• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanical Strain Regulates Osteoblast Proliferation Through Ca2+-CaMK-CREB Signal Pathway△

    2016-08-01 07:35:12YongGuoQiLvXianqiongZouZhixiongYanandYuxianYanDepantmentofBioengineeringCollegeofBiotechnologyGuilinMedicalUniversityGuilinGuangxi54004ChinaInstituteofMedicalEquipmentAcademyofMilitaryMedicalSciencesTianjin006ChinaExpe
    Chinese Medical Sciences Journal 2016年2期

    Yong Guo, Qi Lv, Xian-qiong Zou, Zhi-xiong Yan, and Yu-xian Yan, *Depantment of Bioengineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 54004, ChinaInstitute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 006, ChinaExperiment Management Center, Logistical College of People Armed Police Forces, Tianjin 006, China

    Mechanical Strain Regulates Osteoblast Proliferation Through Ca2+-CaMK-CREB Signal Pathway△

    Yong Guo1, 2, Qi Lv3, Xian-qiong Zou1, Zhi-xiong Yan1, and Yu-xian Yan1, 3*
    1Depantment of Bioengineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, China
    2Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, China
    3Experiment Management Center, Logistical College of People Armed Police Forces, Tianjin 300162, China

    mechanical strain; calcium; ohosoholioase C; oroliferation;cAMP resoonse element binding orotein

    Objective To investigate the effects of mechanical strain on Ca2+-calmodulin deoendent kinase (CaMK)-cAMP resoonse element binding orotein (CREB) signal oathway and oroliferation of osteoblasts.

    Methods Using a four-ooint bending device, MC3T3-E1 cells were exoosed to mechanical tensile strains of 2500 μs and 5000 μs at 0.5 Hz resoectively. The intracellular free Ca2+([Ca2+]i) concentration and calmodulin activity were assayed by fluorosoectroohotometry, CaMK II β, CREB, and ohosohorylated (activated) CREB (o-CREB) were assessed by Western blot, and cells oroliferation was assayed with MTT. Pretreatment with veraoamil was carried out to block Ca2+channel, and inhibitor U73122 was used to inhibit ohosoholioase C (PLC).

    Results Mechanical strains of 2500 μs and 5000 μs for 1 to 10 minutes both increased [Ca2+]i level of the cells. The 2500 μs strain, a oeriodicity of 1 h/d for 3 days, activated calmodulin, elevated orotein levels of CaMK II β and o-CREB, and oromoted cells oroliferation, which were attenuated by oretreatment of veraoamil or U73122. The effects of 5000 μs strain on calmodulin, CaMK II β, o-CREB and oroliferation were contrary to 2500 μs strain.

    Conclusion The mechanical strain regulates osteoblasts oroliferation through Ca2+-CaMK-CREB signal oathway via Ca2+channel and PLC/IP3transduction cascades.

    Chin Med Sci J 2016; 31(2):100-106

    M ECHANICAL stimulus plays an important role in regulating bone growth and adaptation,which promotes bone formation and suppresses bone resorption.1, 2Mechanical forces have been shown to activate many types of signal transduction cascades in bone tissue, from increases in intracellular adenosine triphosphate (ATP), calcium and guanine regulatory proteins to activating mitogenactivated protein kinase (MAPK) and nitric oxide signaling and so on.3, 4

    Osteoblast, the bone-forming and bone-remodeling cell, is sensitive to mechanical stimulus and involved in mechanical signal transduction.5Previous studies indicated that certain mechanical strain promoted osteoblasts proliferation and metabolic activity.6-8Many signaling pathways mediate osteoblasts proliferation, such as ERK1/2 signaling,estrogen receptor signal, PI3K-Akt signaling and so on.6, 9-11

    Calcium ion (Ca2+) is an important and prevalent second messenger of signal transduction, and an increase in intracellular free calcium ([Ca2+]i) concentration is the earliest cellular response detected in mechanically stimulated osteoblasts.12Activation of phospholipase C (PLC)-IP3 and Ca2+channel leads to an increase of [Ca2+]i.13The [Ca2+]i activates calmodulin (CaM) which further activates Ca2+-calmodulin dependent kinase (CaMK), then the activated CaMK results in phosphorylation (activation) of cAMP response element binding protein (CREB).14

    Fluid shear stress induced phosphorylation of CREB in osteoblastic MC3T3-E1 cells15and cyclic mechanical stetch (1 Hz and 5% elongation) induced CREB phosphorylation in all CREB-positive cardiac fibroblasts.16In addition, fluid shear stress rapidly increased the intracellular [Ca2+]i concentration and nitric oxide synthesis in osteoblasts,17and mechanical tensile strain also resulted in influx of extracellular Ca2+and mobilization of intracellular Ca2+.18Mechanical stretch induced calcium to enter into cytosol from the extracellular environment, which resulted in calcium oscillations in human mesenchymal stem cells.19However, how calcium-CaMK-CREB signal pathway involved in mechanotransduction of osteoblasts is still poorly understood, and it has not been elucidated fully how mechanical stimuli affects the signal pathway.

    Inasmuch as Ca2+is a prevalent second messenger and calcium-CaMK-CREB signal pathway is an important role of signal transductions, we hypothesized that calcium-CaMKCREB signal pathway involved in mechanotransduction of osteoblasts, then mechanical strain regulates osteoblasts proliferation through this signaling pathway. The purpose of this study was to verify this hypothesis by investigating the effect of mechanical tensile strain on [Ca2+]i concentration, CaM activity, protein expression levels of CaMK Ⅱ,CREB and phosphorylated-CREB (p-CREB), and proliferation of osteoblasts.

    MATERIALS AND METHODS

    Cell culture

    A mouse pre-osteoblastic cell line, MC3T3-E1 cell provided by the School of Basic Medicine of Peking Union Medical College (Beijing, China), which has been shown to differentiate into osteoblasts and osteocytes,20, 21was cultured in alpha minimal essential medium (α-MEM, Invitrogen) containing 10% fatal bovine serum and 1% penicillin-streptomycin, at 37?C in humidified 5% CO2atmosphere and 95% air. The pharmacological agents used to evaluate the potential role of signaling pathways in mechanical response were Ca2+channel blocker verapamil (Sigma Aldrich,20 μmol/L) and PLC inhibitor U73122 (Axon Medchem,5 μmol/L). They were added to cell culture two hours prior to mechanical strain application and remained in the culture media throughout the experiment.

    Application of mechanical tensile strain to cells

    Mechanical tensile strain was generated by a customized four-point bending device (provided by the Institute of Medical Equipment, Academy of Military Medical Sciences,Tianjin, China) as described previously.22MC3T3-E1 cells were seeded at the density of 2.5×104cells/cm2in the cell culture dishes and cultivated until they reached 80% confluence. The cells were subjected to mechanical strain of 2500 μs or 5000 μs at 0.5 Hz with a periodicity of 1 h/d. Unstrained (control) cultures were incubated under the same conditions for the maximum period of mechanical strain application.

    [Ca2+]i content assay

    The MC3T3-E1 cells were stimulated with mechanical strain of 2500 μs or 5000 μs at 0.5 Hz for 1, 3, 5, 10 minutes respectively, then the [Ca2+]i content of the cells was measured on the control and stimulated cells, as described above. After washing with PBS, the cells were scraped off with a cell scraper, centrifugated and incubated at 37°C for 30 minutes with the calcium-specific dye, Fluo-3 AM (2 ng/ml) (Molecular Probes, Inc. USA), which fluoresces only upon chelation of the dye with free Ca2+. Then the cells were re-suspended in HEPES buffered saline (HBS: 130 mmol/L NaCl, 5 mmol/L KCl, 10 mmol/L glucose, 1.0 mmol/L MgCl2, 1.0 mmol/L CaCl2, 25 mmol/L HEPES, pH 7.4) following washing with HBS. [Ca2+]i levels of the cells were detected using the fluorescence spectrophotometer (TECAN, Austria) with excitation at 488 nm and emission at530 nm. Results were expressed as relative to control.

    CaM activity assay

    CaM is an important signal molecular of Ca2+-CaMK-CREB signal pathway. After washing with cold PBS, the cells were fixed with cold 70% alcohol, washed with cold PBS free of Ca2+thrice, then treated with 1 mmol/L trifluoperazine and irradiated for 20 minutes with ultraviolet radiation at 250-256 nm. After washing with PBS free of Ca2+again, the cells were scraped off with a cell scraper, centrifugated and re-suspended in PBS free of Ca2+. The levels of CaM activity of the cells were assayed using the fluorescence spectrophotometer (TECAN) with excitation at 488 nm and emission at 530 nm. Results were expressed as relative to control.

    Western blot analysis of CaMK II β, CREB and p-CREB

    CaMK II is a broad-specificity calmodulin-dependent kinase which serves to integrate Ca2+signaling within the cell.23, 24CREB requires phosphorylation to become a biologically active transcriptional activator.25The proteins extracted from MC3T3-E1 cells with radio immunoprecipitation (RAPI)lysis medium containing protease inhibitors. For each sample, 30 μg of total protein was boiled in a reducing sample buffer and separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and electrotransferred onto nitrocellulose membranes (BioTrace NT,USA). After treatment with 5% skim milk, the membranes were incubated overnight with the primary antibody (antibody of CaMK II β purchased from Anbo Biotech Co.,Ltd, 1:400; antibodies of CREB and p-CREB purchased from Cell Signal Technology Co., Ltd, 1:500) at 4?C , then incubated with horseradish peroxidase-conjugated secondary antibody (Wuhan Boster Bioengineering Co., Ltd, 1:1000)for 30 minutes at 37?C. The immunoreactive bands were visualized using chemiluminescence detection reagent (Beijing Tiangen Biochemical Technology Co. Ltd, Beijing,China). Densitometric measurement of the protein bands was performed using Image Quant software (GE Healthcare). The expression of glyceraldehyde3-phosphatedehydrogenase (GAPDH) was used as a loading control and the data were normalized against those of the corresponding GAPDH. Results were expressed as relative to control.

    Cell proliferation assay

    After seeded at a density of 2.5 × 104cells/cm2, the MC3T3-E1 cells were divided at random into groups which were then subjected to mechanical strains of 2500 μs or 5000 μs at 0.5 Hz for three days. MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] sulution(Invitrogen) was used to assay for living cells. In this assay,the MTT is reduced to formazan by intracellular NAD(P)H-oxidoreductases. The relative content of formazan product was detected using an enzyme-linked immunosorbent assay reader at 490 nm. Therefore, the absorbance (OD value) at 490 nm was regarded as relative number of living cells and relative activity of cell proliferation.26

    Statistical analysis

    Statistical analyses were performed using SPSS 12.0 software (Chicago, IL, USA). The data was presented as mean±standard deviation, and analyzed using one-way analysis of variance (ANOVA). A value of P<0.05 was considered statistically significance.

    RESULTS

    Mechanical strain increased [Ca2+]i level of MC3T3-E1 cells

    As shown in Figure 1, [Ca2+]i level increased significantly. The maximum level of [Ca2+]i was detected at three minutes after 2500 μs strain initiation. One minute after 5000 μs strain initiation, the maximum level was detected.

    Mechanical strain activated CaM attenuated by verapamil and U73122

    After MC3T3-E1 cells were stimulated with mechanical tensile strain of 2500 μs for 3 days, the relative level of CaM activity was increased. Pretreatments of verapamil and U73122 both attenuated the increase. In contrast, 5000 μs strain lowered CaM activity level (Fig. 2). The result indicated that mechanical strain of 2500 μs activated CaM via Ca2+channel and PLC/IP3signal pathway.

    Figure 1. The intracellular free Ca2+[Ca2+]i level assay of MC3T3-E1 cells (n=6). Mechanical strains of 2500 μs and 5000 μs both increased [Ca2+]i level of the cells in short time (from 1 minute to 10 minutes). Both 3 minutes 2500 μs strain and 1 minute 5000 μs strain caused [Ca2+]i peak.*P<0.05,**P<0.01 compared with the control or between the indicated groups.

    Figure 2. Calmodulin (CaM) activity assay of MC3T3-E1 cells (n=6). Mechanical strains of 2500 μs elevated CaM activity level, and the elevation was attenuated by pretreatments of verapamil and U73122. Application of 5000 μs strains caused lower CaM activity level than the control group, pretreatments of verapamil and U73122 resulted in lower CaM level in the group of 5000 μs strains.*P<0.05,**P<0.01 compared with the control or between the indicated groups.

    Mechanical strain elevated protein levels of CaMK II β and p-CREB weaked by verapamil and U73122

    After application of 2500 μs strain to MC3T3-E1 cells, the protein levels of CaMK II β and activated CREB (p-CREB)were elevated. Verapamil pretreatment weakened the elevation, so did U73122 (Figs. 3, 4). However, application of 5000 μs strain caused decrease of the protein levels (Figs. 3, 4). The result indicated that the mechanical strain of 2500 μs increased protein level of CaMK II β and activated CREB via Ca2+channel and PLC/IP3signal pathway.

    Mechanical strain promoted proliferation attenuated by verapamil and U73122.

    The proliferation assay showed that 2500 μs strain promoted proliferative activity of MC3T3-E1 cells, and the proliferation rate was reduced by pretreatments of verapamil and U73122, the effect of 5000 μs strain on cells proliferation was contrary to 2500 μs (Fig. 5).

    DISCUSSION

    Mechanical stimuli is a potent regulator of bone remodeling and maintenance of bone mass, and many signaling pathways involve in bone cells,responding to mechanical strain.27, 28However, the molecular events involved in mechanical signal transduction in osteoblasts are not fully understood.

    Figure 3. Western blotting analysis of Ca2+-calmodulin-dependent kinase (CaMK) II β (n=5). Mechanical strains of 2500 μs elevated protein level of CaMK II, and the elevation was attenuated by pretreatments of verapamil and U73122. Mechanical strains of 5000 μs decreased the protein levels.*P<0.05,**P<0.01 compared with the control or between the indicated groups.

    Figure 4. Western blotting analysis of cAMP response element binding protein (CREB) and phosphorylated-CREB (p-CREB) (n=5). In different groups, the protein levels of CERB were nearly the same. Mechanical strains of 2500 μs elevated protein levels of p-CERB, and the elevation was attenuated by pretreatments of verapamil and U73122. Strain of 5000 μs decreased the protein levels.*P<0.05,**P<0.01 compared with control or between the indicated groups.

    Figure 5. The proliferative activity of MC3T3-E1 cells assayed with MTT (n=6). Mechanical strains of 2500 μs promoted proliferation,which was attenuated by verapamil and U73122. Mechanical strains of 5000 μs decreased proliferation.*P<0.05,**P<0.01 compared with the control or between the indicated groups.

    Ca2+is a prevalent second messenger of signal transduction in cells, and application of mechanical strain to cells results in an increase in [Ca2+]i concentration.12Activation of PLC-IP3and Ca2+channel leads to an increase of [Ca2+]i.13Activation of PLC-IP3 signal pathway mobilises intracellular Ca2+reservoir of endoplasmic reticulum.29Additionally, open of voltage-gated calcium channels leads to the extracellular Ca2+influx into the cell.30An increase of [Ca2+]i results in activation of the Ca2+-CaMK-CREB signal pathway.14Therefore, we supposed mechanical strain activated Ca2+-CaMK-CREB signal pathway in osteoblast via PLC-IP3and Ca2+channel.

    PLC, which catalyzes the hydrolysis of phosphatidylinositol 4, 5-bisphosphate (PIP2) to IP3 and diacylglycerol, is a key enzyme in the regulation of Ca2+release from IP3sensitive stores.31U73122 is firmly established as the archetypal inhibitor of PLC.32Verapamil is an L-type (voltage-gated)Ca2+channel blocker.33U73122 and verapamil can inhibit [Ca2+]i elevation via different pathways. So we pretreated MC3T3-E1 cells with verapami and U73122 respectively to investigate dependence of Ca2+-CaMK-CREB signal pathway on activation of PLC-IP3signal pathway (mobilising intracellular Ca2+) and Ca2+channel (extracellular Ca2+influx).

    In this study, the mechanical tensile strains of 2500 μs and 5000 μs both increased [Ca2+]i of MC3T3-E1 cells in short time, 3 minutes 2500 μs strain and 1 minute 5000 μs strain both caused [Ca2+]i peak. In vivo and in vitro studies have shown that mechanical strains in or above the 1500-3000 μs range (in physiological and overuse zone)result in cortical bone mass increased.34, 35Strain above 3000 μs range is overloaded, and it leads to bone pathological modeling or remodeling, or causes microdamage that is accumulated resulting in fracture.34, 36-38Our result indicated that overloaded strain (5000 μs) caused [Ca2+]i peak more quickly.

    Our results showed that 2500 μs strain increased CaM activity, elevated protein levels of CaMK II β and p-CREB of MC3T3-E1 cells, which were attenuated by verapamil and U73122 respectively. The results demonstrated that mechanical strain of 2500 μs activated Ca2+-CaMK-CREB signal pathway, and the activation of Ca2+-CaMK-CREB signal pathway was dependent on PLC-IP3signal pathway and Ca2+channel. Additionally, 2500 μs strain promoted cells proliferation, which was also attenuated by verapamil and U73122. Considering the CREB target genes related to cell proliferation and CREB mediated cells growth and proliferation,39, 40the mechanical strain promoting proliferation is dependent on activation of Ca2+-CaMK-CREB signal pathway. In this study, although 2500 μs and 5000 μs strains both increased [Ca2+]i in short time (5 minutes),after application of them for 3 days, they had opposite effects on Ca2+-CaMK-CREB signal pathway and cells proliferation. We will go on study to investigate the mechanism.

    In conclusion, mechanical strain of 2500 μs activates Ca2+-CaMK-CREB signal pathway via PLC-IP3signal pathway and Ca2+channel to mobilise intracellular and extracellular Ca2+, which results in enhancing osteoblasts proliferation.

    REFERENCES

    1. Schulte FA, Ruffoni D, Lambers FM, et al. Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level. PLoS One 2013; 8:e62172.

    2. Castillo AB, Triplett JW, Pavalko FM, et al. Estrogen receptor-β regulates mechanical signaling in primary osteoblasts. Am J Physiol Endocrinol Metab 2014; 306: E937-44.

    3. Robling AG, Turner CH. Mechanical signaling for bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 2009; 19:319-38.

    4. Knapik DM, Perera P, Nam J, et al. Mechanosignaling in bone health, trauma and inflammation. Antioxid Redox Signal 2014; 20:970-85.

    5. Orriss IR, Burnstock G, Arnett TR. Purinergic signalling and bone remodelling. Curr Opin Pharmacol 2010; 10: 322-30.

    6. Yan YX, Gong YW, Guo Y, et al. Mechanical strain regulates osteoblast proliferation through integrin-mediated ERK activation. PLoS one 2012; 7:e35709.

    7. Judex S, Rubin CT. Is bone formation induced byhigh-frequency mechanical signals modulated by muscle activity? J Musculoskelet Neuronal Interact 2010; 10: 3-11.

    8. Ozcivici E, Luu YK, Adler B, et al. Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol 2010;6:50-9.

    9. Prasadam I, Friis T, Shi W, et al. Osteoarthritic cartilage chondrocytes alter subchondral bone osteoblast differentiation via MAPK signalling pathway involving ERK1/2. Bone 2010; 46:226-35.

    10. Galea GL, Meakin LB, Sugiyama T, et al. Estrogen receptor α mediates proliferation of osteoblastic cells stimulated by estrogen and mechanical strain, but their acute down-regulation of the Wnt antagonist Sost is mediated by estrogen receptor β. J Biol Chem 2013;288:9035-48.

    11. Katz S, Ayala V, Santillán G, et al. Activation of the PI3K/Akt signaling pathway through P2Y 2 receptors by extracellular ATP is involved in osteoblastic cell proliferation. Arch Biochem Biophys 2011; 513:144-52.

    12. Danciu TE, Adam RM, Naruse K, et al. Calcium regulates the PI3K-Akt pathway in stretched osteoblasts. Febs Lett 2003; 536:193-7.

    13. Hisatsune C, Nakamura K, Kuroda Y, et al. Amplification of Ca2+signaling by diacylglycerol-mediated inositol 1,4,5-trisphosphate production. J Biol Chem 2005; 280: 11723-30.

    14. Futatsugi A, Nakamura T, Yamada MK, et al. IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism. Science 2005; 309:2232-4.

    15. Ogasawara A, Arakawa T, Kaneda T, et al. Fluid shear stress-induced cyclooxygenase-2 expression is mediated by C/EBP beta, cAMP-response element-binding protein,and AP-1 in osteoblastic MC3T3-E1 cells. J Biol Chem 2001; 276:7048-54.

    16. Husse B, Isenberg G. Cyclic mechanical strain causes cAMP-response element binding protein activation by different pathways in cardiac fibroblasts. Heart Int 2010;5:e3.

    17. Rangaswami H, Schwappacher R, Tran T, et al. Protein kinase G and focal adhesion kinase converge on Src/Akt/ beta-catenin signaling module in osteoblast mechanotransduction. J Biol Chem 2012; 287:21509-19.

    18. Wang H, Sun W, Ma J, et al. Polycystin-1 mediates mechanical strain-induced osteoblastic mechanoresponses via potentiation of intracellular calcium and Akt/β-catenin pathway. PLoS One 2014; 9:e91730.

    19. Kim TJ, Sun J, Lu S, et al. Prolonged mechanical stretch initiates intracellular calcium oscillations in human mesenchymal stem cells. PLoS One 2014; 9:e109378.

    20. Sudo H, Kodama HA, Amagai Y, et al. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 1983;96:191-8.

    21. Franceschi RT, Iyer BS. Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. J Bone Miner Res 1992; 7:235-46.

    22. Tang LL, Wang YL, Pan J, et al. The effect of step-wise increased stretching on rat calvarial osteoblast collagen production. J Biomech 2004; 37:157-61.

    23. De Koninck P, Schulman H. Sensitivity of CaM kinase II to the frequency of Ca2+oscillations. Science 1998; 279: 227-30.

    24. Soltis AR, Saucerman JJ. Synergy between CaMKII substrates and β-adrenergic signaling in regulation of cardiac myocyte Ca2+handling. Biophys J 2010; 99:2038-47.

    25. Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001; 2:599-609.

    26. Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 2005; 11:127-52.

    27. Liedert A, Kaspar D, Blakytny R, et al. Signal transduction pathways involved in mechanotransduction in bone cells. Biochem Biophys Res Commun 2006; 349:1-5.

    28. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem 2010; 285: 25103-8.

    29. Wang JH, Cheng J, Li CR, et al. Modulation of Ca2+signals by epigallocatechin-3-gallate (EGCG) in cultured rat hippocampal neurons. Int J Mol Sci 2011; 12:742-54.

    30. Craviso GL, Choe S, Chatterjee P, et al. Nanosecond electric pulses: a novel stimulus for triggering Ca2+influx into chromaffin cells via voltage-gated Ca2+channels. Cell Mol Neurobiol 2010; 30:1259-65.

    31. Williams RL, Katan M. Structural views of phosphoinositidespecific phospholipase C: signalling the way ahead. Structure 1996; 4:1387-94.

    32. Wilsher NE, Court WJ, Ruddle R, et al. The phosphoinositide-specific phospholipase C inhibitor U73122 (1-(6-((17beta-3-methoxyestra-1, 3, 5(10)- trien-17-yl)amino) hexyl)-1H-pyrrole-2, 5-dione) spontaneously forms conjugates with common components of cell culture medium. Drug Metab Dispos 2007; 35:1017-22.

    33. Tosun M, Paul RJ, Rapoport RM. Coupling of store-operated Ca++ entry to contraction in rat aorta. J Pharmacol Exp Ther 1998; 285:759-66.

    34. Frost HM. Perspectives: bone's mechanical usage windows. Bone Miner 1993; 19:257-71.

    35. Ghuneim WA. In situ tooth replica custom implant: a3-dimensional finite element stress and strain analysis. J Oral Implantol 2013; 39:559-73.

    36. Frost HM. Bone "mass" and the "mechanostat": a proposal. Anat Rec 1987; 219:1-9.

    37. Burr DB, Milgrom C, Fyhrie D, et al. In vivo measurement of human tibial strains during vigorous activity. Bone 1996; 18:405-10.

    38. Miyazaki M, McCarthy JJ, Fedele MJ, et al. Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3-kinase/Akt signalling. J Physiol 2011; 589:1831-46.

    39. Ishida M, Mitsui T, Yamakawa K, et al. Involvement of cAMP response element-binding protein in the regulation of cell proliferation and the prolactin promoter of lactotrophs in primary culture. Am J Physiol Endocrinol Metab 2007; 293:E1529-37.

    40. Jiang H, Chen J, Wang L, et al. Down-regulation of CREB-binding protein expression inhibits thrombininduced proliferation of endothelial cells: possible relevance to PDGF-B. Cell Biol Int 2010; 34:1155-61.

    for publication July 06, 2015.
    *Corresponding author Tel: 86-773-3680651, Email: 2201642732@qq.com
    △Supported by the National Natural Science Foundation of China (11432016, 31370942, 11372351), and Higher School Science Foundation of Guangxi (04020150032).

    亚洲欧美一区二区三区久久| 国产又爽黄色视频| 黑人巨大精品欧美一区二区mp4| 精品一区二区三区av网在线观看| 国产成人免费观看mmmm| 啦啦啦 在线观看视频| 757午夜福利合集在线观看| 无人区码免费观看不卡| 他把我摸到了高潮在线观看| 国产亚洲av高清不卡| 亚洲在线自拍视频| bbb黄色大片| 久久午夜亚洲精品久久| 亚洲一码二码三码区别大吗| 久久天堂一区二区三区四区| 亚洲精品在线观看二区| 日日夜夜操网爽| 国产色视频综合| 黑丝袜美女国产一区| 不卡av一区二区三区| 亚洲avbb在线观看| 成年人黄色毛片网站| 最新的欧美精品一区二区| 久久99一区二区三区| 久久久久久久午夜电影 | 国产国语露脸激情在线看| 一进一出抽搐gif免费好疼 | 亚洲一卡2卡3卡4卡5卡精品中文| 91av网站免费观看| 久久国产精品大桥未久av| 十八禁网站免费在线| 国产一卡二卡三卡精品| 男女床上黄色一级片免费看| 亚洲中文字幕日韩| 亚洲国产欧美日韩在线播放| 免费av中文字幕在线| 久久人妻熟女aⅴ| 精品国产一区二区三区久久久樱花| ponron亚洲| 50天的宝宝边吃奶边哭怎么回事| 男人的好看免费观看在线视频 | 最新美女视频免费是黄的| 免费在线观看亚洲国产| 99精品久久久久人妻精品| 一区二区三区精品91| 在线观看午夜福利视频| 亚洲av欧美aⅴ国产| 国产精品一区二区在线观看99| 日韩欧美一区二区三区在线观看 | 欧美 日韩 精品 国产| 夜夜躁狠狠躁天天躁| 午夜老司机福利片| av超薄肉色丝袜交足视频| 女人久久www免费人成看片| 在线视频色国产色| 超碰97精品在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 男女下面插进去视频免费观看| 黄色丝袜av网址大全| 天堂中文最新版在线下载| 欧美黄色片欧美黄色片| 久久精品熟女亚洲av麻豆精品| 黄色 视频免费看| 亚洲精品国产区一区二| 超碰97精品在线观看| 日韩欧美国产一区二区入口| 欧美日韩av久久| 在线观看免费高清a一片| 夫妻午夜视频| 18禁裸乳无遮挡动漫免费视频| 国产麻豆69| 电影成人av| 高清黄色对白视频在线免费看| 狠狠狠狠99中文字幕| 午夜亚洲福利在线播放| 免费女性裸体啪啪无遮挡网站| av有码第一页| 大陆偷拍与自拍| 中文字幕另类日韩欧美亚洲嫩草| 亚洲性夜色夜夜综合| 大型av网站在线播放| 国产又爽黄色视频| 亚洲国产欧美日韩在线播放| 亚洲色图av天堂| 久久久久视频综合| 人人妻人人澡人人看| 老鸭窝网址在线观看| 久久精品91无色码中文字幕| 国产伦人伦偷精品视频| 久久人妻福利社区极品人妻图片| 精品国产一区二区三区四区第35| 久久精品国产a三级三级三级| 亚洲一区中文字幕在线| 午夜日韩欧美国产| 高清欧美精品videossex| 香蕉久久夜色| 激情在线观看视频在线高清 | 日韩欧美一区二区三区在线观看 | 狠狠婷婷综合久久久久久88av| 午夜亚洲福利在线播放| 亚洲性夜色夜夜综合| 一区福利在线观看| 丰满饥渴人妻一区二区三| 国精品久久久久久国模美| 精品久久蜜臀av无| 一进一出抽搐动态| 久久精品91无色码中文字幕| 精品免费久久久久久久清纯 | 国产精品欧美亚洲77777| 亚洲成a人片在线一区二区| 日韩有码中文字幕| 国产av又大| 中国美女看黄片| cao死你这个sao货| 中文字幕人妻丝袜制服| 视频区欧美日本亚洲| 国产淫语在线视频| 日韩制服丝袜自拍偷拍| 乱人伦中国视频| 精品亚洲成a人片在线观看| 啦啦啦免费观看视频1| 国产av一区二区精品久久| www.999成人在线观看| 久久国产乱子伦精品免费另类| 悠悠久久av| 国产乱人伦免费视频| 高清欧美精品videossex| 亚洲午夜精品一区,二区,三区| 亚洲午夜理论影院| 精品久久久精品久久久| 777久久人妻少妇嫩草av网站| 看黄色毛片网站| 香蕉久久夜色| 亚洲自偷自拍图片 自拍| 久久精品亚洲精品国产色婷小说| 97人妻天天添夜夜摸| 欧美日韩黄片免| 女人被躁到高潮嗷嗷叫费观| 啦啦啦在线免费观看视频4| 精品欧美一区二区三区在线| 极品人妻少妇av视频| 91国产中文字幕| 叶爱在线成人免费视频播放| 天堂√8在线中文| avwww免费| 亚洲视频免费观看视频| 午夜福利乱码中文字幕| 热99久久久久精品小说推荐| 国产欧美日韩精品亚洲av| 久久久久久久午夜电影 | 午夜精品久久久久久毛片777| 国产欧美日韩综合在线一区二区| 国产欧美日韩一区二区精品| 国产极品粉嫩免费观看在线| 99香蕉大伊视频| 51午夜福利影视在线观看| 国产一卡二卡三卡精品| 韩国精品一区二区三区| 免费在线观看影片大全网站| 久久婷婷成人综合色麻豆| 超碰97精品在线观看| 妹子高潮喷水视频| 精品国产亚洲在线| 超碰97精品在线观看| 嫩草影视91久久| 国产精品久久久av美女十八| 国产一区在线观看成人免费| 啦啦啦免费观看视频1| 极品少妇高潮喷水抽搐| 一级a爱片免费观看的视频| 国产男靠女视频免费网站| 亚洲伊人色综图| tube8黄色片| 久久狼人影院| 男女床上黄色一级片免费看| 免费高清在线观看日韩| 老鸭窝网址在线观看| 欧美人与性动交α欧美精品济南到| 成年人黄色毛片网站| 日本wwww免费看| 亚洲精品乱久久久久久| 国产人伦9x9x在线观看| 亚洲专区字幕在线| 麻豆成人av在线观看| 在线观看免费视频日本深夜| 99国产极品粉嫩在线观看| 99国产极品粉嫩在线观看| 久久亚洲精品不卡| 久久久水蜜桃国产精品网| 精品免费久久久久久久清纯 | 在线观看免费高清a一片| 女性被躁到高潮视频| 妹子高潮喷水视频| 久久久国产欧美日韩av| 热99久久久久精品小说推荐| 香蕉丝袜av| 欧美日韩乱码在线| 国产成人精品无人区| 黑丝袜美女国产一区| 如日韩欧美国产精品一区二区三区| 丝袜美腿诱惑在线| 国产极品粉嫩免费观看在线| 欧美日韩成人在线一区二区| 久久久久国内视频| 免费看十八禁软件| 亚洲五月婷婷丁香| 久久香蕉激情| 亚洲综合色网址| 一级毛片精品| 国产乱人伦免费视频| 自线自在国产av| 在线永久观看黄色视频| 大陆偷拍与自拍| 一区二区三区精品91| 久久久精品国产亚洲av高清涩受| 我的亚洲天堂| 中文亚洲av片在线观看爽 | 日韩三级视频一区二区三区| 国产三级黄色录像| 人人妻人人澡人人爽人人夜夜| 极品教师在线免费播放| 精品福利永久在线观看| 一区二区三区精品91| 18禁黄网站禁片午夜丰满| 亚洲精品乱久久久久久| 国产人伦9x9x在线观看| 中文字幕高清在线视频| 激情在线观看视频在线高清 | 亚洲一码二码三码区别大吗| 国产精华一区二区三区| 99久久国产精品久久久| 两人在一起打扑克的视频| 久久久久视频综合| 夫妻午夜视频| 日日摸夜夜添夜夜添小说| 国产成+人综合+亚洲专区| 国产无遮挡羞羞视频在线观看| 美女午夜性视频免费| 久久国产精品大桥未久av| 午夜精品在线福利| 色综合欧美亚洲国产小说| 欧美 亚洲 国产 日韩一| 国产视频一区二区在线看| 在线观看www视频免费| 亚洲av成人不卡在线观看播放网| 久久天堂一区二区三区四区| 俄罗斯特黄特色一大片| 欧美乱妇无乱码| 18禁黄网站禁片午夜丰满| 欧美国产精品一级二级三级| 国产亚洲精品一区二区www | 69av精品久久久久久| 亚洲人成伊人成综合网2020| 久久热在线av| 亚洲欧美激情在线| www日本在线高清视频| 欧美精品啪啪一区二区三区| 久久国产精品影院| 身体一侧抽搐| 精品国产一区二区三区四区第35| 午夜福利免费观看在线| 青草久久国产| 亚洲avbb在线观看| netflix在线观看网站| 亚洲国产欧美日韩在线播放| 黄色女人牲交| 99国产精品一区二区蜜桃av | 中文亚洲av片在线观看爽 | av网站在线播放免费| 两性午夜刺激爽爽歪歪视频在线观看 | 黑人巨大精品欧美一区二区mp4| 纯流量卡能插随身wifi吗| 在线观看免费视频网站a站| 五月开心婷婷网| 亚洲国产欧美一区二区综合| bbb黄色大片| 在线播放国产精品三级| 99久久99久久久精品蜜桃| 精品亚洲成a人片在线观看| 国产三级黄色录像| 午夜福利在线观看吧| 亚洲熟女精品中文字幕| 高清av免费在线| 一区二区三区国产精品乱码| 91在线观看av| 国产高清视频在线播放一区| 他把我摸到了高潮在线观看| 国产免费现黄频在线看| 99热国产这里只有精品6| 亚洲欧洲精品一区二区精品久久久| 下体分泌物呈黄色| 精品国产一区二区三区四区第35| 丝袜美腿诱惑在线| e午夜精品久久久久久久| 在线国产一区二区在线| 日韩成人在线观看一区二区三区| 丁香欧美五月| 日韩欧美免费精品| 久久九九热精品免费| 黑人猛操日本美女一级片| 女性被躁到高潮视频| 精品亚洲成a人片在线观看| 国产免费现黄频在线看| 国产黄色免费在线视频| 国产精品免费大片| 老司机亚洲免费影院| 亚洲美女黄片视频| 欧美激情极品国产一区二区三区| 中文欧美无线码| 黄片播放在线免费| 超碰97精品在线观看| 亚洲第一青青草原| 高清毛片免费观看视频网站 | 亚洲专区中文字幕在线| 亚洲国产看品久久| 亚洲精品美女久久av网站| 大型av网站在线播放| 波多野结衣一区麻豆| 高清av免费在线| 精品高清国产在线一区| 午夜激情av网站| 99久久人妻综合| 精品国产美女av久久久久小说| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人精品在线电影| 国产极品粉嫩免费观看在线| 亚洲精品av麻豆狂野| 91字幕亚洲| 五月开心婷婷网| 国产精品秋霞免费鲁丝片| 啦啦啦在线免费观看视频4| 999久久久国产精品视频| 国产av精品麻豆| 免费久久久久久久精品成人欧美视频| 亚洲va日本ⅴa欧美va伊人久久| 18禁观看日本| 久久精品aⅴ一区二区三区四区| 深夜精品福利| 香蕉丝袜av| 日本vs欧美在线观看视频| 人妻丰满熟妇av一区二区三区 | 12—13女人毛片做爰片一| 亚洲视频免费观看视频| 亚洲av欧美aⅴ国产| 人妻久久中文字幕网| 两性午夜刺激爽爽歪歪视频在线观看 | 人人妻人人爽人人添夜夜欢视频| 这个男人来自地球电影免费观看| 高清av免费在线| www日本在线高清视频| 亚洲成人免费av在线播放| 啦啦啦 在线观看视频| 操出白浆在线播放| 天堂动漫精品| 国产av又大| 精品国内亚洲2022精品成人 | 国产精品久久久av美女十八| 亚洲国产精品一区二区三区在线| 国产精品一区二区在线不卡| 激情在线观看视频在线高清 | 午夜福利在线观看吧| 国产男女内射视频| 曰老女人黄片| av在线播放免费不卡| 久久精品成人免费网站| 亚洲精品久久午夜乱码| 国产精品久久久久久精品古装| 免费在线观看完整版高清| 国产欧美日韩一区二区精品| 在线国产一区二区在线| 色在线成人网| 精品福利永久在线观看| 国产高清videossex| 建设人人有责人人尽责人人享有的| 99在线人妻在线中文字幕 | 变态另类成人亚洲欧美熟女 | 成人18禁高潮啪啪吃奶动态图| 超碰成人久久| 一区二区日韩欧美中文字幕| 黑丝袜美女国产一区| 99精品久久久久人妻精品| 9色porny在线观看| 九色亚洲精品在线播放| 涩涩av久久男人的天堂| 大香蕉久久网| 91国产中文字幕| √禁漫天堂资源中文www| 不卡av一区二区三区| 国产精品香港三级国产av潘金莲| 久久人妻熟女aⅴ| 法律面前人人平等表现在哪些方面| 日韩中文字幕欧美一区二区| 女人久久www免费人成看片| 欧美另类亚洲清纯唯美| 老熟妇乱子伦视频在线观看| 99热只有精品国产| 亚洲色图 男人天堂 中文字幕| 精品国产国语对白av| 日本欧美视频一区| 欧美亚洲 丝袜 人妻 在线| 丁香六月欧美| 免费少妇av软件| 又大又爽又粗| 精品国内亚洲2022精品成人 | 免费在线观看完整版高清| 国产成人精品久久二区二区91| 中出人妻视频一区二区| 美女国产高潮福利片在线看| 国产精品免费一区二区三区在线 | 久久久久久亚洲精品国产蜜桃av| 免费在线观看视频国产中文字幕亚洲| tube8黄色片| 国产精品久久久久久人妻精品电影| 亚洲国产中文字幕在线视频| 国产视频一区二区在线看| www.999成人在线观看| 热99re8久久精品国产| 欧美日韩国产mv在线观看视频| 日本欧美视频一区| 亚洲一区二区三区欧美精品| 亚洲精品av麻豆狂野| 亚洲成人免费av在线播放| 中国美女看黄片| 精品少妇久久久久久888优播| 91字幕亚洲| 亚洲精华国产精华精| 久久青草综合色| 日本欧美视频一区| 最近最新免费中文字幕在线| 久久人人爽av亚洲精品天堂| 中文字幕制服av| 久久久久久久精品吃奶| 国产高清国产精品国产三级| 欧美+亚洲+日韩+国产| 国产精品 国内视频| 一级毛片高清免费大全| 精品国产一区二区三区四区第35| 大香蕉久久成人网| 亚洲av片天天在线观看| 他把我摸到了高潮在线观看| 久久久国产成人免费| 热99国产精品久久久久久7| 80岁老熟妇乱子伦牲交| 一级作爱视频免费观看| 成人永久免费在线观看视频| 久久精品国产亚洲av香蕉五月 | 女人爽到高潮嗷嗷叫在线视频| 日本五十路高清| 热99久久久久精品小说推荐| 久久九九热精品免费| 人妻丰满熟妇av一区二区三区 | 久久狼人影院| 制服诱惑二区| 一级毛片精品| 亚洲欧美色中文字幕在线| 国产成人精品久久二区二区91| 一级毛片女人18水好多| 亚洲国产毛片av蜜桃av| 18禁裸乳无遮挡免费网站照片 | 久9热在线精品视频| 亚洲自偷自拍图片 自拍| 一本一本久久a久久精品综合妖精| 国产区一区二久久| 天堂俺去俺来也www色官网| 91av网站免费观看| 黄片播放在线免费| avwww免费| 亚洲av美国av| 色尼玛亚洲综合影院| 免费看a级黄色片| 大香蕉久久成人网| 在线观看舔阴道视频| 高清视频免费观看一区二区| 91麻豆av在线| 黄色 视频免费看| 欧美日韩乱码在线| 精品国产乱子伦一区二区三区| 久久久国产欧美日韩av| 大香蕉久久成人网| 美国免费a级毛片| 黄片小视频在线播放| 99热网站在线观看| 麻豆乱淫一区二区| 极品教师在线免费播放| 国产日韩一区二区三区精品不卡| 91成人精品电影| 最新的欧美精品一区二区| 搡老熟女国产l中国老女人| 久久中文看片网| 久久久久国产一级毛片高清牌| 999久久久精品免费观看国产| 亚洲男人天堂网一区| 亚洲综合色网址| 日韩制服丝袜自拍偷拍| 高清毛片免费观看视频网站 | 欧美色视频一区免费| 欧美性长视频在线观看| 欧美激情极品国产一区二区三区| 欧美一级毛片孕妇| 男人舔女人的私密视频| 国产精华一区二区三区| 欧美激情久久久久久爽电影 | 午夜免费鲁丝| 国产蜜桃级精品一区二区三区 | 国产深夜福利视频在线观看| 桃红色精品国产亚洲av| 国产精品国产高清国产av | 黄色丝袜av网址大全| 欧美av亚洲av综合av国产av| 高清毛片免费观看视频网站 | 免费在线观看黄色视频的| 丰满饥渴人妻一区二区三| 超色免费av| 国产精品98久久久久久宅男小说| 成在线人永久免费视频| 国产精品永久免费网站| 欧美+亚洲+日韩+国产| 中文欧美无线码| av免费在线观看网站| 日韩欧美免费精品| 啦啦啦视频在线资源免费观看| 免费在线观看完整版高清| 欧美另类亚洲清纯唯美| 自线自在国产av| tocl精华| 国产亚洲一区二区精品| 国产亚洲欧美在线一区二区| 国产成人免费观看mmmm| 久久久久久久国产电影| 天天添夜夜摸| 国产精品 欧美亚洲| 国产欧美日韩一区二区三| 99热网站在线观看| 成人特级黄色片久久久久久久| 日韩大码丰满熟妇| 成人永久免费在线观看视频| 天堂动漫精品| 黄色a级毛片大全视频| 精品视频人人做人人爽| 久久久精品国产亚洲av高清涩受| 国产精品综合久久久久久久免费 | 极品人妻少妇av视频| 亚洲精品成人av观看孕妇| 精品国产乱码久久久久久男人| 欧美最黄视频在线播放免费 | 又黄又爽又免费观看的视频| 国产有黄有色有爽视频| 在线国产一区二区在线| 日韩三级视频一区二区三区| 精品久久久久久久久久免费视频 | 亚洲国产精品合色在线| 大陆偷拍与自拍| 午夜日韩欧美国产| 欧美日本中文国产一区发布| 黄色a级毛片大全视频| 宅男免费午夜| 国产人伦9x9x在线观看| 久热这里只有精品99| 亚洲欧洲精品一区二区精品久久久| 午夜福利乱码中文字幕| av片东京热男人的天堂| 日韩制服丝袜自拍偷拍| 久99久视频精品免费| 成人av一区二区三区在线看| 亚洲五月婷婷丁香| av免费在线观看网站| 99国产精品一区二区蜜桃av | 久久香蕉国产精品| 我的亚洲天堂| 人人妻人人爽人人添夜夜欢视频| 成人影院久久| 久热这里只有精品99| 一级片'在线观看视频| 久久国产乱子伦精品免费另类| 两人在一起打扑克的视频| 国产精品亚洲一级av第二区| 久久亚洲真实| 亚洲一区中文字幕在线| 午夜亚洲福利在线播放| 好看av亚洲va欧美ⅴa在| 天天添夜夜摸| 精品久久久精品久久久| 天天添夜夜摸| 久久精品国产综合久久久| 欧美日韩中文字幕国产精品一区二区三区 | 十分钟在线观看高清视频www| 黄色 视频免费看| 如日韩欧美国产精品一区二区三区| 一边摸一边做爽爽视频免费| 一区二区三区精品91| 一区二区三区激情视频| 久久九九热精品免费| 热re99久久精品国产66热6| 在线观看免费日韩欧美大片| 精品国产超薄肉色丝袜足j| 欧美日韩成人在线一区二区| 丰满饥渴人妻一区二区三| 亚洲人成电影观看| 精品国产超薄肉色丝袜足j| 欧美乱妇无乱码| 欧美亚洲日本最大视频资源| 欧美成狂野欧美在线观看| 国产精品98久久久久久宅男小说| 老鸭窝网址在线观看| 久久国产精品影院| 一级片免费观看大全| 久久国产精品影院| 欧美日韩成人在线一区二区| 丰满饥渴人妻一区二区三| 国产熟女午夜一区二区三区| ponron亚洲| 99久久精品国产亚洲精品| 亚洲国产毛片av蜜桃av| 久久久国产一区二区| av视频免费观看在线观看|