李勁,吳笑峰,席在芳,胡仕剛,李目
(湖南科技大學(xué) 信息與電氣工程學(xué)院,湖南 湘潭,411201)
對(duì)稱雙柵高斯摻雜應(yīng)變Si金屬氧化物半導(dǎo)體場(chǎng)效應(yīng)管的二維解析模型
李勁,吳笑峰,席在芳,胡仕剛,李目
(湖南科技大學(xué) 信息與電氣工程學(xué)院,湖南 湘潭,411201)
基于擴(kuò)散、閾值調(diào)整和離子注入等工藝過(guò)程導(dǎo)致器件的溝道區(qū)的摻雜分布不均勻,提出對(duì)稱雙柵高斯摻雜應(yīng)變硅 MOSFET器件,并對(duì)其相關(guān)特性進(jìn)行研究。通過(guò)對(duì)溝道二維泊松方程求解建立該器件結(jié)構(gòu)的表面勢(shì)和閾值電壓模型,分析弛豫SiGe層的Ge組分和摻雜偏差σn對(duì)表面勢(shì)和閾值電壓的影響。此外,還對(duì)比分析高斯摻雜對(duì)稱雙柵應(yīng)變硅MOSFET器件和均勻摻雜對(duì)稱雙柵應(yīng)變硅MOSFET器件的表面勢(shì)和閾值電壓。研究結(jié)果表明:閾值電壓隨應(yīng)變Si膜中Ge組分的增加而降低;表面勢(shì)和閾值電壓隨偏差σn的增加而減?。桓咚箵诫s對(duì)稱雙柵應(yīng)變硅MOSFET器件和均勻摻雜對(duì)稱雙柵應(yīng)變硅MOSFET器件的表面勢(shì)和閾值電壓相差較大,表明非均勻摻雜對(duì)器件表面勢(shì)和閾值電壓等影響較大。
高斯摻雜;應(yīng)變Si; 閾值電壓
幾十年以來(lái),隨著MOSFET器件的尺寸不斷縮小到深亞微米甚至納米尺度,短溝道效應(yīng)、漏致勢(shì)壘降低效應(yīng)和低驅(qū)動(dòng)電流現(xiàn)象對(duì)器件性能的影響性能愈來(lái)愈顯著。雙柵MOSFET器件是一種極具應(yīng)用前景的器件。雙柵器件不僅可以很好地抑制短溝道效應(yīng)、DIBL效應(yīng),降低亞閾值漏電流,具有理想的亞閾值斜率,而且不需要采用較高的溝道摻雜濃度就可以提高載流子遷移率,降低摻雜漲落及偏差對(duì)器件性能的影響,還可以提高溝道導(dǎo)電能力,提高器件電流驅(qū)動(dòng)能力和柵控能力[1-3]。應(yīng)變硅技術(shù)是利用襯底材料和外延材料的晶格失配產(chǎn)生的張應(yīng)變或壓應(yīng)變效應(yīng)獲得具有特殊性能的應(yīng)變材料,使應(yīng)變 Si 中的電子和空穴的遷移率得到顯著提高,從而提高M(jìn)OS器件的相關(guān)特性。同時(shí),應(yīng)變硅技術(shù)能與常規(guī)工藝有良好的兼容性, 已得到廣泛研究和應(yīng)用[4-6]。MAHATO等[7-10]對(duì)雙柵應(yīng)變硅SOI MOSFET器件進(jìn)行了研究, 然而,這些研究都假設(shè)器件均勻摻雜,但實(shí)際上在摻雜工藝過(guò)程中擴(kuò)散和閾值調(diào)整導(dǎo)致器件的溝道區(qū)的摻雜分布不均勻。需特別指出的是:離子注入技術(shù)提供的是最常見(jiàn)的摻雜的波動(dòng)范圍 Rn和摻雜的偏差 σn的高斯分布[6, 11]。這種不均勻摻雜分布使器件的特性和均勻摻雜器件的特性有較大差別,本文作者對(duì)對(duì)稱雙柵高斯摻雜應(yīng)變Si MOSFET進(jìn)行研究。 采用的溝道電勢(shì)拋物線近似并通用邊界條件求解二維泊松方程,建立全耗盡條件下對(duì)稱雙柵高斯摻雜應(yīng)變Si MOSFET的表面勢(shì)和閾值電壓二維模型。采用該模型分析弛豫SiGe層中Ge 組分、偏差σn的影響, 以便為器件設(shè)計(jì)提供參考。最后, 對(duì)高斯摻雜應(yīng)變Si MOSFET器件與均勻摻雜 SOI MOSFET器件的表面勢(shì)和閾值電壓進(jìn)行對(duì)比研究,將模型所得結(jié)果與數(shù)值仿真結(jié)果相比較。
圖1所示為對(duì)稱雙柵高斯摻雜應(yīng)變硅MOSFET的結(jié)構(gòu)示意圖。假設(shè)溝道區(qū)水平方向均勻摻雜,垂直方向高斯摻雜,摻雜濃度為NA(x),其表達(dá)式為[6]
其中:NA為摻雜濃度峰值,摻雜波動(dòng)范圍 Rn摻雜偏差σn。
忽略固定氧化層電荷對(duì)溝道電勢(shì)的影響,考慮短溝道,則弱反型時(shí)溝道電勢(shì)分布可以用二維泊松方程表示為[12-15]
其中:εSi為硅的介電常數(shù);ts-Si為應(yīng)變硅膜厚度;L為器件的溝道長(zhǎng)度。
圖1 對(duì)稱雙柵高斯摻雜應(yīng)變硅MOSFET的結(jié)構(gòu)示意圖Fig. 1 Schematic structure of DG MOSFET with vertical Gaussian doping profile
1) 根據(jù)應(yīng)變硅層與前柵介質(zhì)層的電通量連續(xù),得
其中:εox為柵介質(zhì)的介電常數(shù);tox為柵介質(zhì)厚度。由于應(yīng)變的作用器件的其相應(yīng)的參數(shù)得到修正[17-18]:φSi為功函數(shù);φM為金屬柵的功函數(shù);VT為熱電勢(shì);VFB,f為平帶電壓;Vgs為柵源電壓, ΔVFB,f為平帶電壓的修正值,(VFB,f)s-Si為應(yīng)變硅的平帶電壓,x為Ge組分即應(yīng)變量。
2) 根據(jù)應(yīng)變硅層與背柵質(zhì)層的電通量連續(xù), 得
3)電勢(shì)在溝道表面處連續(xù),即表面勢(shì)。
其中: φs(y)為溝道的表面勢(shì)。引入新的變量 τ,。方程(1) 和邊界條件(3)~(5) 修正為:
其中:c0(y),c1(y)和c2(y)僅是y的函數(shù),其值由修正的邊界條件(7)~(9)決定。
為誤差函數(shù)。
通過(guò)邊界條件(7)和(8),可得 c0(y),c1(y)和 c2(y)的表達(dá)式。將其代入式(10) 后再代入式(6),令y=0,可得表面勢(shì)方程:
方程(12)是簡(jiǎn)單的二階常微分方程,其解的形式如下:
其中:K1和K2為任意常數(shù)。
1) 源區(qū)的邊界條件為
考慮到應(yīng)變相應(yīng)的參數(shù)得到修正[13-14]:
2) 漏區(qū)的邊界條件為
其中:VDS為漏源電壓。通過(guò)源區(qū)和漏區(qū)邊界條件可以確定式(6)中的K1和K2分別為:
其中:
其中: Vbi,ep為應(yīng)變硅的內(nèi)建電勢(shì) Vbi,s-Si及摻雜濃度NA有關(guān)的物理量; w1和w2為跟 Vbi,ep和 VDS及柵長(zhǎng)L有關(guān)的物理量;u1和 u2為跟柵長(zhǎng)L有關(guān)的物理量。
沿溝道的電場(chǎng)決定了電子的通過(guò)溝道的輸運(yùn)速度,金屬柵下的電場(chǎng)為
表面勢(shì)的最小值決定整個(gè)溝道的閾值電壓Vth。由式(13)得
得到溝道最小表面勢(shì)及其位置:
閾值電壓定義為φS,min等于溝道中費(fèi)米勢(shì)的2倍,即 φs,min=2φF,Si時(shí)的柵源電壓??紤]到應(yīng)變,表面勢(shì)的最小值修正為[13-14]
將式(21)代入式(19)得到閾值電壓:
采用下列參數(shù)對(duì)所建表面勢(shì)模型和閾值電壓模型進(jìn)行分析和驗(yàn)證。柵極采用功函數(shù) φM=4.77 eV的金屬材料(如 TiN),柵氧厚度 tox=3 nm,應(yīng)變硅膜厚度ts-Si=10 nm,摻雜濃度NA=1×1018cm-3, 摻雜波動(dòng)為Rp=5 nm,摻雜偏差σn為2,3和5 nm,應(yīng)變量x為0,0.2,0.4;柵長(zhǎng)L=70 nm。
圖 2 所示為弛豫層的 Ge 組分 x不同時(shí)應(yīng)變硅層表面沿溝道方向的表面勢(shì)分布情況。從圖2可以看出:在源端和漏端表面勢(shì)隨弛豫層中Ge 組分的增加而減小,Ge 組分越大,其表面勢(shì)越??;在溝道中間段,其表面電勢(shì)則隨 Ge 組分的增加而增加,Ge 組分越大,其表面勢(shì)越大,意味著其閾值電壓較低。從圖 2 可以明顯看出垂直溝道方向表面勢(shì)分布呈拋物線形狀,證實(shí)了拋物線分布假設(shè)的正確性。
圖2 不同Ge 組分下沿溝道方向的表面勢(shì)Fig. 2 Surface potential with horizontal distance along channel for different effective Ge mole fractions
圖3所示為不同摻雜偏差σn下沿溝道方向的表面勢(shì)分布。從圖3可看出:由于偏差σn導(dǎo)致表面勢(shì)的彎曲程度發(fā)生了變化,σn越小,彎曲越小,其表面勢(shì)隨著σn的增加而減小;垂直溝道方向的表面勢(shì)分布呈拋物線形狀,進(jìn)一步證實(shí)了拋物線分布假設(shè)的正確性。
圖 4 所示為高斯摻雜和均勻摻雜 DG MOSFET結(jié)構(gòu)器件表面勢(shì)對(duì)比。從圖4可以看出:高斯摻雜的DG MOSFET 結(jié)構(gòu)器件的表面勢(shì)較均勻摻雜的 DG MOSFET 結(jié)構(gòu)器件的表面勢(shì)要大,因此,必須建立高斯摻雜的DG MOSFET 結(jié)構(gòu)器件的相關(guān)模型。
圖 5 所示為不同 Ge 組分x時(shí)高斯摻雜應(yīng)變硅DG MOSFET器件閾值電壓變化情況。在特定溝道長(zhǎng)度下,應(yīng)變溝道的應(yīng)變量越大,其閾值電壓越小。這是由于弛豫層中Ge 組分增加,應(yīng)變Si 應(yīng)變加強(qiáng),禁帶寬度進(jìn)一步減小,ΔEc增大,本征載流子濃度和溝道電子面密度均提高,從而導(dǎo)致閾值電壓減?。煌瑫r(shí),隨著溝道的不斷縮小,器件的閾值電壓降落比較明顯;當(dāng)溝道長(zhǎng)度小于40 nm時(shí),閾值電壓隨溝道長(zhǎng)度減小程度明顯降低。
圖3 不同偏差σn下沿溝道方向的表面勢(shì)Fig. 3 Surface potential with horizontal distance along channel for different straggle σn
圖4 高斯摻雜和均勻摻雜DG MOSFET 結(jié)構(gòu)器件表面勢(shì)對(duì)比Fig. 4 Comparison of surface potential of DG MOSFE with Gaussian doping and with uniform doping
圖 6所示為不同偏差 σn下高斯摻雜應(yīng)變硅 DG MOSFET器件閾值電壓變化情況。從圖6可以看出:隨著偏差σn的增加,高斯摻雜應(yīng)變硅DG MOSFET器件閾值電壓略增加,并隨著偏差σn的增加,在溝道長(zhǎng)度較短的情況下閾值電壓的降落明顯減少。
圖5 不同Ge 組分下高斯摻雜應(yīng)變硅DG MOSFET器件閾值電壓Fig. 5 Threshold voltage of DG MOSFE for different effective Ge mole fractions
圖6 不同偏差σn下高斯摻雜應(yīng)變硅DG MOSFET器件閾值電壓Fig. 6 Threshold voltage with horizontal distance along channel for different straggle σn
圖7 所示為高斯摻雜和均勻摻雜DG MOSFET結(jié)構(gòu)器件閾值電壓對(duì)比。從圖7 可以看出:高斯摻雜的DG MOSFET 結(jié)構(gòu)器件的閾值電壓較均勻摻雜的DG MOSFET 結(jié)構(gòu)器件的閾值電壓大,而且其在溝道較短時(shí)閾值電壓降落較均勻摻雜DG MOSFET器件閾值電壓降落明顯。
圖 8 所示為 Ge 組分 x=0.2 時(shí),在不同偏差 σn下,DIBL隨溝道長(zhǎng)度L的變化曲線。從圖8可以看出:高斯摻雜DG MOSFET器件的漏致勢(shì)壘降低效應(yīng)DIBL隨著溝道長(zhǎng)度的增加迅速趨近于0,并且隨著偏差σn的增加,高斯摻雜DG MOSFET器件的DIBL更快趨近于0。
圖7 高斯摻雜和均勻摻雜DG MOSFET結(jié)構(gòu)器件閾值電壓對(duì)比Fig. 7 Comparison of threshold voltage of DG MOSFET with Gaussian doping and with uniform doping
圖8 不同偏差σn下DIBL 隨溝道長(zhǎng)度變化曲線Fig. 8 Relationship between DIBL and channel length L for different straggle σn
1) 建立了對(duì)稱雙柵高斯摻雜應(yīng)變硅SOI MOSFET器件中高斯摻雜的溝道的二維泊松方程,通過(guò)求解二維泊松方程, 得到了表面勢(shì)和閾值電壓的解析模型。
2) 隨著偏差 σn的增加,表面勢(shì)不斷降低,其閾值電壓的降低幅度也不斷減小,DIBL效應(yīng)也變得更小。在特定的溝道長(zhǎng)度情況下,應(yīng)變溝道的應(yīng)變量越大,其閾值電壓越小。
3) 高斯摻雜對(duì)MOS器件的閾值電壓的影響比對(duì)均勻摻雜MOS器件閾值電壓的影響大。
[1] HE Jin, LIU Feng, ZHANG Jian, et al. A carrier-based approach for compact modeling of the long-channel undoped symmetric double-gate MOSFETs[J]. IEEE Transactions Electron Devices,2007, 54(5): 1203-1207.
[2] CHIAGE T K, CHEN M L. A new analytical threshold voltage model for symmetric double-gate MOSFETs with high-k gate dielectrics[J]. Solid State Electron, 2007, 51(1): 387-390.
[3] ORTIZ-CONDE A, GARCíA-SáNCHEZ F A, MUCI J, et al. A review of core compact models for undoped double-gate SOI MOSFETs[J]. IEEE Transactions Electron Devices, 2007, 54(1):131-135.
[4] BANNA S R, CHAN PH C H, KO P K, et al. Threshold voltage model for deep-submicrometer fully depleted SOI MOSFET’s[J]. IEEE Transactions Electron Devices, 1995, 42(11): 1949-1952.
[5] JOACHIM H O, YAMAGUCHI Y, ISHIKAWA K, et al. Simulation and two-dimensional analytical modeling of subthreshold slope in ultrathin-film SOI MOSFET’s down to 0.1 μm gate length[J]. IEEE Transactions Electron Devices, 1993,40(10): 1812-1819.
[6] ZHANG G H, SHAO Z B, ZHOU K. Threshold voltage model of short-channel FD SOI MOSFETs with vertical Gaussian profile[J]. IEEE Transactions Electron Devices, 2008, 55(3):803-808.
[7] MAHATO S S, CHAKRABORTY P, MAITI T K, et al. DIBL in short channel strained-Si n-MOSFET[C]//IEEE Proceedings 15th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). Singapore, 2008: 1-5.
[8] KUMAR M J, VENKATARAMAN V, NAWAL S. A simple analytical threshold voltage model of nanoscale single-layer fully depleted strained-silicon-on-insulator MOSFETs 2006[J]. IEEE Transactions Electron Devices, 2006, 53(3): 2500-2505.
[9] KUMAR M, DUBEY S, TIWARI P K, et al. Analytical modeling and simulation of subthreshold characteristics of back-gated SSGOI and SSOI MOSFETs: a comparative study[J]. Current Applied Physics, 2013, 13(8): 1778-1783.
[10] MUKHOPADHYAY B, BISWAS A, BASU P K, et al. Modelling of threshold voltage and subthreshold slope of strained-Si MOSFETs including quantum effects[J]. Semiconductor Science Technology, 2008, 23(9): 095017-095021.
[11] ZHANG G H, SHAO, ZH B, ZHOU K. Threshold voltage model of short-channel FD-SOI MOSFETs with vertical gaussian profile[J]. IEEE Transactions Electron Devices, 2008, 55(4):803.
[12] WANG Min, KE Daoming, XU Chunxia, et al. A 2-Dsemi-analytical model of parasitic capacitances for MOSFETs with high k gate dielectric in short channel[J]. Solid-State Electronics, 2014, 92(5): 35.
[13] LU C C, KUEI-SHU CH L, CHE-HAO T, et al. Profiling of channel-hot-camer stress-induced trap distributions along channel and gate dielectric in high-k gated MOSFETs by a modified charge pumping technique[J]. IEEE Transactions Electron Devices, 2014, 61(4): 93.
[14] 韓名君, 柯導(dǎo)明. 超淺結(jié)亞45 nm MOSFET亞閾值區(qū)二維電勢(shì)模型[J]. 電子學(xué)報(bào), 2015, 43(1): 94-98. HAN Mingjun KE Daoming. A 2-D potential sub-threshold model for sub-45 nm MOSFETs with ultra shallow junctions[J]. Chinese J Electron, 2015, 43(1): 94.
[15] TRIPATHI S. A two-dimensional analytical model for channelpotential and threshold voltage of short channel dual material gate lightly doped drain MOSFET[J]. Chin Phys B,2014, 23(11): 8505-8510.
[16] KUMAR P, WARI T, JIT S. Threshold voltage model for symmetric double-gate (DG) MOSFETs with non-uniform doping profile[J]. Journal of Electron Devices, 2010, 7(6):241-247.
[17] DJEFFAL F, MEGUELLATI M, BENHAYA A. A two-dimensional analytical analysis of subthreshold behavior to study the scaling capability of nanoscale graded channel gate stack DG MOSFETs[J]. Physica E, 2009, 41(8): 1872-1878.
[18] KUMAR M, DUBEY S, TIWARI P K, et al. Two-dimensional modeling of subthreshold current and subthreshold swing of double material-gate(DMG) strained-Si (s-Si) on SGOI MOSFETs[J]. Journal of Computational Electronics, 2013, 12(2):275-278.
(編輯 陳燦華)
Two-dimensional analytical models for double-gate (DG) strained-Si metal-oxide-semiconductor field transistor with vertical gaussian doping profile
LI Jin, WU Xiaofeng, XI Zaifang, HU Shigang, LI Mu
(School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)
Considering that diffusion, threshold voltage adjustment and ion implantation process cause the device channel doping distribution to be uneven, a symmetrical double-gate strained-Si metal-oxide-semiconductor field transistor (MOSFET) with a vertical Gaussian doping profile was proposed, and the two-dimensional surface potential model and threshold voltage model for this MOSFET were studied to solve Poisson’s equation. The effects of Gaussian doping straggle parameter σnon surface potential and threshold voltage were investigated. The influence of Ge fraction in the relaxed layer on the surface potential and threshold voltage models was analyzed. Both models of DG MOSFET with Gaussian doping and uniform doping were compared, respectively. SCEs (short-channel effect) and (Drain-Induced-Barrier- lowering) DIBL were analyzed. The results show that the doping distribution has great influence on the device such as surface potential and threshold voltage.
Gaussian doping; strained Si; threshold voltage
TN302
A
1672-7207(2016)04-1203-06
10.11817/j.issn.1672-7207.2016.04.017
2015-05-10;
2015-07-22
國(guó)家自然科學(xué)基金資助項(xiàng)目(61474042,61404049,61376076);湖南省科技計(jì)劃項(xiàng)目(2013FJ2011,2014FJ2017);湖南省教育廳資助項(xiàng)目(14B060,13C321)(Projects (61474042, 61404049, 61376076) supported by the National Natural Science Foundation of China; Projects (2013FJ2011, 2014FJ2017) supported by the Science and Technology Plan of Hunan province; Projects (14B060, 13c321)supported by Education Department of Hunan Province)
李勁,博士,講師,從事半導(dǎo)體器件及其可靠性研究;E-mail:lijinpower@126.com