魏鉅杰,張繼賢,黃國滿,趙 爭
(中國測繪科學(xué)研究院,北京 100830)
?
一種基于全極化SAR數(shù)據(jù)廣義多子視相干的海面船只目標(biāo)檢測方法
魏鉅杰,張繼賢,黃國滿,趙爭
(中國測繪科學(xué)研究院,北京 100830)
傳統(tǒng)基于子視相干的檢測算法,如2L-IHP(Two Looks Internal Hermitian Product)和Pol-IHP(Polarimetric Internal Hermitian Product)等,通常利用兩個子視影像進(jìn)行相干來檢測海面弱小船只目標(biāo).但受子視影像個數(shù)的限制,無法大幅度地提高船海對比度,進(jìn)而影響了檢測精度.針對該問題,本文提出了一種基于全極化SAR的廣義多子視相干檢測算法,首先利用子視分解方法對全極化SAR數(shù)據(jù)進(jìn)行處理得到多個子視全極化影像;接著,基于廣義相似性參數(shù)(Generalized Similarity Parameter,GSP)定義這些子視影像間的相關(guān)矩陣和相干算子來計算相干圖;然后,利用恒虛警率(Constant False Alarm Rate,CFAR)檢測方法結(jié)合統(tǒng)計的相干圖累積分布函數(shù)進(jìn)行船只目標(biāo)檢測.通過實驗,表明利用本文算法船海對比度隨著子視影像個數(shù)的增加而得到大幅提高,從而減少了弱小船只目標(biāo)的漏檢,顯著提高了船只目標(biāo)檢測精度.
全極化SAR;多子視相干;廣義相似性;恒虛警率;船只目標(biāo)檢測
船海對比度是直接影響合成孔徑雷達(dá)(Synthetic Aperture Radar,SAR)影像海面船只目標(biāo)檢測精度的關(guān)鍵因素之一.尤其是弱小船只目標(biāo),其后向散射強度較弱,很容易產(chǎn)生漏檢.Arnaud首次引入雷達(dá)干涉測量的思想,利用前后子視影像的相干系數(shù)來檢測弱小船只[1].之后,Iehara等采用二維相關(guān)函數(shù)(Two Dimensions Cross Correlation Function,2D-CCF)計算兩子視影像間的相干性來檢測海面船只目標(biāo)[2].Souyris和Henry等考慮到相干系數(shù)忽略了幅度信息,提出了兩子視厄爾米特內(nèi)積(Two Looks Internal Hermitian Product,2L-IHP)的船只目標(biāo)檢測算法,并引入極化干涉相干最優(yōu)提出了Pol-IHP船只檢測算法,將該方法推廣到全極化SAR數(shù)據(jù)[3,4].極化干涉相干最優(yōu)實際上是通過選擇最優(yōu)極化狀態(tài)組合使得觀測目標(biāo)產(chǎn)生最高的相干性[5,6].所以,利用兩個子視全極化數(shù)據(jù)進(jìn)行極化干涉最優(yōu)相干,不僅使得船只目標(biāo)產(chǎn)生最優(yōu)相干,而且同樣也使得海雜波獲得最優(yōu)相干.這就在一定程度上抑制了船海對比度的增幅;另外,上述算法都只能處理兩個子視影像.因此,本文針對全極化SAR數(shù)據(jù),推導(dǎo)出一種廣義多子視相干算子ρGIC,突破子視個數(shù)的限制,更大程度增強船海對比度,以便提高船只目標(biāo)檢測精度.
多子視相干的前提是要對全極化SAR數(shù)據(jù)進(jìn)行多子視分解[7~9].在此基礎(chǔ)上,再計算各個子視全極化數(shù)據(jù)間的相關(guān)性.子視分解作為SAR成像的逆過程,子視影像通常是利用SAR回波信號的多普勒頻譜,將其分割為一系列子頻譜計算得到.
2.1廣義多子視相干
本節(jié)利用兩個散射體間的相似性參數(shù)和廣義相似性參數(shù),定義了多子視全極化數(shù)據(jù)間的相關(guān)矩陣,并提出了廣義多子視相干算子ρGIC.
2.1.1相似性參數(shù)和廣義相似性參數(shù)
為了確定兩個散射體之間的相似性,Yang等[10]定義了兩個極化散射矩陣S1和S2的相似性參數(shù)r,即
(1)
(2)
2009年,An等利用兩個極化相干矩陣T1和T2的相關(guān)系數(shù)定義了廣義相似性參數(shù)(Generalized Similarity Parameter,GSP)[11],將相似性參數(shù)推廣到多視極化SAR數(shù)據(jù),即
(3)
對于單視極化SAR,相似性參數(shù)與廣義相似性參數(shù)是等價的.另外,相似性參數(shù)與GSP的取值范圍都為[0,1];當(dāng)r(S1,S2)=1或rg(T1,T2)=1時,表明兩個散射體具有相同的后向散射特性;當(dāng)r(S1,S2)=0或rg(T1,T2)=0時,表明二者的后向散射特性完全不同.
2.1.2相關(guān)矩陣
Leducq等[12]基于矩陣熵[13]提出了N個子視單極化復(fù)數(shù)影像間的相關(guān)矩陣Rs,即
(4)
式中,s1,s2,…,sN分別為各子視的復(fù)數(shù)影像;上標(biāo)*表示復(fù)數(shù)共軛.相關(guān)矩陣Rs的行列式|Rs|可以用來衡量N個子視影像間的相關(guān)程度.當(dāng)各子視影像數(shù)據(jù)相等時,則相關(guān)矩陣Rs的所有元素都為1,那么|Rs|=0;當(dāng)各子視影像數(shù)據(jù)都完全不等時,則相關(guān)矩陣Rs為單位矩陣,那么|Rs|=1;因此,|Rs|的取值范圍為[0~1].所以,相關(guān)矩陣的行列式|Rs|越小,則各子視影像間的相關(guān)性越高,反之越低.
同樣地,本文引入相似性參數(shù)和GSP,定義了N個子視全極化數(shù)據(jù)之間的相關(guān)矩陣:
(5)
式中,k1,k2,…,kN分別為各子視全極化數(shù)據(jù)的Pauli目標(biāo)散射矢量.根據(jù)GSP的性質(zhì),當(dāng)各子視影像的后向散射特性相同時,rg(T1,T2)=rg(T1,T3)=…=rg(T1,TN)=1,即相關(guān)矩陣的各個元素都為1,那么|Rg|= 0;當(dāng)各子視影像的后向散射特性各不相同時,則rg(T1,T2)=rg(T1,T3)=…=rg(T1,TN)=0,那么相關(guān)矩陣為單位陣,|Rg|=1.因此,與|Rs|類似,相關(guān)矩陣Rg行列式值|Rg|的取值范圍也為[0~1].行列式值|Rg|越小,則各子視影像間的相關(guān)程度越高,反之就越低.
2.1.3廣義多子視相干算子
對于兩個子視全極化數(shù)據(jù)的Pauli目標(biāo)散射矢量k1和k2,可定義二者的相關(guān)系數(shù)|ρpol|2為
(6)
根據(jù)多子視全極化SAR相關(guān)矩陣式(5),式(6)可轉(zhuǎn)化為:
(7)
那么,將式(7)推廣到N個子視全極化數(shù)據(jù),廣義多子視相關(guān)系數(shù)ρGIC定義為:
(8)
2.2基于廣義多子視相干的海面船只檢測算法
利用廣義多子視相干算子ρGIC可計算獲得船海對比度增強的相干影像.接著,利用相干影像計算全局檢測閾值ε;然后,判斷當(dāng)相干影像中的像素值大于檢測閾值ε時,則判定為船只目標(biāo);否則,為背景海雜波.全局檢測閾值ε的計算方法類似于恒虛警率(Constant False Alarm Rate,CFAR)檢測法[14,15],即
(9)
式中,ε為檢測閾值;Pfa表示恒虛警率;f(·)表示相干影像ρGIC的統(tǒng)計分布函數(shù),F(xiàn)(·)表示相應(yīng)的累積分布函數(shù).假定相干影像共有M個像素{x1,x2,…,xM},且各像素按升序排列(即x1≤x2≤…≤xM),那么,某像素xk的累積分布函數(shù)F(xk),k=1,2,…,M,可根據(jù)式(10)進(jìn)行估算,
(10)
式中,Num(·)表示統(tǒng)計元素個數(shù).利用計算得到的累積分布函數(shù)曲線,并結(jié)合預(yù)設(shè)的恒虛警率Pfa,可確定檢測閾值ε.
3.1實驗數(shù)據(jù)介紹
為了驗證本文算法的檢測性能,本節(jié)選擇覆蓋日本玉野市Kojimawan海灣的L波段AIRSAR全極化數(shù)據(jù)進(jìn)行實驗.首先,根據(jù)彩色RGB合成原理,通過目視判讀解譯,將同時位于C波段和L波段影像上相同位置的白色亮點目標(biāo)S1、S2、…、S21(共有21個)人工判定為船只目標(biāo)(如圖1所示),并作為后續(xù)算法的驗證參考數(shù)據(jù).
3.2廣義多字視相干算子對船海對比度增幅的影響
為了便于驗證廣義多子視相干算子ρGIC對增強船只對比度的有效性,本節(jié)以船只目標(biāo)S6、S7為例,分別計算2個子視相干(2L-ρGIC和Pol-IHP)、5個子視相干(5L-ρGIC)和9個子視相干(9L-ρGIC),其結(jié)果如圖2所示,相應(yīng)的船海對比度增幅情況見表1.
表1 多子視相干后船海對比度的增幅情況(單位:dB)
為了便于直觀比較,圖2中各3D示意圖的縱軸(Z軸)都限定在同一范圍(-63.5~54.5)之間.結(jié)合表1和圖2可知,同為兩個子視相干時,2L-ρGIC和Pol-IHP相干結(jié)果船海對比度增幅情況相當(dāng).但隨著子視個數(shù)的增加,廣義多子視相干在不斷抑制海雜波散射強度的同時,也相應(yīng)提高了船只目標(biāo)的散射強度,使得船海對比度隨之不斷增大.這就證明了本文算法能夠突破子視個數(shù)的限制,更大程度地提高船海對比度.
3.3算法檢測性能的驗證
為了驗證本文算法的檢測性能,本節(jié)選擇Pol-IHP算法和5子視相干5L-ρGIC算法進(jìn)行對比實驗,其檢測結(jié)果如圖3所示,并采用檢測概率Pd和品質(zhì)因數(shù)FoM(Figure of Merit)[7,15]進(jìn)行了定量比較,其統(tǒng)計結(jié)果見表2.
表2 各算法檢測精度對比
圖3中,橢圓形虛框為檢測虛警、矩形虛框為漏檢目標(biāo),黑色矩形框標(biāo)識正確檢測目標(biāo).對比分析圖3和表2,Pol-IHP檢測結(jié)果中同時存在著虛警(22個)和漏檢(2個).而5L-ρGIC的檢測結(jié)果,實測的21個船只目標(biāo)全部被檢測出來,漏檢數(shù)為0,極大程度地減少了弱小船只目標(biāo)的漏檢,檢測概率為100%;而且也大大降低了檢測虛警,提高了品質(zhì)因數(shù).由此可見,本文算法的檢測精度優(yōu)于Pol-IHP.
本文針對弱小船只目標(biāo)容易產(chǎn)生漏檢的問題,利用全極化SAR數(shù)據(jù),推導(dǎo)出一種廣義多子視相干算子ρGIC,突破了以往2個子視相干算法中子視個數(shù)的限制,更大程度地提高了船海對比度,并將其應(yīng)用于海面船只目標(biāo)檢測.實驗結(jié)果表明,本文算法優(yōu)于Pol-IHP檢測算法.但檢測結(jié)果中仍存在著某些虛警,這主要是因某些海雜波的后向散射特性存在著明顯異常引起的.這也將是我們今后工作進(jìn)一步研究的重點.另外,下一步也將利用其他傳感器(機載SAR/星載SAR)在不同成像模式、不同觀測角度、不同波段、不同海況等條件下獲得的全極化數(shù)據(jù),結(jié)合地面實測數(shù)據(jù)進(jìn)一步分析本文算法的優(yōu)劣.
[1]ARNAUD A.Ship detection by SAR interferometry[A].IEEE 1999 International Geoscience and Remote Sensing Symposium.IGARSS′99 Proceedings[C].Hamburg:IEEE,1999.2616-2618.
[2]IEHARA M,OUCHI K,TAKAMI I,et al.Detection of ships using cross-correlation of split-look SAR images[A].IEEE 2001 International Geoscience and Remote Sensing,Symposium.IGARSS′01 Proceedings[C].Sydney:IEEE,2001.1807-1809.
[3]SOUYRIS J C,HENRY C,ADRAGNA F.On the use of complex SAR image spectral analysis for target detection:assessment of polarimetry[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(12):2725-2734.
[4]HENRY C,SOUYRIS J C,ADRAGNA F,et al.Target detection and analysis based on spectral analysis of a SAR image:A simulation approach[A].IEEE 2003 International Geoscience and Remote Sensing Symposium,IGARSS′03 Proceedings[C].France:IEEE,2003.2005-2007.
[5]王超,張紅,劉智,等.星載SAR合成孔徑雷達(dá)干涉測量[M].北京:科學(xué)出版社,2002.153-155.
[6]CLOUDE S R,PAPATHANASSIOU K P.Polarimetric SAR interferometry[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(5):1551-1565.
[7]魏鉅杰,李平湘,楊杰,張繼賢.利用全極化SAR數(shù)據(jù)去方位向模糊的艦船目標(biāo)檢測方法[J].測繪學(xué)報,2013,42(4):530-539.
WEI J J,LI P X,YANG J,ZHANG J X.Removing the effects of azimuth ambiguities on ships detection based on polarimetric SAR data[J].Acta Geodaetica et Cartographica Sinica,2013,42(4):530-539.(in Chinese)
[8]FERRO-FAMIL L,REIGBER A,POTTIER E,et al.Scene characterization using subaperture polarimetric SAR data[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(10):2264-2276.
[9]FERRO-FAMIL L,REIGBER A,POTTIER E.Nonstationary natural media analysis from polarimetric SAR data using a two-dimensional time-frequency decomposition approach[J].Canadian Journal of Remote Sensing,2005,31(1):21-29.
[10]YANG J,PENG Y N,LIN S M.Similarity between two scattering matrices[J].Electronics Letters,2001,37(3):193-194.
[11]AN W T,ZHANG W J,YANG J,et al.On the similarity parameter between two targets for the case of multi-look polarimetric SAR[J].Chinese Journal of Electronics,2009,18(3):545-550.
[12]LEDUCQ P,FERRO-FAMIL L,POTTIER E.Time-frequency analysis of polarimetric SAR images[A].EURAD 2005 European,Radar Conference Proceedings[C].Paris:IEEE,2005.109-112.
[13]SCHNEIDER R Z,PAPATHANASSION K,HAJNSEK I,et al.Analysis of Coherent Scatterers over Urban Areas[EB/OL].http://www.earth.esa.int/work-shops/polinsar2005/participants/124/paper-Paper-PolinSAR-2005-Schneider.pdf,2005-01-17/2005-01-21.
[14]WANG Y,LIU H.A hierarchical ship detection scheme for high-resolution SAR images[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(10):4173-4184.
[15]WEI J J,LI P X,YANG J,ZHANG J X.A new automatic ship detection method using L-band polarimetric SAR imagery[J].IEEE Journal of Selected Topics Applied Earth Observations and Remote Sensing,2014,7(4):1383-1393.
魏鉅杰男,博士,1983年10月生于福建平潭.主要從事合成孔徑雷達(dá)影像的幾何處理與地物解譯識別等方面的研究.
E-mail:weijujie0417@gmail.com
張繼賢男,1965年5月出生于陜西商洛.現(xiàn)任中國測繪科學(xué)研究院院長、研究員,博士生導(dǎo)師.主要研究方向為攝影測量與遙感、地理信息系統(tǒng)、資源與環(huán)境遙感監(jiān)測.
E-mail:zhangjx@casm.ac.cn
A New Ship Detection Method Based on Generalized Multi-sublooks Correlation Using POLSAR Data
WEI Ju-jie,ZHANG Ji-xian,HUANG Guo-man,ZHAO Zheng
(ChineseAcademyofSurveying&Mapping,Beijing100830,China)
The traditional ship detection algorithms,such as 2L-IHP (Two Looks Internal Hermitian Product), Pol-IHP (Polarimetric Internal Hermitian Product),etc,usually utilized two sub-look images cross-correlation to decrease omitted detection for small ships.However,because they were constrained by the number of sub-look images,the previous methods could not increase ship-sea contrast to much extent,which affected the ship detection accuracy.Therefore,this paper proposes a detection algorithm based on generalized multi-sublooks correlation using polarimetric SAR (POLSAR) data.Firstly,the sub-look decomposition method is applied for POLSAR data to get multi-sublook POLSAR images.Then the correlation matrix and the coherence operator based on the generalized similarity parameter (GSP) are defined to calculate the coherence image of the multi-sublook images.Finally,the constant false alarm rate (CFAR) detection method is utilized for ship detection by the calculated cumulative distribution function (CDF) of the coherence image.The experiments prove that ship-sea contrast can be increased with the number of sublook images by the propose method,which reduces the undetected probability of the ships and also improve the ship detection accuracy significantly.
polarimetric SAR;multi-sublooks correlation;generalized similarity;constant false alarm rate;ship detection
2015-01-09;修回日期:2015-03-02;責(zé)任編輯:覃懷銀
測繪地理信息公益性行業(yè)科研專項項目(No.201412002);中國博士后科學(xué)基金資助項目(No.2016M591219)
TP75
A
0372-2112 (2016)06-1516-05