(yùn)用散射矩陣方法并結(jié)合介觀體系的相關(guān)輸運(yùn)理論, 揭示了自旋場效應(yīng)管在各參數(shù)調(diào)控下的自旋量子輸運(yùn)過程, 其自旋輸運(yùn)規(guī)律可由相關(guān)理論給予解釋。數(shù)值計(jì)算表明, 與平行電場相比, 對于自旋軌道耦合型自旋場效應(yīng)管的量子輸運(yùn), 垂直電場的調(diào)制能夠?qū)е赂用黠@的自旋翻轉(zhuǎn)。

    自旋場效應(yīng)管; 自旋軌道耦合; 電場

    In these investigations, the external field effects, especially the electric fields, make crucial effects in the SOC realize and manipulations. Based on these works, study of the SOC system due to two orthogonal electric fields would be meaningful. Physically, study of this can not only clarify the spin properties of electric field modulations to the SFET, but also make the simulations of the SOC affected mesoscopic conductor clearly. Because that the external fields are always exist and well utilized in some semiconductor or cold atom simulated systems[22, 24-25]. In this work, by studies of the related physical properties of the SOC systems,parametric modulations to spin polarizations of the SFET are given in detail.

    1 Simulated model and formulations

    Fig.1 Schematic plots of the quantum transport in the spin field effect transistor system. The left and right are normal leads. The middle is the main effect region and subjected to two perpendicular electric fields and the Rashba spin orbit coupling.

    The prototypical model of the SFET is based on a microscopic conductor, as shown in Figure 1. The model is made up by two normal leads connected with a transport semiconductor channel, in the interfaces they are affected by a couple of interfacial potentials. The electrons are confined in the y—z plane and transport along the x-axis, their variations were characterized by the transmissions and reflections of the system[10, 19-21]. Therefore, the transport of an electron in the whole transport can be simply expressed by the quasi-one-dimensional electron gas, the Hamiltonian of the electrons in Leads can be written as

    where mfis the effective mass of an electron in the normal metal. The potential barriers around the interfaces are the position of x = x1and x = x2, the potentials form can be mathematical taken as

    presenting the size of the central region.

    Core of the model is the Rashba SOC region, which is shown in the middle part of Figure 1. As affected by two perpendicular electric fields, the Hamiltonian of the electron transport through the semiconductor can be physically treated as

    From this equation the system beyond the effective-mass approximation can be found easily. Where Hvis the kinetic energy part, HSOis the Hamiltonian of the SOC part and kαis the strength of the Rashba SOC, whichcan be tuned by the wavelength of the laser beams and the atomic mass. In the semiconductor, the external field Hextincludes the parallel part E∥and the perpendicular part E⊥.

    The wave function of an electron transfers from the left to the right lead can be generally expressed as

    In the equation α = L, R refer to two normal leads,is the Fermi wave-vector, andare the spins in the leads withcorresponding to the parallel and antiparallel of the spin eigenstates. In the center of the model wave functions with the eigenstates can be written as

    Where cnare the corresponding normalization coefficients andexpress the spinor forms as. Wave vectorscan be derived from the dispersion relation equations

    According to the scattering theory of the quantum transport, the electron reflections and transmissions can be derived by the scattering matrix involving to the system[19, 27]

    Thus the character of the quantum transport can be got, and more exactly the variation of the system can be measured by the number of the electrons in the propagating mode.

    2 Process analysis and numerical discussions

    Based on the above processions, the quantum transport in the SFET can be numerical studied, and the spin properties modulated by the external fields and SOCs also can be got. To get an intuitive physical picture of the spin quantum transport, we consider the typical InAs-based semiconductors and the mass difference is τ = ms/mf= 0.036[10, 20]. The Fermi energy is EF= 2.47 eV and the Fermi wave vector is kF= 4 nm-1, for expression convenient we defined a reference wave vector κF= 0.1 kF. Furthermore, all over the calculations the semiconductor length between two potentials is set as100 μm , the symmetric applied potentials are chosen asand controlled in the interfaces.

    Firstly, the wave vector discussions are given by the analysis of the given wave formulations. Mainly consider the Eq. (5), in the spin orbit coupled region, the wave vectors are determined by the solution of this equation. For calculation convenient dimensionless units can be applied to Eq. (5), the form can be simplified as

    Usually the evanescent wave should be not considered in the propagating mode, especially in the condition of the Griffith boundary conditions or the Floquet transport[28]. And the solutions of the wave vector function must be investigated comprehensively. Simply, when ignoring the perpendicular electric field effect, i.e. E⊥= 0 wave vectors can be exactly given

    Direct from equation (10), we can get that the no evanescent wave will allowed in the relation of E∥<τk2. Thus in the Floquet pump transport, only the appropriatecan make the pump process realized in the semiconductor system (the unit of the parallel couplings is 0.1κF~κF)[29]. While for the stronger parallel couplings, the pump process should be calculated as the evanescent waves[28]. Moreover, by influences of the parallel couplings, the time reversal symmetry of the system is broken, and the pure spin pumped currents appear in some proper parametric settings, just as the affect of the axial magnetic field[21].

    Fig.2 Total spin transmissions of the quantum transports, the solid, dashed lines correspond to different spin transmissions T↑and T↓. Here the strength of one of the parameters is set as 4kFand the other is out of considered, the spin transmissions modulated by the Rashba SOC are shown in the panels.

    Furthermore, when the parallel couplings are out of consideration, the double reflection of the semiconductors is occurred. The wave vectors areand exact solutions of the quantum transport can be derived. As considering the perpendicular electric field effect, to avoid the one-band case, the strength ofwill be limited in some values. Simply, when the perpendicular couplings are much smaller than the perpendicular electric field effect//EE⊥?, with omitting the perpendicular couplings wave vectors can be analytical derived as When only consider the SOC affections, that just the double reflection in semiconductors, wave vectors of spin modulations can be exactly got form the quantum transport equations[20], which are reduced from corresponding ones aswhen= 0 is chosen. From the equation it also can get that a no evanescent wave transport should be set in some proper values of the perpendicular electric fields. From the analytical waves as are shown in Eq. (10) and Eq. (11), we can also get that for the radical part of the equations, the perpendicular electric field can make more significant changes to the value of the wave vectors, i.e., the small modulations ofcan lead to the imaginary wave vectors in the quantum transport.

    In another way, numerical calculations of these conditions make further explanations to the analytical analysis. As all we know, when only the Rashba SOC is considered, i.e. E⊥= E∥= 0, there are no spin flipping in the spin precessions and the spin transmissions have the relations T↑↓= T↓↑= 0 and T↑↑= T↓↓, this also makes the total spin transmissions be equal T↑= T↓. Usually, Rashba SOC modulations to the quantum transport would be an excellent explanation of the physical essence of the SOC system. When one of the electric fields is exist, as shown in Figure 2, total spin transmissions of the transport are changed. For only the perpendicular electric field affect condition, as shown by the solid and dashed lines, oscillations of T↑and T↓almost keep the unchangeable amplitude but with some phase shift. This indicates that parameters of the perpendicular electric fields just make the sinusoidal differences to the final spin quantum transport, and the significant modulations to the spin transmissions are coincident with the analytical results of the previous paragraph. The dash-dot and dash-dot-dot lines show the parallel couplings effect to the spin transport,obviously, the spin transmissions oscillations to the Rashba SOC remain but the amplitude of the total spin transmissions are varied. In the oscillations the T↑and T↓almost keep the same phase and some oscillation peaks are divided from one to two. These mean that the parallel couplings will make significant influences to the amplitude and the phase of the simulated SOC transport. Particularly, the spin transmission resonant can easily occur in some Rashba SOC modulations, though as the system is affected by the barrier potentials and the perpendicular electric fields.

    Polarizations of the one electric field effect to the transport are also shown in Figure 3. Form the figure it can get that in both of the two conditions, the parameters make the polarization oscillations versus the Rashba SOC vary with each other. Non periodical oscillations are appeared, and the value of the polarizations can make the positive and negative change with the SOC regulation. For the same strength modulation, the amplitude of the E⊥affected oscillation is larger than that of the E∥affected one, as shown by the solid and dashed lines of Figure 3. This phenomenon tells that compared to the parallel coupling, the perpendicular electric field makes a more remarkable spin flipping to the quantum transport of the simulated system.

    Fig.3 Spin polarizations of the quantum transports. Only one of the parameters is set and the other one is out of considered. The solid lines correspond to E⊥= 4κFand the dashed lines correspond to E∥= 4κF.

    Then the electric field modulations to the transmission properties of the SOC system can also be calculated, numerical discussions are given as follows. In this condition, we consider there certain one of the two perpendicular electric fields and the SOC strength are set and investigate the transmission oscillations by modulated the other parameter. Though as subjected to the fixed size and SOC strength of the system, the transmissions are still oscillated with the electric fields, as shown in Figure 4. For fixed parameters, the transmissions are oscillated with the small parallel coupling around the large values. While strengthen the parallel coupling, the amplitude of the spin down transmission oscillations becomes larger, and the spin up transmission oscillations almost keep in a same value, these can be seen in Figure 4(a).

    Fig.4 Total spin transmissions of the quantum transports, the solid, dashed lines correspond to different spin transmissions T↑and T↓. Here the strength of Rashba SOC and one of the electric fields are set as 5κFand 2κFseparately. The spin transmissions are modulated by the other electric field as shown in the panels.

    This comes from the parallel coupling makes weaker modulations than the perpendicular electric field asthe results of showing before. When consider the perpendicular electric field modulations to the system, the transmissions oscillations are shown in Figure 4(b). From the panel it can get that though the small perpendicular electric field can make obviously transmissions oscillations. In these oscillations, the spin down and spin up transmissions keep the same amplitude, and a half period phase difference appears in the small value. As increasing the strength of E⊥, the phase differences are changed, and in some values the perpendicular electric field can make the spin down and spin up transmissions achieve the peaks in the same phases, as shown in the Figure 4(b). Also the large enough E⊥can make the transmissions oscillate in larger amplitudes. This comes from the strong spin flipping characteristic of the perpendicular electric field.

    Finally, numerical discussions of the polarization properties due to the electric field effects in the quantum transport of the SOC system are given. Referring these calculations spin polarizations modulated by the accompanied parameters can be got as Figure 5. From the figure it can find that as consider the effects of one of the fixed electric fields, polarization oscillations versus the other electric field are still exist and the amplitudes are increased. Furthermore, in these conditions, even though taking into the small strength of the perpendicular electric field, the spin transmissions are all of large polarizations. For the large electric field modulation, the polarizations all keep the same oscillations style but strengthen in amplitudes as shown in Figure 3, which come from the significant modulation of the electric field modulations. So it is very important to choose proper electric field settings in the SOC system.

    Fig. 5 Spin polarizations of the quantum transports. One of the electric fields is set as 2κFand the Rashba SOC is set as 5κF. The other electric field (Ed, solid lines correspond to the E∥modulation and the dashed lines correspond to the E⊥modulation) modulations to the spin polarizations.

    3 Conclusion

    Particular for the quantum transport of the SOC system, we have studied the spin transmission and spin polarization properties by the SOC and two perpendicular electric field modulations. Comparing with different parametric modulations of the quantum transport, we clearly obtained the SOC and the electric field effects to the quantum transport of the SOC system. Furthermore, including the SOC and size oscillations effect of the system, the electric fields also make the spin transmissions and spin polarizations oscillate thoroughly. Furthermore, the parallel coupling modulations lead to the spin flipping of the quantum transport in the SOC system, and the perpendicular electric field can make an even more remarkable spin flipping to the spin transport. These can be easily understood by the analytical results of the spin wave vectors in some specific parametric modulations. Numerical results indicate that some complicate parametric modulations are still almost kept same modulations of the spin precessions.

    Acknowledgments: Thanks Doctor Zhong Q H and Luo W for their helpful and interesting discussions.

    [1] Datta S, Das B. Electronic analog of the electro-optic modulator [J]. Appl Phys Lett, 1990, 56(7): 665-667.

    [2] Ohno Y, Young D K, Beschoten B, et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure [J]. Nature, 1999, 402: 790-792.

    [3] Schapers Th, Nitta J, Heersche H B, et al. Interference ferromagnet/semiconductor/ferromagnetic spin field effect transistor [J]. Phys Rev B, 2001, 64: 125314(1-5).

    [4] Khodas M, Shekhter A, Finkelstein A M. Spin polarization of electrons by nonmagnetic heterostructures: The basics ofspin optics [J]. Phys Rev Lett, 2004, 92(8): 086602(1-4).

    [5] Bercioux D, De Martino A. Spin-resolved scattering through spin-orbit nanostructures in graphene [J]. Phys Rev B, 2010,81: 165410(1-9).

    [6] Saarikoski H, Vazquez-Lozano J E, Baltanas J P, et al. Topological transitions in spin interferometers [J]. Phys Rev B,2015, 91: 241406(R)(1-5).

    [7] Wolf S A, Awshalom D D, Buhrman R A, et al. Spintronics: A spin-based electronics vision for the future [J]. Science,2001, 294:1 488-1 495.

    [8] Zutic I, Fabian J, Das Sarma S. Spintronics: fundamentals and applications [J]. Rev Mod Phys, 2004, 76: 323-410.

    [9] Rashba E I. Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem [J]. Phys Rev B, 2000, 62(24): 67-70.

    [10] Lee M, Choi M S. Ballistic spin currents in mesoscopic metal/In(Ga)As/metal junctions [J]. Phys Rev B, 2005, 71:153306.

    [11] Zhu Z G, Jia C L, Berakdar J. Proposal for fast optical control of spin dynamics in a quantum wire [J]. Phys Rev B, 2010,82: 235304(1-5).

    [12] Zhang Y, Shibata K, Nagai N, et al. Terahertz intersublevel transitions in single self-assembled inas quantum dots with variable electron numbers [J]. Nano Lett, 2015, 15(2): 1 166-1 170.

    [13] Mireles F, Kirczenow G. Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires [J]. Phys Rev B, 2001, 64: 024426(1-13).

    [14] Kirczenow G. Ideal spin filters: A theoretical study of electron transmission through ordered and disordered interfaces between ferromagnetic metals and semiconductors [J]. Phys Rev B, 2001, 63: 054422(1-6).

    [15] Schliemann J, Egues J C, Loss D. Nonballistic spin-field-effect transistor [J]. Phys Rev Lett, 2003, 90: 146801(1-4).

    [16] Hasan M Z, Kane C L. Colloquium: Topological insulators [J]. Rev Mod Phys, 2010, 82: 3 045-3 047.

    [17] Qi X L, Zhang S C. Topological insulators and superconductors [J]. Rev Mod Phys, 2011, 83: 1 057-1 110.

    [18] Sugahara S, Takamura Y, Shuto Y, et al. Field-effect spin-transistors [M]. Springer Netherlands, 2016: 1 243-1 279.

    [19] Ramaglia V M, Bercioux D, Cataudella V, et al. Spin polarization of electrons with Rashba double-refraction [J]. J Phys Cond Matt, 2004, 16: 9 143-9 1554.

    [20] Xiao Y C, Zhu R, Deng W J. Ballistic transport in extended Datta-Das spin field effect transistors [J]. Solid State Commun,2011, 151: 1 214-1 219.

    [21] Xiao Y C, Wang R X, Deng W Y. Quantum transport of the semiconductor pump: Due to an axial external field [J]. Physica B, 2014, 449: 42-46.

    [22] Brantut J P, Meineke J, Stadler D, et al. Conduction of ultracold fermions through a mesoscopic channel [J]. Science, 2012,337(6098): 1 069-1 071.

    [23] Stadler D, Krinner S, Meineke J, et al. Observing the drop of resistance in the flow of a superfluid Fermi gas [J]. Nature,2012, 491(7426): 736-739.

    [24] Zhang J Y, Ji S C, Chen Z, et al. Collective dipole oscillations of a spin-orbit coupled Bose-Einstein condensate [J]. Phys. Rev Lett, 2012, 109: 115301(1-4).

    [25] Lin Y J, Jimenez G, Spielman I B. Spin-orbit-coupled Bose-Einstein condensates [J]. Nature, 2011, 471: 83-85.

    [26] Molnar B, Peeters F M, Vasilopoulos P. Spin-dependent magnetotransport through a ring due to spin-orbit interaction [J]. Phys Rev B, 2004, 69: 155335(1-11).

    [27] Jiang K M, Yang J, Zhang R, et al. Ballistic transport properties in spin field-effect transistors [J]. J Appl Phys, 2008, 104:053722(1-11).

    [28] Moskalets M, Büttiker M. Floquet scattering theory of quantum pumps [J]. Phys Rev B, 2002, 66: 205320(1-10).

    [29] Cahay M, Bandyopadhyay S. Conductance modulation of spin interferom [J]. Phys Rev B, 2003, 68: 115316(1-5).

    (責(zé)任編校: 劉剛毅)

    Spin polarization control of the spin field effect transistors due to two orthogonal electric fields

    Xiao Yunchang1, Peng Tao1, Zhu Changyong2, Wang Rixing1, Zhu Minghan1
    (1. College of Electrical and Information Engineering, Hunan University of Arts and Science, Changde 415000,China; 2. Department of Physics, Shaoguan University, Shaoguan 512005, China)

    Quantum transports of the spin field effect transistors (SFET) tuned by electric field are investigated in this work. Target modulations of the SFET are two orthogonal electric fields and the Rashba spin-orbit coupling (SOC). By using the scattering matrix method and related transport theories in mesoscopic systems, investigations reveal that spin quantum transport of the SFET can be adjusted by the parametric modulations. Implements of the spin transport are systematic presented in theory. Numerical calculations show that compared to the parallel electric field, the perpendicular coupling modulations can make an even more remarkable spin flipping to the quantum transport in the SOC system.

    spin field effect transistors; spin orbit coupling; electric fields

    O 471

    1672-6146(2016)03-0038-07

    10.3969/j.issn.1672-6146.2016.03.009

    肖運(yùn)昌, phyxiaofan@163.com。

    2016-04-18

    湖南文理學(xué)院博士啟動基金(10133004); 湖南省自然科學(xué)基金(12JJ3061); 湖南省自然科學(xué)基金(2016JJ3096)。processions, not only the reliable spin injection measurements, but also the detailed spin precessions in the materials are detailed figured, results demonstrate that they are all adaptable to describe and understand spin properties of electrons in the devices. Lately, cold atom analog of the mesoscopic conductor has been realized with6Li atoms by Brantut et al[22]. As a foundation research, they show that the electric resistance is detectable even in the defect-free device. The typical quantum phenomena of physics such as quantized conduction, local resistance, and quantum phase transitions have been observed accordingly[23]. This work makes the quantum transport in cold atom simulations come true. In another recent experimental study, the spin orbit coupled system simulated by the cold atoms is successfully realized and investigated by Zhang et al[24]. In the broad parameter region, dynamics of the center-of-mass dipole oscillation can be studied, where spin-orbit coupling (SOC) is one of the main simulated parameters with the sum-rule approach. There are observable quantum phase transitions, which separate the magnetic nonzero-momentum condensate from the nonmagnetic zero-momentum phase, make the analogy of the spin orbit coupled bosons be achieved. All these results are in good agreements between the experimental and theoretical investigations.

    With rapid developments in investigations of the spin electrons[1-6], lots of related electronic devices named spintronics[7-8], physical phenomenon such as spin transports[9-12], spin precessions[13], injections and detection of spin polarizations[14], have been followed and thoroughly studied in recent years. One based on these fundamental researches and ingenious applications is realization of the spin field effect transistors (SFET), which has sparked various investigations in physical processes of quantum properties and spin precessions[15-17]. Generally speaking, the key advantage of the SFET is opening up a new possibility of the spin electrons control, which becomes a fantastic and vigorous reference for basic experimental tests in solid state systems[7, 18].

    At the beginning of the investigations of SFET, feasibilities of theory and experiments in semiconductors with delta potentials on the chip have been studied in detail[19-21]. For their easy modulations to the spin

    猜你喜歡
    場效應(yīng)管文理學(xué)院電場
    巧用對稱法 妙解電場題
    長江大學(xué)文理學(xué)院作品選登
    湖北師范大學(xué)文理學(xué)院作品
    大眾文藝(2020年15期)2020-09-11 02:28:04
    黑夜的獻(xiàn)詩
    大眾文藝(2019年23期)2019-12-15 09:59:08
    N溝道結(jié)型場效應(yīng)管應(yīng)用電路設(shè)計(jì)
    電子制作(2018年23期)2018-12-26 01:01:26
    場效應(yīng)管檢測與應(yīng)用電路探討
    電子測試(2018年13期)2018-09-26 03:29:38
    西安文理學(xué)院高萍教授
    電場強(qiáng)度單個表達(dá)的比較
    電場中六個常見物理量的大小比較
    場效應(yīng)管實(shí)驗(yàn)電路設(shè)計(jì)與測試
    日韩不卡一区二区三区视频在线| 国产精品不卡视频一区二区| 国产精品久久久久久久久免| 九色成人免费人妻av| 一级毛片黄色毛片免费观看视频| 韩国精品一区二区三区 | 国产在线一区二区三区精| 日韩欧美精品免费久久| 国产精品免费大片| 成人国语在线视频| 日韩制服骚丝袜av| 欧美人与善性xxx| 人妻系列 视频| 狂野欧美激情性xxxx在线观看| 亚洲成国产人片在线观看| 最黄视频免费看| 成年人免费黄色播放视频| 男女午夜视频在线观看 | 国产av一区二区精品久久| 成年av动漫网址| 国产成人欧美| 国产乱来视频区| 亚洲av电影在线观看一区二区三区| 老司机影院毛片| 精品国产一区二区三区四区第35| 一个人免费看片子| 亚洲情色 制服丝袜| 国产成人91sexporn| 成人毛片a级毛片在线播放| 国产一区二区三区综合在线观看 | 国产精品一国产av| 天堂中文最新版在线下载| 亚洲精品一二三| 亚洲av免费高清在线观看| 激情五月婷婷亚洲| 一级片免费观看大全| 岛国毛片在线播放| tube8黄色片| 天堂俺去俺来也www色官网| 欧美日韩国产mv在线观看视频| √禁漫天堂资源中文www| 美女主播在线视频| 91午夜精品亚洲一区二区三区| 国产淫语在线视频| 毛片一级片免费看久久久久| 黑人高潮一二区| 国产熟女午夜一区二区三区| 天堂中文最新版在线下载| 国产一区二区三区综合在线观看 | 免费观看a级毛片全部| 亚洲欧美一区二区三区黑人 | 精品一区二区三卡| 晚上一个人看的免费电影| 国产片特级美女逼逼视频| 最近中文字幕高清免费大全6| 一本—道久久a久久精品蜜桃钙片| 91aial.com中文字幕在线观看| 男的添女的下面高潮视频| 边亲边吃奶的免费视频| 亚洲人成77777在线视频| h视频一区二区三区| 久久久久国产精品人妻一区二区| 咕卡用的链子| 18禁在线无遮挡免费观看视频| 91精品伊人久久大香线蕉| 多毛熟女@视频| 亚洲色图 男人天堂 中文字幕 | 成人亚洲精品一区在线观看| 亚洲精品456在线播放app| 国产男女超爽视频在线观看| 欧美精品高潮呻吟av久久| 久久久久久人人人人人| 国产日韩欧美亚洲二区| 欧美精品高潮呻吟av久久| 黑人巨大精品欧美一区二区蜜桃 | av.在线天堂| 国产不卡av网站在线观看| 久久精品aⅴ一区二区三区四区 | 色婷婷久久久亚洲欧美| 高清不卡的av网站| 91aial.com中文字幕在线观看| 久久精品国产亚洲av涩爱| 亚洲国产欧美日韩在线播放| av一本久久久久| 极品人妻少妇av视频| 国产精品国产三级专区第一集| 成年美女黄网站色视频大全免费| 波野结衣二区三区在线| 亚洲久久久国产精品| 国产午夜精品一二区理论片| 十八禁高潮呻吟视频| 丰满饥渴人妻一区二区三| 性色av一级| 日本欧美国产在线视频| 日韩成人av中文字幕在线观看| 欧美另类一区| 成人国语在线视频| 视频区图区小说| 午夜日本视频在线| 午夜福利在线观看免费完整高清在| 女性生殖器流出的白浆| 亚洲性久久影院| 午夜福利乱码中文字幕| 久久久久久久亚洲中文字幕| 久久久久久人人人人人| 久久久精品区二区三区| 一二三四在线观看免费中文在 | 99久久综合免费| av在线播放精品| 国国产精品蜜臀av免费| 亚洲伊人久久精品综合| 街头女战士在线观看网站| 国产精品一国产av| 少妇人妻久久综合中文| 色哟哟·www| 日韩大片免费观看网站| 男女边吃奶边做爰视频| 欧美日韩视频高清一区二区三区二| 亚洲婷婷狠狠爱综合网| 日本欧美国产在线视频| 国产成人免费无遮挡视频| 精品一区二区免费观看| 婷婷色麻豆天堂久久| 精品福利永久在线观看| 国产精品国产三级专区第一集| av免费观看日本| 只有这里有精品99| 视频在线观看一区二区三区| 最新中文字幕久久久久| 欧美精品一区二区免费开放| 国产成人一区二区在线| 欧美激情 高清一区二区三区| 99re6热这里在线精品视频| 亚洲av电影在线进入| 22中文网久久字幕| 日本免费在线观看一区| 人人妻人人爽人人添夜夜欢视频| 亚洲精品一二三| 五月开心婷婷网| 色网站视频免费| 亚洲性久久影院| 亚洲精华国产精华液的使用体验| 精品人妻在线不人妻| 久久精品aⅴ一区二区三区四区 | 丰满少妇做爰视频| 又黄又粗又硬又大视频| 亚洲色图综合在线观看| 9191精品国产免费久久| 日韩 亚洲 欧美在线| 欧美精品亚洲一区二区| 国产在视频线精品| 又黄又粗又硬又大视频| 2021少妇久久久久久久久久久| 国产老妇伦熟女老妇高清| 高清欧美精品videossex| 曰老女人黄片| 国产69精品久久久久777片| 欧美成人午夜免费资源| 我要看黄色一级片免费的| 国产片内射在线| 日本vs欧美在线观看视频| 在线观看国产h片| 精品久久久精品久久久| 国产乱来视频区| 女人被躁到高潮嗷嗷叫费观| 91成人精品电影| 久久精品aⅴ一区二区三区四区 | 秋霞在线观看毛片| 性色av一级| a级毛片黄视频| 97精品久久久久久久久久精品| 精品99又大又爽又粗少妇毛片| 久久这里有精品视频免费| 精品少妇黑人巨大在线播放| 欧美xxⅹ黑人| 亚洲国产精品一区二区三区在线| 大香蕉久久成人网| 99香蕉大伊视频| 制服诱惑二区| 又粗又硬又长又爽又黄的视频| 国产成人av激情在线播放| 久久国产亚洲av麻豆专区| 久久久久久久精品精品| 七月丁香在线播放| 99久久中文字幕三级久久日本| 亚洲av电影在线观看一区二区三区| 亚洲婷婷狠狠爱综合网| 校园人妻丝袜中文字幕| 亚洲,一卡二卡三卡| 91在线精品国自产拍蜜月| 好男人视频免费观看在线| 亚洲欧美中文字幕日韩二区| 亚洲精品中文字幕在线视频| av黄色大香蕉| 男人添女人高潮全过程视频| 国产精品国产av在线观看| 日韩,欧美,国产一区二区三区| 亚洲国产日韩一区二区| 国产免费现黄频在线看| 久久久久久久久久人人人人人人| 色网站视频免费| 亚洲av日韩在线播放| 精品人妻偷拍中文字幕| 两性夫妻黄色片 | 女人精品久久久久毛片| 18禁裸乳无遮挡动漫免费视频| 国产男女内射视频| 国产高清国产精品国产三级| 亚洲 欧美一区二区三区| 久久午夜福利片| www日本在线高清视频| 少妇 在线观看| 女的被弄到高潮叫床怎么办| 建设人人有责人人尽责人人享有的| 一边摸一边做爽爽视频免费| 51国产日韩欧美| 亚洲国产成人一精品久久久| 精品视频人人做人人爽| 人人妻人人澡人人爽人人夜夜| 亚洲一码二码三码区别大吗| 永久网站在线| av播播在线观看一区| 国产一区二区在线观看日韩| www.熟女人妻精品国产 | 久久精品aⅴ一区二区三区四区 | 在线观看www视频免费| 国产成人精品一,二区| 午夜福利,免费看| 大香蕉久久网| 永久网站在线| 69精品国产乱码久久久| 日韩中文字幕视频在线看片| 丰满乱子伦码专区| 国产综合精华液| 久久韩国三级中文字幕| 婷婷成人精品国产| 国产不卡av网站在线观看| 欧美精品一区二区大全| 国产 一区精品| √禁漫天堂资源中文www| 精品久久久精品久久久| 黄色 视频免费看| 在线观看免费视频网站a站| 老司机影院毛片| 国产极品粉嫩免费观看在线| 青春草亚洲视频在线观看| 丝袜脚勾引网站| 韩国精品一区二区三区 | 1024视频免费在线观看| 制服诱惑二区| 国产精品三级大全| videossex国产| 最近的中文字幕免费完整| 伊人久久国产一区二区| a级片在线免费高清观看视频| 日韩熟女老妇一区二区性免费视频| 人成视频在线观看免费观看| 亚洲国产av新网站| 国产综合精华液| a级毛片黄视频| 国产乱人偷精品视频| 深夜精品福利| 亚洲av电影在线进入| 两性夫妻黄色片 | 日韩一区二区视频免费看| 国产一区二区三区综合在线观看 | 亚洲精品av麻豆狂野| 下体分泌物呈黄色| 飞空精品影院首页| 亚洲丝袜综合中文字幕| 精品人妻熟女毛片av久久网站| 男女啪啪激烈高潮av片| 日本av免费视频播放| 日本猛色少妇xxxxx猛交久久| 色婷婷久久久亚洲欧美| 又黄又爽又刺激的免费视频.| 欧美最新免费一区二区三区| 天天躁夜夜躁狠狠久久av| 亚洲国产精品专区欧美| 免费大片18禁| 老司机亚洲免费影院| 在线观看一区二区三区激情| 久久女婷五月综合色啪小说| 视频区图区小说| 国产精品女同一区二区软件| 久久精品夜色国产| 男女无遮挡免费网站观看| 亚洲第一区二区三区不卡| 国产精品国产三级国产av玫瑰| 99九九在线精品视频| 国产无遮挡羞羞视频在线观看| 国产精品久久久av美女十八| kizo精华| 亚洲精品乱码久久久久久按摩| 亚洲综合色网址| av国产久精品久网站免费入址| 国产亚洲一区二区精品| 秋霞伦理黄片| 日本黄大片高清| 自拍欧美九色日韩亚洲蝌蚪91| 国内精品宾馆在线| 久久久久久久国产电影| 亚洲精华国产精华液的使用体验| 91午夜精品亚洲一区二区三区| 久久久精品94久久精品| 侵犯人妻中文字幕一二三四区| 少妇被粗大的猛进出69影院 | 日本免费在线观看一区| 精品一区二区免费观看| 91精品国产国语对白视频| 999精品在线视频| 国产毛片在线视频| 午夜福利在线观看免费完整高清在| 日韩制服骚丝袜av| 久久国产亚洲av麻豆专区| 青春草国产在线视频| 久久精品熟女亚洲av麻豆精品| 天堂中文最新版在线下载| 成人国产av品久久久| 欧美bdsm另类| 欧美精品av麻豆av| 妹子高潮喷水视频| 老女人水多毛片| 欧美激情极品国产一区二区三区 | 老司机亚洲免费影院| 三上悠亚av全集在线观看| 97超碰精品成人国产| 男的添女的下面高潮视频| 日日撸夜夜添| xxxhd国产人妻xxx| 韩国高清视频一区二区三区| 久久国产精品男人的天堂亚洲 | www.熟女人妻精品国产 | 欧美日韩一区二区视频在线观看视频在线| 久久精品久久久久久噜噜老黄| 欧美日韩视频高清一区二区三区二| 国产黄色视频一区二区在线观看| 久久久国产欧美日韩av| www.av在线官网国产| 香蕉国产在线看| 中文精品一卡2卡3卡4更新| 精品卡一卡二卡四卡免费| 久久精品久久久久久久性| 国产日韩欧美在线精品| 亚洲欧美精品自产自拍| 夫妻午夜视频| 韩国高清视频一区二区三区| av有码第一页| 最黄视频免费看| 国产综合精华液| 美女视频免费永久观看网站| 亚洲在久久综合| 亚洲欧美成人综合另类久久久| 国产在视频线精品| 国产av一区二区精品久久| 这个男人来自地球电影免费观看 | 黑人巨大精品欧美一区二区蜜桃 | 亚洲成人手机| 在线观看一区二区三区激情| 伊人亚洲综合成人网| 一级毛片电影观看| 欧美精品亚洲一区二区| 一级爰片在线观看| 欧美最新免费一区二区三区| 日韩三级伦理在线观看| 欧美xxxx性猛交bbbb| 午夜福利,免费看| 久久精品久久久久久噜噜老黄| 日韩免费高清中文字幕av| 又黄又爽又刺激的免费视频.| 国产免费一级a男人的天堂| 男女高潮啪啪啪动态图| 黄网站色视频无遮挡免费观看| 深夜精品福利| 最新中文字幕久久久久| 精品卡一卡二卡四卡免费| 中文字幕亚洲精品专区| 国产成人午夜福利电影在线观看| 最新的欧美精品一区二区| 亚洲精品,欧美精品| 老司机影院毛片| 亚洲国产av影院在线观看| 中文字幕精品免费在线观看视频 | 少妇人妻久久综合中文| a 毛片基地| 免费少妇av软件| 纵有疾风起免费观看全集完整版| 男女边吃奶边做爰视频| 天堂俺去俺来也www色官网| 99re6热这里在线精品视频| 精品国产乱码久久久久久小说| 少妇猛男粗大的猛烈进出视频| 国产日韩欧美亚洲二区| 纵有疾风起免费观看全集完整版| 国产片内射在线| 欧美成人精品欧美一级黄| 亚洲av电影在线进入| av免费在线看不卡| 最近的中文字幕免费完整| 少妇高潮的动态图| 2018国产大陆天天弄谢| 天堂俺去俺来也www色官网| 在线天堂中文资源库| 精品国产一区二区久久| 成人无遮挡网站| 夜夜爽夜夜爽视频| 亚洲精品日韩在线中文字幕| 亚洲av电影在线观看一区二区三区| 久久精品久久久久久久性| 黄色一级大片看看| 亚洲国产av新网站| 2021少妇久久久久久久久久久| 精品一品国产午夜福利视频| 欧美亚洲 丝袜 人妻 在线| 最近中文字幕高清免费大全6| 老熟女久久久| 高清黄色对白视频在线免费看| 国产亚洲午夜精品一区二区久久| 日韩一区二区三区影片| 九草在线视频观看| 大码成人一级视频| 国产乱来视频区| 国产高清不卡午夜福利| 午夜久久久在线观看| 欧美日韩亚洲高清精品| 国产成人精品无人区| av在线播放精品| av黄色大香蕉| 22中文网久久字幕| xxxhd国产人妻xxx| 亚洲三级黄色毛片| 91国产中文字幕| 丰满少妇做爰视频| 亚洲国产精品999| 成人国语在线视频| 激情视频va一区二区三区| 久久久久久久久久久免费av| 精品午夜福利在线看| 999精品在线视频| 欧美精品一区二区大全| 免费观看无遮挡的男女| 午夜福利乱码中文字幕| 免费播放大片免费观看视频在线观看| 2021少妇久久久久久久久久久| 久久这里有精品视频免费| 男人操女人黄网站| 亚洲色图综合在线观看| 免费黄频网站在线观看国产| 国产黄频视频在线观看| 夜夜骑夜夜射夜夜干| 99re6热这里在线精品视频| 日韩精品免费视频一区二区三区 | 男的添女的下面高潮视频| 国产精品免费大片| 丝瓜视频免费看黄片| 免费高清在线观看视频在线观看| 性色avwww在线观看| 中文字幕亚洲精品专区| 国产精品久久久久久久电影| 青春草亚洲视频在线观看| 久久精品国产亚洲av天美| 男的添女的下面高潮视频| 久久国产亚洲av麻豆专区| 在线观看免费视频网站a站| 美女国产视频在线观看| 成人二区视频| freevideosex欧美| 美女国产高潮福利片在线看| 亚洲精品美女久久av网站| 人人妻人人澡人人看| 九色亚洲精品在线播放| 久久精品人人爽人人爽视色| 成人18禁高潮啪啪吃奶动态图| 中文字幕制服av| 免费人妻精品一区二区三区视频| 夜夜骑夜夜射夜夜干| 九草在线视频观看| 国产高清国产精品国产三级| 精品人妻一区二区三区麻豆| 超色免费av| 最近手机中文字幕大全| 人妻一区二区av| 爱豆传媒免费全集在线观看| 国产69精品久久久久777片| 日本免费在线观看一区| 久久综合国产亚洲精品| 日本91视频免费播放| 两性夫妻黄色片 | 国产一级毛片在线| 亚洲av欧美aⅴ国产| 亚洲精品av麻豆狂野| av视频免费观看在线观看| 菩萨蛮人人尽说江南好唐韦庄| 超碰97精品在线观看| 日韩一本色道免费dvd| 又黄又粗又硬又大视频| 日韩熟女老妇一区二区性免费视频| av一本久久久久| 午夜福利视频在线观看免费| 日产精品乱码卡一卡2卡三| 国产在视频线精品| 国产精品不卡视频一区二区| 2018国产大陆天天弄谢| 在线观看人妻少妇| 国产麻豆69| 久久久久久人人人人人| 国产精品偷伦视频观看了| 曰老女人黄片| 最近中文字幕2019免费版| 亚洲欧美日韩卡通动漫| a级片在线免费高清观看视频| 久久久国产一区二区| 日本91视频免费播放| 草草在线视频免费看| 国产一级毛片在线| 亚洲av中文av极速乱| www日本在线高清视频| 夫妻性生交免费视频一级片| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧洲日产国产| 国产精品麻豆人妻色哟哟久久| av福利片在线| 欧美亚洲日本最大视频资源| 丝袜人妻中文字幕| 水蜜桃什么品种好| 美女大奶头黄色视频| 欧美国产精品va在线观看不卡| 亚洲成人av在线免费| 色视频在线一区二区三区| 国产精品人妻久久久久久| av又黄又爽大尺度在线免费看| av黄色大香蕉| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品中文字幕在线视频| 18在线观看网站| 九色亚洲精品在线播放| 成人毛片60女人毛片免费| 国产精品久久久久成人av| 最近中文字幕2019免费版| 国产精品久久久久久av不卡| 免费看光身美女| 黑人欧美特级aaaaaa片| 18+在线观看网站| 精品一区在线观看国产| 午夜福利乱码中文字幕| 最近最新中文字幕免费大全7| 新久久久久国产一级毛片| 一区二区av电影网| 久久久久久人妻| 日韩中字成人| 国产一级毛片在线| 精品国产乱码久久久久久小说| 啦啦啦啦在线视频资源| 精品福利永久在线观看| 五月天丁香电影| 国产免费福利视频在线观看| 午夜91福利影院| 亚洲成色77777| av卡一久久| 久久久精品免费免费高清| 国产男女内射视频| 日韩电影二区| 日本猛色少妇xxxxx猛交久久| 亚洲国产看品久久| 日韩av免费高清视频| 青春草视频在线免费观看| 大码成人一级视频| 欧美精品高潮呻吟av久久| 美女国产视频在线观看| 中文字幕免费在线视频6| 母亲3免费完整高清在线观看 | 精品亚洲成a人片在线观看| av免费观看日本| 欧美丝袜亚洲另类| 一区二区三区精品91| 欧美成人午夜精品| 亚洲精品视频女| 亚洲精品第二区| 1024视频免费在线观看| 国产成人aa在线观看| 人成视频在线观看免费观看| 欧美 亚洲 国产 日韩一| 午夜福利在线观看免费完整高清在| 又黄又粗又硬又大视频| 最近中文字幕2019免费版| 午夜福利影视在线免费观看| 国产av精品麻豆| 国语对白做爰xxxⅹ性视频网站| 国产高清不卡午夜福利| av卡一久久| 夫妻性生交免费视频一级片| 91精品伊人久久大香线蕉| 精品人妻熟女毛片av久久网站| 亚洲,一卡二卡三卡| 国产白丝娇喘喷水9色精品| 咕卡用的链子| 国产成人精品久久久久久| www日本在线高清视频| 男的添女的下面高潮视频| 国产 精品1| 国产极品天堂在线| 侵犯人妻中文字幕一二三四区| 一级,二级,三级黄色视频| 人妻系列 视频| 成人黄色视频免费在线看| 欧美成人精品欧美一级黄| 一区二区av电影网| 免费黄频网站在线观看国产| 日本猛色少妇xxxxx猛交久久| 精品人妻在线不人妻| 成人漫画全彩无遮挡| 亚洲成av片中文字幕在线观看 | 寂寞人妻少妇视频99o| 亚洲欧美清纯卡通| 亚洲欧美一区二区三区黑人 |