劉麗華,馬萬(wàn)里,劉麗艷,李一凡
(哈爾濱工業(yè)大學(xué) 市政環(huán)境工程學(xué)院 城市水資源與水環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室 國(guó)際持久性有毒物質(zhì)聯(lián)合研究中心,哈爾濱 150090)
?
短鏈氯化石蠟C10(50.2% Cl)對(duì)斑馬魚胚胎的發(fā)育毒性
劉麗華,馬萬(wàn)里,劉麗艷,李一凡
(哈爾濱工業(yè)大學(xué) 市政環(huán)境工程學(xué)院 城市水資源與水環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室 國(guó)際持久性有毒物質(zhì)聯(lián)合研究中心,哈爾濱 150090)
摘要:為評(píng)價(jià)短鏈氯化石蠟對(duì)斑馬魚胚胎的發(fā)育毒性,以斑馬魚為模式生物,觀察不同質(zhì)量濃度的短鏈氯化石蠟C10(50.2% Cl)暴露24,48,72和96 h后斑馬魚胚胎/幼魚的死亡率、孵化率、畸形率和體長(zhǎng).結(jié)果表明,C10(50.2% Cl)在斑馬魚的早期發(fā)育階段可引起一系列非致死效應(yīng)和致死效應(yīng).高質(zhì)量濃度(1 000和10 000 μg/L)短鏈氯化石蠟可導(dǎo)致96 h斑馬魚胚胎死亡率顯著升高(達(dá)100%),48 h抑制胚胎的孵化,并誘發(fā)一系列的發(fā)育畸形.C10(50.2% Cl)在斑馬魚幼魚中引起的畸形表型主要包括脊柱彎曲,卵黃畸形,心包囊腫,尾部畸形和魚鰾發(fā)育缺陷.低質(zhì)量濃度組和高質(zhì)量濃度組C10(50.2% Cl)均能夠抑制斑馬魚幼魚的生長(zhǎng)速度,目前的環(huán)境質(zhì)量濃度已具有一定程度的水生生態(tài)風(fēng)險(xiǎn).
關(guān)鍵詞:短鏈氯化石蠟;斑馬魚;胚胎;發(fā)育毒性
Study on developmental toxicity of short-chain chlorinated paraffins
短鏈氯化石蠟(short chain chlorinated paraffins,SCCPs)是氯化石蠟中的一類,碳鏈長(zhǎng)度為10~13個(gè)碳原子,常見含氯質(zhì)量分?jǐn)?shù)為30%~75%[1-2].短鏈氯化石蠟比中鏈和長(zhǎng)鏈氯化石蠟更容易從各類終端產(chǎn)品中釋放進(jìn)入環(huán)境,并且對(duì)水生態(tài)環(huán)境和哺乳動(dòng)物顯現(xiàn)出更強(qiáng)的毒性[3],具有潛在的致癌性[4],因而備受關(guān)注.短鏈氯化石蠟被廣泛用作金屬加工潤(rùn)滑劑、密封劑、橡膠和紡織品阻燃劑、皮革加工助劑、油漆涂料添加劑和塑化劑[2,5].伴隨著氯化石蠟的大量生產(chǎn)和使用,環(huán)境中短鏈氯化石蠟的污染問(wèn)題也隨之而來(lái),短鏈氯化石蠟在各類環(huán)境介質(zhì)如空氣、水體、土壤、沉積物、污水污泥、室內(nèi)灰塵、野生動(dòng)物甚至母乳中均被檢出[6-13].目前,短鏈氯化石蠟在中國(guó)自然水體中的監(jiān)測(cè)數(shù)據(jù)很少.2011年,北京高碑店湖水體中短鏈氯化石蠟總質(zhì)量濃度范圍為162~176 ng/L[7],質(zhì)量濃度水平高于2005年日本某河流(7.6~31 ng/L)[14]和2004年加拿大圣勞倫斯河 (15.74~59.57 ng/L)[6],低于2004年西班牙某河流(300~1 100 ng/L)[14].有研究表明,氯化石蠟對(duì)哺乳動(dòng)物的肝臟、甲狀腺和腎臟有毒性作用[15-17].美國(guó)國(guó)家毒理學(xué)規(guī)劃處早期的研究顯示,氯化石蠟工業(yè)品C500C(58% Cl)可導(dǎo)致小鼠和大鼠肝腫瘤、腎小球腺瘤或腺癌、濾泡細(xì)胞腺瘤或甲狀腺癌的發(fā)生率顯著增加,具有致癌性[18].非洲爪蟾胚胎暴露于氯化石蠟工業(yè)品CP 56-12 (C12, 56% Cl)后出現(xiàn)發(fā)育畸形,表明其具有胚胎毒性和致畸性[1].另有研究顯示,短鏈氯化石蠟對(duì)北美鳉和日本青鳉的胚胎發(fā)育產(chǎn)生毒性作用,其中短鏈氯化石蠟工業(yè)品(C10-13, 58% Cl)的最小可觀察效應(yīng)質(zhì)量濃度(lowest observed effect concentration,LOEC)和最大無(wú)觀察效應(yīng)質(zhì)量濃度(no observed effect concentration,NOEC)為620.5和280 μg/L.[19-20],實(shí)驗(yàn)室合成品C10H15.3Cl6.7的LOEC和NOEC為370和50 μg/L[21].另外,短鏈氯化石蠟具有內(nèi)分泌干擾毒性.有研究表明,短鏈氯化石蠟可降低小鼠和大鼠體內(nèi)甲狀腺素總T4的濃度,并引起促甲狀腺素TSH和尿苷二磷酸葡醛酸轉(zhuǎn)移酶(UDPGT)水平升高,導(dǎo)致甲狀腺功能紊亂[22-23].
由于短鏈氯化石蠟中同系物和異構(gòu)體組成復(fù)雜,受試物化學(xué)品難以獲得,目前關(guān)于短鏈氯化石蠟不同組分的毒性數(shù)據(jù),尤其是發(fā)育毒性數(shù)據(jù)非常少.本實(shí)驗(yàn)以斑馬魚胚胎和幼魚作為敏感動(dòng)物模型,研究了短鏈氯化石蠟中的C10組分C10(50.2% Cl)對(duì)斑馬魚胚胎的發(fā)育毒性.
1實(shí)驗(yàn)
1.1實(shí)驗(yàn)試劑
本實(shí)驗(yàn)受試物為一種短鏈氯化石蠟合成品C10-SCCP(C10H18Cl4),碳鏈長(zhǎng)度為10個(gè)碳,氯質(zhì)量分?jǐn)?shù)為50.2%,由德國(guó)慕尼黑工業(yè)大學(xué)Mehmet Coelhan教授提供.DMSO購(gòu)自Sigma-Aldrich 公司.
1.2實(shí)驗(yàn)動(dòng)物
成年斑馬魚飼養(yǎng)在循環(huán)養(yǎng)殖系統(tǒng)中,飼養(yǎng)用水充分曝氣,并經(jīng)過(guò)生物過(guò)濾器和UV光照處理,水溫28.5 ℃,光/暗周期為14/10 h,每日喂食2次,控制培養(yǎng)1個(gè)月后開始采集胚胎.胚胎采集前1天晚上將雌魚和雄魚按2∶1的比例放入配魚箱中,中間用擋板隔開.采集當(dāng)天早上8:00取出擋板開始配魚,大約1 h后收集胚胎.不同配魚箱中的胚胎用吸管取出清洗后收集到同一個(gè)培養(yǎng)皿中混勻,待胚胎發(fā)育至2 hpf (受精后小時(shí)數(shù))時(shí)在顯微鏡下挑選發(fā)育正常的胚胎進(jìn)行染毒.
1.3染毒與測(cè)定
選取產(chǎn)卵后2 h發(fā)育進(jìn)入囊胚期的健康胚胎,用吸管吸至培養(yǎng)皿中,每個(gè)培養(yǎng)皿放入20枚胚胎,分別加入25 mL新鮮的染毒液,染毒質(zhì)量濃度梯度設(shè)置為0, 0.01, 0.1, 0.5, 1, 10, 100, 1 000和10 000 μg/L(含體積分?jǐn)?shù)0.1‰ DMSO),每個(gè)質(zhì)量濃度組設(shè)置3個(gè)平行樣.將培養(yǎng)皿置于28.5 ℃的培養(yǎng)箱中,每24 h 更換新鮮的染毒液,及時(shí)清除死亡的胚胎,同時(shí)記錄死亡胚胎數(shù)目.胚胎發(fā)育至96 hpf 時(shí)每個(gè)培養(yǎng)皿采集10條幼魚照片,用Image J軟件測(cè)量斑馬魚幼魚的體長(zhǎng),記錄和計(jì)算斑馬魚胚胎的存活率、畸形率和孵化率.
1.4統(tǒng)計(jì)分析方法
將所有數(shù)據(jù)求出平均值和標(biāo)準(zhǔn)差(Mean±SE),使用 SigmaPlot 12.0 軟件對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,采用單因素方差分析(one-way ANOVA)和雙因素方差分析(two-way ANOVA)檢驗(yàn)處理組和對(duì)照組之間的差異顯著性.P<0.05為差異顯著,用*表示;P<0.01和P<0.001為差異極顯著,用**和***表示.
2結(jié)果與討論
2.1短鏈氯化石蠟C10(50.2% Cl)對(duì)斑馬魚胚胎/幼魚存活率的影響
在斑馬魚胚胎暴露于短鏈氯化石蠟C10(50.2% Cl)的過(guò)程中,胚胎/幼魚在4個(gè)觀察時(shí)間點(diǎn)(24,48,72,96 hpf)的死亡率統(tǒng)計(jì)見圖1.可以看出,胚胎死亡率隨著SCCPs質(zhì)量濃度的升高和暴露時(shí)間的延長(zhǎng)而升高.10 mg/L暴露組72 h時(shí)胚胎的死亡率顯著高于24 h(P=0.022)和48 h (P=0.022),96 hpf時(shí)與對(duì)照組相比出現(xiàn)顯著死亡(P<0.001),死亡率急劇升高達(dá)100%.對(duì)照組在全部觀察時(shí)間點(diǎn)均沒(méi)有出現(xiàn)胚胎死亡,其他處理組也均未觀察到顯著死亡情況.
圖1短鏈氯化石蠟C10(50.2% Cl)對(duì)斑馬魚胚胎/幼魚死亡率的影響
Fig.1Effects of C10(50.2% Cl)on the death rates in zebrafish embryo/ larvae
2.2短鏈氯化石蠟C10(50.2% Cl)對(duì)斑馬魚胚胎孵化率的影響
統(tǒng)計(jì)胚胎在24,48,72和96 hpf時(shí)的孵化率,用以評(píng)估短鏈氯化石蠟C10(50.2% Cl) 對(duì)胚胎孵化過(guò)程的影響.如圖2所示,斑馬魚胚胎在24 hpf后開始孵化,到48 hpf時(shí)對(duì)照組的胚胎孵化率達(dá)75%,此時(shí)1 000和10 000 μg/L暴露組的孵化率顯著低于對(duì)照組(P<0.001),分別為43.3%和47.7%.72 hpf時(shí),對(duì)照組和0.01 μg/L暴露組中孵化率達(dá)100%,而其他處理組中的胚胎均未完全孵化,孵化率為91.7%~98.3%.
圖2 短鏈氯化石蠟C10(50.2% Cl)對(duì)斑馬魚胚胎孵化率的影響
Fig.2Effects of C10(50.2% Cl)on the hatching rates in zebrafish embryo
2.3短鏈氯化石蠟C10(50.2% Cl)對(duì)斑馬魚胚胎/幼魚畸形率的影響
如圖3所示,短鏈氯化石蠟C10(50.2% Cl)的暴露導(dǎo)致斑馬魚胚胎和幼魚出現(xiàn)一系列的發(fā)育畸形,其中出現(xiàn)比例較高且表型最明顯的幾種畸形類型為脊柱彎曲(SC)、卵黃囊腫(YD)、心包囊腫(PE)、尾部畸形(MT)和魚鰾發(fā)育缺陷(USB).從圖4可以看出,在24 hpf時(shí),并未觀察到畸形胚胎.48 hpf時(shí),1 000和10 000 μg/L暴露組幼魚最早出現(xiàn)SC、YD和MT,與對(duì)照組相比畸形率也顯著升高,分別為18.3%和46.7%.隨著暴露時(shí)間的延長(zhǎng),1 000和10 000 μg/L暴露組畸形表型和畸形率也隨之增加,到72 hpf時(shí)所有畸形表型均出現(xiàn),畸形率也達(dá)最大值,分別為56.7%和100%.
圖3 短鏈氯化石蠟C10(50.2% Cl)導(dǎo)致的畸形表型
Fig.3Typical malformation types in zebrafish larvae exposed to C10(50.2% Cl)
圖4短鏈氯化石蠟C10(50.2% Cl)對(duì)斑馬魚胚胎/幼魚畸形率的影響
Fig.4Effects of C10(50.2% Cl)on the malformation rates in zebrafish embryo/ larvae
2.4短鏈氯化石蠟C10(50.2% Cl)對(duì)斑馬魚幼魚體長(zhǎng)的影響
以96 hpf斑馬魚幼魚體長(zhǎng)為觀察終點(diǎn),評(píng)估短鏈氯化石蠟C10(50.2% Cl)對(duì)斑馬魚幼魚生長(zhǎng)速度的影響.如圖5所示,短鏈氯化石蠟C10(50.2% Cl)的暴露抑制了斑馬魚幼魚的生長(zhǎng)速度.96 hpf時(shí),0.5、1 000和10 000 μg/L暴露組的幼魚平均體長(zhǎng)分別為(3.62±0.00)、(3.60±0.01)和(3.08±0.01) cm,顯著低于對(duì)照組體長(zhǎng)(3.72±0.00) cm.
圖5短鏈氯化石蠟C10(50.2% Cl)對(duì)斑馬魚體長(zhǎng)的影響
Fig.5Effects of C10(50.2% Cl)on the body length in zebrafish larvae
3討論
本實(shí)驗(yàn)的目的是研究短鏈氯化石蠟C10(50.2% Cl)對(duì)斑馬魚胚胎/幼魚的早期發(fā)育毒性.根據(jù)國(guó)內(nèi)外的監(jiān)測(cè)數(shù)據(jù),自然水體中短鏈氯化石蠟的質(zhì)量濃度范圍在0.01~1.10 μg/L.因此,本研究染毒質(zhì)量濃度涵蓋了環(huán)境質(zhì)量濃度相似水平,同時(shí)設(shè)置了高劑量染毒組,以利于觀察染毒物的毒理學(xué)終點(diǎn)效應(yīng).研究結(jié)果表明,短鏈氯化石蠟C10(50.2% Cl)可引起胚胎/幼魚的死亡,抑制胚胎的孵化和幼魚生長(zhǎng),并導(dǎo)致一系列的發(fā)育畸形.
斑馬魚胚胎對(duì)于C10(50.2% Cl)的敏感性導(dǎo)致胚胎出現(xiàn)顯著死亡,且呈現(xiàn)劑量效應(yīng)關(guān)系.C10(50.2% Cl)對(duì)斑馬魚胚胎96 h的LC50為1~10 mg/L,這與Fisk在日本青鳉魚胚胎中得到的C10H15.5Cl6.5的LC50值2.7~9.6 mg/L相似[21],但遠(yuǎn)高于SCCPs目前在環(huán)境中的質(zhì)量濃度.本研究結(jié)果表明,短鏈氯化石蠟C10(50.2% Cl)具有一定的致死毒性,但在目前的環(huán)境質(zhì)量濃度下不會(huì)直接導(dǎo)致魚類的顯著死亡.
短鏈氯化石蠟C10(50.2% Cl)的暴露可引起胚胎孵化時(shí)間推遲,從而降低孵化率.暴露于1 000和10 000 μg/L高質(zhì)量濃度中的胚胎48 hpf時(shí)孵化率顯著低于對(duì)照組,表明高質(zhì)量濃度的C10(50.2% Cl)會(huì)推遲胚胎的孵化過(guò)程.Fisk在日本青鳉魚胚胎實(shí)驗(yàn)中也發(fā)現(xiàn)SCCPs有類似的作用,但并不顯著[21].孵化時(shí)間是水生生物幼體發(fā)育過(guò)程中的重要指標(biāo).外源性污染物可能會(huì)改變胚胎發(fā)育過(guò)程中的信號(hào),而這些信號(hào)是胚胎從絨膜中解脫出來(lái)所必須的[24].本研究結(jié)果表明,短鏈氯化石蠟C10(50.2% Cl)對(duì)斑馬魚胚胎的孵化過(guò)程產(chǎn)生一定的影響,且影響程度取決于C10(50.2% Cl)的質(zhì)量濃度,但在目前的環(huán)境質(zhì)量濃度下尚不會(huì)直接影響魚類的胚胎孵化過(guò)程.
胚胎暴露于外源性污染物時(shí)可以觀察到發(fā)育過(guò)程中的各種畸形現(xiàn)象[25-26],胚胎的發(fā)育毒性比急性毒性更加敏感.本研究中,短鏈氯化石蠟C10(50.2% Cl)的暴露導(dǎo)致斑馬魚胚胎出現(xiàn)多種畸形表型,暴露于1 000和10 000 μg/L高質(zhì)量濃度中的胚胎從48 hpf開始畸形率顯著高于對(duì)照組和其他處理組,高質(zhì)量濃度的C10(50.2% Cl)顯示出較強(qiáng)的致畸毒性.此外, C10(50.2% Cl)的發(fā)育毒性還表現(xiàn)為對(duì)斑馬魚幼魚的生長(zhǎng)速度的影響.本研究顯示,該影響不僅出現(xiàn)在高質(zhì)量濃度暴露組中,在較低質(zhì)量濃度(0.5 μg/L)暴露時(shí)也有發(fā)生.另有研究顯示,非洲爪蟾胚胎暴露于氯化石蠟工業(yè)品CP 56-12 (C12, 56% Cl) 后也產(chǎn)生了生長(zhǎng)抑制效應(yīng)[1].本研究結(jié)果表明,短鏈氯化石蠟C10(50.2% Cl)對(duì)斑馬魚早期發(fā)育具有顯著的發(fā)育毒性,目前的環(huán)境質(zhì)量濃度可能已具有一定程度的水生生態(tài)風(fēng)險(xiǎn).
4結(jié)論
1)10 000 μg/L的短鏈氯化石蠟C10(50.2% Cl)可導(dǎo)致斑馬魚胚胎96 hpf死亡率顯著升高.
2)1 000和10 000 μg/L的短鏈氯化石蠟C10(50.2% Cl)可顯著抑制胚胎48 hpf的孵化過(guò)程.
3)1 000和10 000 μg/L的短鏈氯化石蠟C10(50.2% Cl)可顯著誘發(fā)斑馬魚幼魚48、72和96 hpf的一系列發(fā)育畸形,主要包括脊柱彎曲、卵黃囊腫、心包囊腫、尾部畸形和魚鰾發(fā)育缺陷.
4)0.5、1 000和10 000 μg/L的短鏈氯化石蠟C10(50.2% Cl)均可顯著降低斑馬魚幼魚96 hpf的體長(zhǎng),抑制斑馬魚幼魚的生長(zhǎng),目前的環(huán)境質(zhì)量濃度已具有一定程度的水生生態(tài)風(fēng)險(xiǎn).
參考文獻(xiàn)
[2] United National Environment Program. Updated supporting document for the risk profile on short-chained chlorinated paraffins (UNEP/POPS/PROPRC.5/INF/18) [R]. Geneva: UNEP, 2009. http://chm.pops.int/Convention/POPsReviewCommittee/Chemicals/tabid/243/Default.aspx.
[3] Environment Canada. Environment Canada Priority substances program: CEPA assessment report, chlorinated paraffins [R]. Hull Quebec: Commercial Chemicals Branch, 1993. https://www.ec.gc.ca/toxiques-toxics/Default.asp?lang=En&n=148DE7B6-1.
[4] International Agency for Research on Cancer. Some flame retardants and textile chemicals, and exposures in the textile manufacturing industry [R]. Lyon: IARC, 1990. http://monographs.iarc.fr/ENG/Monographs/vol48/index.php.
[5] DE BOER J. Chlorinatedparaffins, in the handbook of environmental chemistry [M]. Berlin Heidelberg: Springer, 2010.
http://link.springer.com/book/10.1007/978-3-642-10761-0.
[6] MOORE S, VROMET L, RONDEAU B.Comparison of metastable atom bombardment and electron capture negative ionization for the analysis of polychloroalkanes [J]. Chemosphere, 2004, 54 (4): 453-459.[7] ZENG Lixi, WANG Thanh, WANG Pu, et al. Distribution and trophic transfer of short-chain chlorinated paraffins in an aquatic ecosystem receiving effluents from a sewage treatment plant [J]. Environ Sci Technol, 2011, 45 (13): 5529-5535.
[8] MARVIN C H, PAINTER S, TOMY G T, et al.Spatial and temporal trends in short-chain chlorinated paraffins in Lake Ontario sediment [J]. Environ Sci Technol, 2003, 37 (20): 4561-4568.
[9] WANG Thanh, HAN Shanlong, YUAN Bo, et al. Summer-winter concentration and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting [J]. Environmental Pollution, 2012, 171: 38-45.
[10]HOUDE M, MUIR D C M, TOMY G T, et al.Bioaccumulation and trophic magnification of short-and medium-chain chlorinated paraffins in food webs from Lake Ontario and Lake Michigan [J]. Environ Sci Technol, 2008, 42 (10): 3893-3899.
[11]YUAN Bo, WANG Thanh, ZHU Nali, et al. Short chain chlorinated paraffins in mollusks from coastal waters in Chinese Bohai Sea [J]. Envion Sci Technol, 2012, 46 (12): 6489-6496.
[12]TOMY G T. The mass spectrometric characterization of polychlorinated n-alkanes and the methodology for their analysis in the environment [D]. Winnipeg, Manitoba: University of Manitoba, 1997.
[13]THOMAS G O, FARRAR D, BRAEKEVELT E, et al. Short and medium chain length chlorinated paraffins in UK human milk fat [J]. Environment International, 2006, 32 (1): 34-40.
[14]FEO M L, ELJARRAT E, BARCELO D. Occurrence, fate and analysis of polychlorinated n-alkanes in the environment [J]. Trends in Analytical Chemistry, 2009, 28 (6): 778-791.
[15]BUCHER J R, ALISON R H, MONTGOMERY C A, et al.Comparative toxicity and carcinogenicity of two chlorinated paraffins in F344/N rats and B6C3F1 mice [J]. Fund Appl Toxicol, 1987, 9 (3): 454-468.
[16]SERRONE D M, BIRTLEY R D N, WEIGAND W, et al.Toxicology of chlorinated paraffins [J]. Food Chem Toxicol, 1987, 25 (7): 553-562.
[17]ELCOMBE C R, WATSON S C, WYATT I, et al.Chlorinated paraffins (CP): mechanisms of carcinogenesis [J]. Toxicologist, 1994, 14: 276.
[18]National Toxicology Program.Toxicology and carcinogenesis studies of chlorianted paraffins (C12, 60% Chlorine) (CAS No. 63449-39-8) in F344/N rats and B6C3F1mice (gavage studies) (Technical Report Series No. 308) [R]. North Carolina: NTP, 1986.
[19]HILL R W, MADDOCK B G.Effect of a chlorinated paraffin on embryos and larvae of the sheephead minnow (Cyprinodon variegatus)-(Study one) (Brixham Report BL/B/2326) [R]. Devon: Imperial Chemical Industries PLS, 1983.
[20]HILL R W, MADDOCK B G. Effect of a chlorinated paraffin on embryos and larvae of the sheephead minnow (Cyprinodon variegatus)-(Study two) (Brixham Report BL/B/2327) [R]. Devon: Imperial Chemical Industries PLS, 1983.
[21]FIRSK AA T, TOMY G T, MUIR D G C. Toxicity of C10-, C11-, C12-, and C14- polychlorinated n-alkanes to Japanese Medaka embryos [J]. Environmental Toxicology and Chemistry, 1999, 18 (12): 2894-2902.
[22]European Commission. European union risk assessment report, 1st priority list vol 4: alkanes, C10-13, chloro-[R]. Luxembourg: European Chemicals Bureau, 2000.
[23]WYATT I, COUTTS C T, ELCOMBE C R.The effect of chlorinated paraffins on hepatic enzymes and thyroid hormones [J]. Toxicology, 1993, 77 (1/2): 81-90.
[24]SANO K, INOHAYA K, KAWAGUCHI M, et al.Purification and characterization of zebrafish of hatching enzyme-an evolutionary aspect of the mechanism of egg envelope digestion [J]. Febs J, 2008, 275 (23): 5934-5946.
[25]HILL A J, TERAOKA H, HEIDEMAN W, et al.Zebrafish as a model vertebrate for investigating chemical toxicity [J]. Toxicol Sci, 2005, 86 (1): 6-19.
[26]CARNEY S A, PRASCH A L, HEIDEMAN W, et al.Understanding dioxin developmental toxicity using the zebrafish model [J]. Birth Defects Res A, 2006, 76 (1): 7-18.
(編輯劉彤)
doi:10.11918/j.issn.0367-6234.2016.08.021
收稿日期:2015-12-16
基金項(xiàng)目:城市水資源與水環(huán)境重點(diǎn)實(shí)驗(yàn)室(哈爾濱工業(yè)大學(xué))自主課題(2013DX15)
作者簡(jiǎn)介:劉麗華(1984—),女,博士研究生; 李一凡(1949—),男,教授,博士生導(dǎo)師
通信作者:李一凡,ijrc_pts_paper@ yahoo.com
中圖分類號(hào):X171.5
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0367-6234(2016)08-0127-04
C10(50.2% Cl) in zebrafish embryos
LIU Lihua, MA Wanli, LIU Liyan, LI Yifan
(International Joint Research Center for Persistent Toxic Pollutants (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China)
Abstract:A zebrafish (Danio rerio) model was applied to evaluate the developmental toxicity of short-chain chlorinated paraffins (SCCPs). Death rates, hatching rates, malformation rates and body length were observed after the zebrafish embryos were exposed to different concentrations of C10(50.2% Cl) separately for 24, 48, 72 and 96 h. The results indicated that C10(50.2% Cl) could exert lethal and sub-lethal effects on the early life stage of zebrafish. Higher concentrations of C10(50.2% Cl) ( 1 000 and 10 000 μg/L) could not only cause significant death rates increase to 100% after 96 h exposure and hating delay after 48 h exposure, but also induce a series of malformations, including spinal curvature, yolk deformity, pericardial edema, malformation of tail and uninflated swim bladder. Since the growth inhibition of juvenile zebrafish caused by C10(50.2% Cl) on the exposure concentrations no matter high or low, SCCPs might be a risk to the aquatic ecology and fish development.
Keywords:SCCPs; zebrafish; embryo; developmental toxicity