張光, 張英堂, 尹剛, 任國全, 李志寧, 范紅波
1 軍械工程學院7系, 石家莊 050003 2 65185部隊, 遼寧鐵嶺 112611
?
一種磁張量探測系統(tǒng)載體的磁張量補償方法
張光1, 2, 張英堂1, 尹剛1, 任國全1, 李志寧1, 范紅波1
1 軍械工程學院7系, 石家莊050003 2 65185部隊, 遼寧鐵嶺112611
摘要針對磁張量系統(tǒng)載體產(chǎn)生的磁張量值對系統(tǒng)測量精度產(chǎn)生很大影響的問題,以及現(xiàn)有磁補償模型存在非線性、分體式和參數(shù)多的問題,提出一種磁張量系統(tǒng)載體的一體化線性磁張量補償方法.分析了載體硬磁材料產(chǎn)生固有磁張量值和軟磁材料產(chǎn)生感應磁張量值的微觀機理,并推導了相應的數(shù)學表達式,結合固有磁場影響和感應磁場影響建立了載體磁張量補償模型.模型中含有20個載體磁張量補償系數(shù),對模型求解得到補償系數(shù),結合三分量磁場測量值即可達到對載體磁張量的補償.實測實驗表明,磁張量補償方法計算得到的載體磁張量值與載體實際產(chǎn)生的磁張量值僅差32 nT/m,可以有效完成對磁張量系統(tǒng)的載體磁張量補償.
關鍵詞磁張量系統(tǒng); 磁張量補償; 固有磁場; 感應磁場
First, the magnetic tensor system is built, and the whole magnetic tensor is replaced by the expression of 5 elements. The magnetization characteristic of the hard magnetic material that comprises the carrier is analyzed, and the connatural magnetic field from carrier hard magnetic material does not vary with the change of carrier attitude and position. The mathematic model of the connatural magnetic field is constrcuted. The mechanism of the induced magnetic field from carrier soft magnetic material is analyzed, and the induced magnetic field is equivalent to the magnetic field superposition of several magnetic dipoles. The mathematic expression of the induced magnetic field is derived. The carrier magnetic tensor compensation model is established combined with the influence of the connatural magnetic field and the induced magnetic field, and the magnetic tensor compensation model with 20 coefficients is established by variable substitution and combined reduction. If we rotate the magnetic tensor system and carrier more than 4 attitudes under the equal magnetic field environment, and put the measured value of the magnetic tensor and magnetic field components into the carrier magnetic tensor compensation model, we can get the 20 magnetic tensor compensation coefficients. When the magnetic tensor system is applied to search the target, we can calculate the magnetic tensor value of the carrier with the 20 magnetic tensor compensation coefficients and the three components of the magnetic field. The magnetic tensor value of the target can be determined with the total magnetic tensor value subtracting the magnetic tensor value of carrier, and the carrier magnetic tensor compensation is realized.
On the wide lawn, the magnetic tensor system is fixed on the three-axis non-magnetic turntable, a piece of iron of 0.003 m3as the simulation carrier is put on the this turntable also with a certain distance from the magnetic tensor system. The three-axis non-magnetic turntable is rotated at different attitudes (to get more calculation accuracy, 10 attitudes are carried out), the measurement data of the magnetic tensor system are recorded. Using the magnetic tensor compensation method of this paper, the 20 magnetic tensor compensation coefficients of the simulation carrier are obtained with the measurement data. To test the validity of this compensation method, the three-axis non-magnetic turntable is rotated at another 4 attitudes, and the magnetic tensor value from the simulation carrier can be got with the 20 magnetic tensor compensation coefficients and the three components of magnetic field measured by the magnetic tensor system. The influence of the magnetic tensor of the simulation carrier is up to 653 nT/m before compensation, and the general targets can be submerged by it. After compensation, the influence is reduced to 32 nT/m, and to a certain extent, the magnetic tensor of the simulation carrier is compensated.
In this paper, the carrier magnetic tensor compensation model considering the connatural magnetic field and induced magnetic field is established. The model includes 20 magnetic tensor compensation coefficients, which can be solved by the model and the measurement data. The magnetic tensor generated by the carrier can be calculated using the 20 compensation coefficients and the three components of the magnetic field, and the carrier magnetic tensor compensation is realized. It is proved that the calculated magnetic tensor is very close to the real ones of the carrier by real measuring experiment, and the compensation method in this paper can effectively accomplish carrier magnetic tensor compensation.
1引言
磁張量系統(tǒng)可以實現(xiàn)對目標的定位和識別(Gamey et al., 2004; Nara et al., 2006; Stolz et al., 2006; 李光等, 2012),為目標探測提供有效手段.近年來磁張量理論以及磁張量系統(tǒng)已經(jīng)成為國內外研究熱點.磁張量系統(tǒng)一般需要搭載到機動載體上進行探測,由于機動載體多由鋼鐵等鐵磁性物質組成,鐵磁性物質被地球磁場等磁化后具有磁性,對磁張量系統(tǒng)測量會造成一定影響.雖然這些載體在使用前可能進行過相應的消磁處理,但被探測目標磁場屬于弱磁場,載體磁場足以將其淹沒,載體磁場對磁張量測量是一個不容忽視的干擾源.
載體的磁干擾主要包括硬磁材料產(chǎn)生的固有磁場和軟磁材料產(chǎn)生的感應磁場,并且感應磁場的大小和方向會隨著載體的位置、姿態(tài)的變化而變化.Pei針對水下無人平臺研究了磁張量系統(tǒng)載體磁場補償,以其中一個離載體較遠的傳感器為參考傳感器,以此傳感器測量磁場為真實地球磁場,對其他傳感器進行載體磁補償(Pei et al., 2009; Pei et al., 2010).Lü指出Pei的方法中參考傳感器雖然離載體較遠,但仍然會受到載體磁場干擾.Lü對Pei的方法進行了重新推導,將參考傳感器受載體磁場干擾的因素加入其中,建立了更加嚴密的磁補償模型(Lü et al., 2013).Lü的方法較Pei的方法有所改進,但仍存在以下三個問題:
(1)其建立的是非線性模型,求解時容易出現(xiàn)多解性和解不穩(wěn)定現(xiàn)象.
(2)其實質是單個三軸磁傳感器的分別補償,即分體式補償,對于由非三軸磁傳感器構成的磁張量系統(tǒng)難以適用.
(3)校正參數(shù)過多,達48個.為此本文提出了一種磁張量系統(tǒng)載體的一體化線性磁補償方法,該方法只需求解20個磁補償參數(shù).
2磁張量系統(tǒng)結構
2.1磁張量要素
磁場是一個矢量場,包括3個分量,其3分量磁場在空間3個方向的變化率即為磁張量,共包括9個值,其表達式為
(1)
其中G為磁張量,Bx、By和Bz為磁場三分量.磁性載體產(chǎn)生的磁場可以看作靜磁場,由麥克斯韋方程組可知,描述靜磁場的基本方程為(林春生, 2003)
(2)
其中H為磁場強度,B為磁感應強度,μ為磁導率,σ為空間電流密度.在磁性載體周圍空間內,σ=0,μ為常數(shù),故有:divB=0,rotB=0,即
所以式(1)中只有5個要素是獨立的,本文為后續(xù)計算簡便用其中5個獨立元素表示磁張量為
(4)
2.2磁張量探測系統(tǒng)
磁張量系統(tǒng)的結構形式有很多,如平面十字形、三角形、正方形、直角四面體和正四面體(劉麗敏, 2012).本文以平面十字形的磁張量系統(tǒng)為例闡述本文所提出的載體磁補償方法,平面十字磁張量系統(tǒng)如圖1所示(張光等, 2013).
圖1 平面磁張量系統(tǒng)結構
圖1中1、2、3和4分別代表一個三軸磁場傳感器,傳感器對應磁軸相互平行,系統(tǒng)的基線距離為d,用該系統(tǒng)可以測量得到磁性目標的磁場張量值G和總磁場矢量B為
(5)
(6)
3載體磁場補償模型
載體通常由大量鋼鐵構件組成,并且裝有電機等驅動設備,這些構件和設備中往往包含硬磁材料和軟磁材料,硬磁材料產(chǎn)生固有磁場,軟磁材料產(chǎn)生感應磁場.
3.1載體固有磁場影響
硬磁材料是在經(jīng)受外磁場后能保持大量剩磁的磁性材料,這類磁性材料的特點是矯頑力大,該種材料的磁滯回線所包圍的“面積”較大,磁滯特性非常明顯,相當于永久磁鐵,它產(chǎn)生的磁感應強度可以認為是不變的,不會隨著載體姿態(tài)或位置的變化而改變,稱為固有磁場.
因為這些硬磁材料和磁張量系統(tǒng)都是固聯(lián)在載體上的,所以不論載體姿態(tài)怎樣變化硬磁材料所產(chǎn)生的合成磁場在張量系統(tǒng)位置都是不變的.也就是說,固有磁場對磁張量系統(tǒng)的影響相當于增加了一個常矢量偏置,其表達式為
(7)
載體固有磁場在短時間內可認為是恒定的常矢量,但當載體長期暴露在地磁場環(huán)境中,其固有磁場也會隨著時間的增長而不斷變化(仲維暢, 2004).當載體在地磁場中因往復的加速運動或高速旋轉而引起的磁化-退磁循環(huán)次數(shù)足夠多時,載體上的剩磁最終會在一段時間后發(fā)生較大變化.因此,載體在使用一段時間后,需要重新對其固有磁場進行校正.
3.2載體感應磁場影響
軟磁材料能夠用相對低的磁感應強度磁化,當外磁場移走后保持相對弱的剩磁.該種材料的特點是矯頑力很小,其磁滯回線狹窄,所包圍的“面積”較小,當被環(huán)境磁場磁化后產(chǎn)生的感應磁場將影響其周圍磁場.影響的大小和方向與環(huán)境磁場和軟磁材料本身有關.
鋼鐵構件由原子組成,每個原子又由原子核及圍繞其轉動的電子組成.電子的轉動形成電流,稱為原子電流.每個原子電流形成一個小的環(huán)狀電流,在外磁場作用下,各個環(huán)狀電流將受到磁力矩的作用,這一作用使各環(huán)狀電流在一定程度上沿著外磁場的方向排列起來,對外顯示磁性.軟磁材料中的單個原子電流環(huán)可用一個磁偶極子來表征(周耀忠和張國友, 2004),那么軟磁材料的感應磁場可以等效于若干個被磁化的磁偶極子磁場的疊加.由電磁學知識可知,鐵磁等材料在外磁場作用下會被磁化產(chǎn)生磁矩,其磁化磁矩與外磁場的強度成正比,那么載體中某磁偶極子的磁化磁矩為(王楚等, 2000)
(8)
其中Bx,By和Bz為外界磁化磁場;mxi,myi和mzi為被磁化磁偶極子的磁矩;λxi,λyi和λzi為磁化系數(shù),i表示某個磁偶極子的序號.該磁偶極子在磁張量系統(tǒng)所在位置產(chǎn)生的梯度張量值為(吳招才, 2008)
(9)
其中mi=(mxi,myi,mzi)T;ri=(xi,yi,zi)T為磁偶極子到磁張量系統(tǒng)中心的位置矢量.
將式(8)代入式(9),將Bx,By和Bz單獨提出來,整理后得
(10)
其中cmni(m=1…5,n=1…3)被外磁場磁化產(chǎn)生的磁偶極子,在磁張量探測系統(tǒng)中心產(chǎn)生的磁張量系數(shù).
(11)
將上式進一步化簡得
(12)
3.3載體磁場補償模型
在勻強磁場環(huán)境下,磁張量系統(tǒng)測量的磁張量值應當接近零,但由于載體固定磁場和感應磁場的影響使磁張量系統(tǒng)測量值G″遠遠偏離零值,結合式(7)和式(12)得到載體磁場補償模型為
(13)
將上式進一步寫為
(14)
(15)
將式(15)移項、求逆得到的B代入式(14)得:
(16)
G″=M(B′-B0)+G0
=MB′-MB0+G0
=MB′+(G0-MB0),
(17)再令
(18)
4實驗驗證
運用自制的經(jīng)典式三軸磁通門傳感器構成平面磁張量系統(tǒng),并先完成一系列的系統(tǒng)校正(黃玉和郝燕玲, 2012; 張光等, 2013, 2015),降低磁張量系統(tǒng)固有誤差(單個三分量磁傳感器三軸非正交性誤差、靈敏度不一致誤差、零點偏移誤差和4個傳感器軸系間對正誤差等).
在均勻磁場環(huán)境下,將磁張量系統(tǒng)固定在三軸無磁轉臺上,在一定距離上放置一體積為0.003m3的鐵塊模擬載體產(chǎn)生硬磁軟磁干擾.磁張量系統(tǒng)連同鐵塊在轉臺上進行多姿態(tài)旋轉(為了增加求解的準確性,進行了10個姿態(tài)的旋轉),記錄各姿態(tài)時磁張量系統(tǒng)的測量數(shù)據(jù),如表1所示.運用本文所提出的方法,結合磁張量系統(tǒng)測量數(shù)據(jù)求解得到模擬載體的20個磁張量補償系數(shù)為
為驗證補償效果,在均勻磁場環(huán)境下,對磁張量系統(tǒng)及鐵塊又進行了4個姿態(tài)的旋轉.利用磁張量系統(tǒng)測量得到的三分量磁場值,以及前面求解得到的20個磁張量補償系數(shù)就可以解算得到鐵塊產(chǎn)生的磁張量值,如果該張量值與磁張量系統(tǒng)直接測量得到的磁張量值接近,說明磁補償系數(shù)求解正確,磁補償方法有效.磁張量系統(tǒng)測量的三分量磁場值結合磁補償系數(shù)求解得到的磁張量值、直接測量得到的磁張量值如表2所示.
表1 各姿態(tài)下磁張量系統(tǒng)測量數(shù)據(jù)
表2 磁補償系數(shù)解算的磁張量值及直接測量的磁張量值比較
由表2可以看到模擬載體所用的鐵塊對磁張量系統(tǒng)測量值的影響最大達到653 nT/m,超過一般被探測目標所產(chǎn)生的磁張量值,若不對其進行補償將使磁張量系統(tǒng)難以完成探測.運用本文所提出的方法解算得到的磁張量值與直接測量的磁張量值最大相差為32 nT/m,比較準確地得到了載體對磁張量系統(tǒng)測量值的影響,在一定程度上對載體硬磁軟磁影響進行了補償.
5結論
在分析載體固有磁場和感應磁場形成機理的基礎上,將載體固有磁場等效為固定磁張量偏置,將載體感應磁場等效為磁偶極子磁張量值的疊加,建立了載體的一體化線性磁張量補償模型,對模型進行求解,得到20個磁張量補償系數(shù),當系統(tǒng)探測目標時可利用其對系統(tǒng)進行載體磁張量補償.實測實驗表明,本文所提方法解算得到的磁張量值與載體實際產(chǎn)生的磁張量值僅差32 nT/m,可在一定程度上補償載體對磁張量系統(tǒng)的影響,證明了本文方法的正確性及有效性.
References
Gamey T J, Doll W E, Beard L P. 2004. Initial design and testing of a full-tensor airborne SQUID magnetometer for detection of unexploded ordnance.∥ SEG Technical Program Expanded Abstracts.SEG, 798-801.
Huang Y, Hao Y L. 2012. Error correction of magnetic field component gradiometer based on FLANN and least-squares.ChineseJournalofScientificInstrument(in Chinese), 33(4): 911-917.
Li G, Sui Y Y, Liu L M, et al. 2012. Magnetic dipole single-point tensor positioning based on the difference method.JournalofDetection&Control(in Chinese), 34(5): 50-54.
Lin C S. 2003. The Physical Field of Ships (in Chinese) . Beijing: Ordnance Industry Press.
Liu L M. 2012. Configuration design, error analysis and underwater target detection of fluxgate tensor magnetometer (in Chinese). Changchun: Jilin University.
Lü J W, Yu Z T, Huang J L, et al. 2013. The compensation method of vehicle magnetic interference for the magnetic gradiometer.AdvancesinMathematicalPhysics, 2013: Article ID 523164.
Nara T, Suzuki S, Ando S. 2006. A closed-form formula for magnetic dipole localization by measurement of its magnetic field and spatial gradients.IEEETransactionsonMagnetics, 42(10): 3291-3293.
Pei Y H, Yeo H G. 2009. UXO survey using vector magnetic gradiometer on autonomous underwater vehicle. ∥ OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges. Biloxi, MS: IEEE, 1-8.
Pei Y H, Yeo H G, Kang X Y, et al. 2010. Magnetic gradiometer on an AUV for buried object detection. ∥ OCEANS 2010. Seattle, WA: IEEE, 1-8.
Stolz R, Zakosarenko V, Schulz M, et al. 2006. Magnetic full-tensor SQUID gradiometer system for geophysical applications.TheLeadingEdge, 25(2): 178-180. Wang C, Li C, Zhou L Z. 2000. Electromagnetics (in Chinese). Beijing: Beijing University Press, 182-206.
Wu Z C. 2008. Magnetic gradient tensor technology and its application (in Chinese). Wuhan: China University of Geosciences. Yang Y T, Shi Z Y, Guan Z Z, et al. 2009. A magnetic disturbance compensation method based on magnetic dipole magnetic field distributing theory.ActaArmamentarii(in Chinese), 29(12): 1485-1491.
Zhang G, Zhang Y T, Li Z N, et al. 2013. Localizing method of magnetic field gradient tensor under carriers moving parallelly.J.HuazhongUniv.ofSci. &Tech. (NaturalScienceEdition) (in Chinese), 41(1): 21-24. Zhang G, Zhang Y T, Yin G, et al. 2015. Calibration method of magnetic tensor system based on linear error model.JournalofJilinUniversity(EngineeringandTechnologyEdition) (in Chinese), 45(3): 1012-1016.
Zhong W C. 2004. The self “motion magnetization” of ferro-magnetic object in the earth′s magnetic field.NondestructiveInspection(in Chinese), 28(5): 9-10, 14.
Zhou Y Z, Zhang G Y. 2004. The Analysis and Calculation of Ships′ Magnetic Field (in Chinese). Beijing: National Defense Industry Press.
附中文參考文獻
黃玉, 郝燕玲. 2012. 基于FLANN和最小二乘的磁梯度計誤差校正. 儀器儀表學報, 33(4): 911-917.
李光, 隨陽軼, 劉麗敏等. 2012. 基于差分的磁偶極子單點張量定位方法. 探測與控制學報, 34(5): 50-54.
林春生. 2003. 艦船物理場. 北京: 兵器工業(yè)出版社.
劉麗敏. 2012. 磁通門張量的結構設計、誤差分析及水下目標探測. 長春: 吉林大學.
王楚, 李椿, 周樂柱. 2000. 電磁學. 北京: 北京大學出版社, 182-206.
吳招才. 2008. 磁力梯度張量技術及其應用研究. 武漢: 中國地質大學.
楊云濤, 石志勇, 關貞珍等. 2009. 一種基于磁偶極子磁場分布理論的磁場干擾補償方法. 兵工學報, 29(12): 1485-1491.
張 光, 張英堂, 李志寧等. 2013. 載體平動條件下的磁梯度張量定位方法. 華中科技大學學報(自然科學版), 41(1): 21-24.
張 光, 張英堂, 尹 剛等. 2015. 基于線性誤差模型的磁張量系統(tǒng)校正. 吉林大學學報(工學版), 45(3): 1012-1016.
仲維暢. 2004. 鐵磁性物體在地磁場中的自發(fā)“運動磁化”. 無損探傷, 28(5): 9-10, 14.
周耀忠, 張國友. 2004. 艦船磁場分析計算. 北京: 國防工業(yè)出版社.
(本文編輯張正峰)
基金項目國家自然科學基金(50175109,50475053)資助.
作者簡介張光,男,1984年生,軍械工程學院博士,主要從事測試技術與信號處理. E-mail:drzhangg@163.com
doi:10.6038/cjg20160126 中圖分類號P631
收稿日期2013-10-20,2015-08-20收修定稿
Magnetic tensor compensation method for the carrier of the magnetic tensor detection system
ZHANG Guang1, 2, ZHANG Ying-Tang1, YIN Gang1, REN Guo-Quan1,LI Zhi-Ning1, FAN Hong-Bo1
1Department7th,MechanicsEngineeringCollege,Shijiazhuang050003,China2Unit65185PLA,Tieling112611,China
AbstractTo solve the problem that the measurement accuracy of the magnetic tensor detection system is influenced by the magnetic tensor generated by the carrier, and existence of nonlinearity, separated patterns and too many coefficients in the existing compensation model, this work proposes an integrated linear compensation method for the magnetic tensor carrier.
KeywordsMagnetic tensor system; Magnetic tensor compensation; Connatural magnetic field; Induced magnetic field
張光, 張英堂, 尹剛等. 2016. 一種磁張量探測系統(tǒng)載體的磁張量補償方法.地球物理學報,59(1):311-317,doi:10.6038/cjg20160126.
Zhang G, Zhang Y T, Yin G, et al. 2016. Magnetic tensor compensation method for the carrier of the magnetic tensor detection system.ChineseJ.Geophys. (in Chinese),59(1):311-317,doi:10.6038/cjg20160126.