張艷梅,吳艷瑞,胡 月,王麗瓊,阮永華,馬 寧,李思熳,王穎娜,賈丹丹,向 征,楊照青
?
中緬邊境惡性瘧原蟲對(duì)青蒿素類藥體外敏感性檢測(cè)和K-13基因突變的相關(guān)性研究
張艷梅1,2,3,吳艷瑞4,胡月5,王麗瓊1,阮永華5,馬寧1,李思熳6,王穎娜1,賈丹丹1,向征1,楊照青1
1.昆明醫(yī)科大學(xué)病原微生物系與免疫學(xué)系,昆明650500;2.昆明醫(yī)科大學(xué)第一附屬醫(yī)院感染內(nèi)科,昆明650500;3.云南公共衛(wèi)生與疾病防控協(xié)同創(chuàng)新中心,昆明650031;4.昆明醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院細(xì)胞生物學(xué)與醫(yī)學(xué)遺傳學(xué)系,昆明650500;5.昆明醫(yī)科大學(xué)病理與病理生理學(xué)系,昆明650500;6.昆明醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院生物化學(xué)與分子生物學(xué)系, 昆明650500
摘要:目的研究中緬邊境惡性瘧原蟲對(duì)青蒿素類藥物抗藥機(jī)制。方法收集分離自2008—2010年中緬邊境確診為惡性瘧病人體內(nèi)的瘧原蟲,共34株,進(jìn)行體外培養(yǎng);提取原蟲血DNA,采用聚合酶鏈?zhǔn)椒磻?yīng)(PCR)方法,擴(kuò)增PF3D7-1343700(K-13)基因,對(duì)目標(biāo)基因進(jìn)行全基因測(cè)序,檢測(cè)K-13基因變異情況;依據(jù)基因有無(wú)變異分為兩組,對(duì)比兩個(gè)組別瘧原蟲對(duì)3種抗瘧藥青蒿琥酯(Artesunate,AS)、雙氫青蒿素(Dihydroartemisinine,DHA)和青蒿素(artemisinin,ART)的半效抑蟲濃度(IC50值),并與野生株3D7做對(duì)比;隨后將這些瘧原蟲在環(huán)狀體時(shí)期暴露于大劑量的DHA下,6 h后洗盡藥物,再經(jīng)過(guò)66 h培養(yǎng)后涂片,計(jì)算生存率(RSA),比較變異株和非變異株之間有無(wú)差異。結(jié)果檢測(cè)發(fā)現(xiàn)瘧原蟲K13基因存在137-142位點(diǎn)NN插入(占82.4%),另有E252Q 、F446I、C469Y、R539T、P553L、P574L 、H719N位點(diǎn)突變,均伴有NN插入,其中F446I(占44.1%)。病人株的IC50值和野生株無(wú)統(tǒng)計(jì)學(xué)差異(P>0.05),但病人株的RSA高于野生株(P<0.05);有K13基因變異組和無(wú)變異組對(duì)AS、DHA、ART的IC50值無(wú)統(tǒng)計(jì)學(xué)差異(P>0.05),但有基因變異組的RSA高于無(wú)基因變異組(P<0.05)。結(jié)論本研究結(jié)果發(fā)現(xiàn)K-13基因變異與惡性瘧原蟲對(duì)青蒿素類藥物抗藥性可能相關(guān)。
關(guān)鍵詞:惡性瘧原蟲;青蒿素類藥物;耐藥機(jī)制;PF3D7_1343700
Supported by the National Natural Science Foundation of China (Nos.U1202226,81161120421,31260508),the joint project from Science and Technology Department of Yunnan Province and Kunming Medical University(Nos.2015FB034,2014FB005), the Innovation Foundation of Kunming Medical University(No.2014-D2), the project of Yunnan Provincial Collaborative Innovation Center of Public Health and Disease Prevention and Control(No.2014YNPHXT05) and the National Natural Science Foundation of Yunnan Province(No.2012FB153)
瘧疾是嚴(yán)重危害人類健康的寄生蟲病,青蒿素類藥物是我國(guó)自主研發(fā)的抗瘧藥,在瘧疾的防治工作中取得了舉世矚目的成果。但隨著青蒿素類藥物的廣泛應(yīng)用,瘧原蟲對(duì)青蒿素類藥物敏感性下降的報(bào)道不斷出現(xiàn)[1-2]。到目前為止,惡性瘧原蟲對(duì)青蒿素類藥物耐藥的機(jī)理尚不明確,有研究報(bào)道提示惡性瘧原蟲對(duì)青蒿素的耐藥可能和瘧原蟲的K-13基因變異有關(guān)。本次研究調(diào)查中緬邊境惡性瘧病人體內(nèi)的瘧原蟲,進(jìn)行體外藥敏測(cè)定,并對(duì)這些瘧原蟲的K-13基因進(jìn)行測(cè)序分析,了解K-13基因變異在中緬邊境惡性瘧原蟲中多態(tài)性及與青蒿素類藥物耐藥的關(guān)系。
1材料與方法
1.1蟲株來(lái)源本次試驗(yàn)所用蟲株從2008—2010年中緬邊境瘧疾流行區(qū)確診為惡性瘧的病人體內(nèi)分離(簡(jiǎn)稱病人株),共34株,病人在治療前留外周血2~3 mL,凍存,備用。對(duì)照組為野生株3D7 ,來(lái)自Malaria Research and Reference Reagent Resource Center(MR4)。標(biāo)本經(jīng)過(guò)體外復(fù)蘇培養(yǎng)成活,鑒定為單一感染株,進(jìn)行試驗(yàn)研究。
1.2瘧原蟲培養(yǎng)瘧原蟲經(jīng)復(fù)蘇成活后參照改良的Trager-Jensen法[3]進(jìn)行用完全培養(yǎng)液包含 HEPES(Gibco)、次黃嘌呤(Sigma)、Albumax II (Gibco)、RPMI 1640 (Gibco)、慶大霉素、NaHCO3(sigma)及O+RBC(來(lái)自云南省中心血站)培養(yǎng),充入混合氣體(3%O2,5%CO2,92%N2,購(gòu)自昆明氧氣廠),擰緊瓶蓋,放入37 ℃培養(yǎng)箱中培養(yǎng),成活后保種,留取原蟲血以備提取瘧原蟲的DNA。
1.3瘧原蟲DNA的提取及K-13基因的擴(kuò)增。
1.3.1瘧原蟲DNA的提取將原蟲血參照百泰克DNA提取試劑盒(購(gòu)自北京百泰克生物技術(shù)有限公司)操作步驟提取原蟲的DNA。-20 ℃保存?zhèn)溆谩?/p>
1.3.2瘧原蟲K-13基因PCR擴(kuò)增及測(cè)序K-13基因全基因測(cè)序,分為1片段、A片段及B片段3個(gè)片段,用PrimerPrimer5.0軟件設(shè)計(jì)擴(kuò)增引物,由上海生工生物公司合成。K-13基因擴(kuò)增引物見表1。
表1 K-13基因3個(gè)片段引物
各個(gè)片段的反應(yīng)條件均按以下操作:第一輪的反應(yīng)體系為15 μL,即2XTag Master Mix 7.5 μL,引物(5 μmol/L)各0.5 μL,DNA 模板2 μL,去離子水4.5 μL。PCR反應(yīng)條件:預(yù)變性95 ℃,5 min;變性95 ℃,30 s;退火56 ℃,30 s;延伸68 ℃,60 s;40個(gè)循環(huán)。最后延伸68 ℃,5 min。PCR產(chǎn)物4 ℃保存。
第二輪的反應(yīng)體系為40 μL,即2XTag Master Mix 24 μL,引物(5 μmol/L)各1 μL,DNA 模板2 μL,去離子水24 μL。PCR反應(yīng)條件:預(yù)變性95 ℃,5 min;變性95 ℃,30 s;退火56 ℃,30 s;延伸68 ℃,60 s;40個(gè)循環(huán)。最后延伸68 ℃;5 min。PCR產(chǎn)物經(jīng)2%瓊脂糖凝膠電泳。
1.3.3DNA測(cè)序及結(jié)果分析將PCR產(chǎn)物送生工公司進(jìn)行測(cè)序用DNAStar軟件分析測(cè)序數(shù)據(jù)。依據(jù)測(cè)序結(jié)果將標(biāo)本分為有變異組和未變異組。
1.4測(cè)定惡性瘧原蟲對(duì)3種青蒿素類抗瘧藥體外IC50值3種青蒿素類抗瘧藥AS、DHA和ART(購(gòu)自昆明制藥集團(tuán)有限公司)。待瘧原蟲密度達(dá)到1%以上時(shí),進(jìn)行青蒿琥酯(AS)、雙氫青蒿素(DHA)、青蒿素(ART)3個(gè)藥物的半效抑蟲濃度IC50值的測(cè)定。將原蟲密度稀釋到0.5%,紅細(xì)胞壓積稀釋到2%,加入配制好的藥板中(藥物為AS、DHA、ART,濃度為0.5、0.15、0.05、0.015、0.005、0.001 5、0.000 5、0.000 15 pmol/L)形成終濃度為:(100、30、10、3、1、0.3、0.1、0.03)nmol/L,依照WHO藥板測(cè)定方法加入藥板中,在5%的CO2培養(yǎng)箱中培養(yǎng)72 h后放到在-80 ℃凍30 min,然后移到37 ℃溫箱中解凍,加入裂解液讓細(xì)胞破裂,加SYBR Green I體外熒光法測(cè)量在藥板中惡性瘧原蟲DNA含量的方法,測(cè)量惡性瘧原蟲在不同藥物濃度下生長(zhǎng)產(chǎn)生的DNA含量的光密度值,利用PRISM5.0 計(jì)算出半效抑制率(IC50)。
1.5惡性瘧原蟲在DHA壓力下環(huán)狀體時(shí)期生存率的測(cè)定惡性瘧原蟲在DHA壓力下環(huán)狀體時(shí)期的生存率(ring-stage survival assay即RSA)是一種新的體外測(cè)定惡性瘧原蟲對(duì)青蒿素類藥物抗藥性的檢測(cè)方法。具體的方法為:待瘧原蟲的密度大于1% 時(shí),將瘧原蟲密度稀釋為1%,紅細(xì)胞壓積調(diào)整到2% 的,原蟲血分為實(shí)驗(yàn)組及對(duì)照組各10 mL,加入培養(yǎng)瓶中。實(shí)驗(yàn)組加入200 nmol/L的DHA,對(duì)照組加入相同體積的0.1%二甲亞砜液(Sigma公司)。充入混合氣(3%O2,5%CO2,92%N2,購(gòu)自昆明氧氣廠),置于37 ℃二氧化碳培養(yǎng)箱中培養(yǎng)6 h后取出,充分洗去藥物DHA,具體方法:抽吸上清液,將沉淀完全吸出,加入12 mL的1640液充分混勻后3 500 r/min離心5 min,去上清,再次加入1640液12 mL ,重復(fù)上述步驟1次,去上清后將沉淀轉(zhuǎn)入新的培養(yǎng)瓶中加入新的完全培養(yǎng)液至總體積10 mL,充入混合氣后放入培養(yǎng)箱培養(yǎng)66 h,然后取出培養(yǎng)瓶,去上清,沉淀涂薄片,用瑞-姬染色后兩人分別顯微鏡鏡檢,計(jì)數(shù)玻片中20 000個(gè)紅細(xì)胞中的環(huán)狀體和滋養(yǎng)體的數(shù)量,如結(jié)果相差大于10%,重新鏡檢。生存率=實(shí)驗(yàn)組的環(huán)狀體、滋養(yǎng)體總和與對(duì)照組的環(huán)和滋養(yǎng)體的總和比例再乘以100。
2結(jié)果
2.1K-13基因1、A、B片段二次擴(kuò)增產(chǎn)物在1.5%瓊脂糖凝膠電泳結(jié)果
2.1.1K-13基因1片段二次擴(kuò)增產(chǎn)物1 000 bp左右目的片段結(jié)果見下圖。
圖1K-13基因1片段Nested-PCR二次擴(kuò)增產(chǎn)物1.5%瓊脂糖凝膠電泳圖
Fig.1Agarose gel electrophoresis for PCR amplification of part1 in K-13 gene
2.1.2K13基因A片段Nested-PCR產(chǎn)物電泳結(jié)果見下圖,擴(kuò)增860 bp左右目的片段結(jié)果。
圖2 K13基因A片段Nested-PCR產(chǎn)物電泳結(jié)果圖
Fig.2Agarose gel electrophoresis for PCR amplification of partA in K-13
2.1.3K-13基因 B片段 Nested-PCR產(chǎn)物電泳結(jié)果,擴(kuò)增960 bp左右目的片段結(jié)果,見下圖。
圖3 K-13基因 B片段 Nested-PCR產(chǎn)物電泳圖
Fig.3Agarose gel electrophoresis for PCR amplification of partB in K-13 gene
2.2病人株K-13基因變異結(jié)果本次實(shí)驗(yàn)檢測(cè)了病人株的K-13基因,和野生株3D7的序列做對(duì)比,病人株K-13 基因有82.4%(28/34)存在137-142位點(diǎn)NN插入,6株(6/34占17.6%)無(wú)NN插入。另外有點(diǎn)突變:F446I(15/34占44.1%)、C469Y(1/34占2.9%)、 R539T (1/34占2.9%)、P553L(1/34占2.9% )、P574L(1/34占2.9% )、H719N( 1/34占2.9%)、E252Q(1/34占2.9%)均為單個(gè)的基因位點(diǎn)變異;有點(diǎn)突變株均有NN插入。
表2病人株對(duì)AS、DHA、ART的IC50值和RSA與野生株3D7對(duì)比表
Tab.2Comparision ofP.falciparumclinical isolates and standard strain(3D7) for drug susceptibilities in AS DHA ART and RSA exposed to high-dose of dihydroartemisinin
IsolateN(株)IC50值A(chǔ)S(C±Q)DHA(NM)ARTRSA(%)病人株clinicalisolates344.53±0.812.89±0.825.72±0.235.3野生株(3D7)Standardstrain14.20±0.912.19±0.284.6±0.41.0P值△0.020△0.010△0.001※0.001
注:△P>0.05,差異無(wú)統(tǒng)計(jì)學(xué)意義,※P<0.05,差異有統(tǒng)計(jì)學(xué)意義。
Note:△P>0.05,which is no significant difference in IC50s in P. falciparum clinical isolates and 3D7.※P<0.05,which is significant difference in RSA in two groups.
表3有變異組和無(wú)變異組對(duì)三種抗瘧藥的IC50值和RSA對(duì)比表
Tab.3Comparision of K13 gene mutations and no mutations for drug susceptibilities in three antimalaria drugs and RSA in 34 clinical isolates
IC50值N(C±Q)AS(NM)DHAARTRSAMean無(wú)變異組genemutations63.37±0.392.48±0.405.80±0.472.69變異組Nomutations283.54±0.152.90±0.145.77±0.167.73P值△0.67△0.28△0.94※0.01
注:△P>0.05,提示變異組和無(wú)變異組IC50 值無(wú)統(tǒng)計(jì)學(xué)差異,※P<0.05,提示兩組間RSA值存在統(tǒng)計(jì)學(xué)差異。
Note:△P>0.05,which is no significant difference in IC50s of three antimalaria drugs in gene mutations and no mutations.※P<0.05,which is significant difference in RSA in two groups.
3討論
青蒿素類藥物是全球公認(rèn)治療瘧疾的首選藥,目前對(duì)瘧疾的治療仍有很好的療效。但現(xiàn)全球已不斷有青蒿素類藥物療效出現(xiàn)下降的報(bào)道,尤其在緬甸等東南亞國(guó)家,主要表現(xiàn)在瘧原蟲清除時(shí)間延長(zhǎng)及復(fù)發(fā)[1-2]。青蒿素類藥物的耐藥問(wèn)題不容忽視,目前瘧原蟲對(duì)青蒿素類藥物耐藥的機(jī)制尚不明確,有學(xué)者[4]提出瘧原蟲對(duì)青蒿素類藥敏感性下降主要是原蟲對(duì)藥物產(chǎn)生了抗藥性,他們觀察到Pfmdr1基因變異在耐藥株中表達(dá)高于非耐藥株,耐藥的瘧原蟲抗氧化防御系統(tǒng)更為完備,抗氧化的能力明顯提高,足以對(duì)抗青蒿素類藥物的作用。我們將來(lái)自中緬邊境惡性瘧病人體內(nèi)的瘧原蟲進(jìn)行AS、DHA及ART,IC50的測(cè)定,發(fā)現(xiàn)瘧原蟲的IC50值和野生株3D7對(duì)比,無(wú)統(tǒng)計(jì)學(xué)差異,體外試驗(yàn)提示來(lái)自病人體內(nèi)的惡性瘧原蟲尚不需提高抗瘧藥的濃度來(lái)殺滅,這些原蟲尚未出現(xiàn)真正的抗藥性。
現(xiàn)在惡性瘧原蟲對(duì)青蒿素類藥不敏感的機(jī)制主要集中在休眠學(xué)說(shuō)[5],K-13基因是近年來(lái)研究最多的與惡性瘧原蟲對(duì)青蒿素類藥物耐藥有關(guān)的基因,認(rèn)為是由于該基因的變異,導(dǎo)致瘧原蟲休眠,即在紅細(xì)胞內(nèi)的環(huán)狀體期延長(zhǎng),是原蟲在不利于生長(zhǎng)的條件下出現(xiàn)發(fā)育遲滯的現(xiàn)象。青蒿素類藥物是短效藥,惡性瘧原蟲通過(guò)休眠現(xiàn)象可躲過(guò)藥物的作用,待藥效高峰過(guò)后再繼續(xù)發(fā)育,國(guó)外有很多研究提示瘧原蟲的休眠現(xiàn)象和K-13 基因基因變異有關(guān),k-13基因變異與原蟲在青蒿素類藥物下生存率提高有關(guān)[6]。本次實(shí)驗(yàn)發(fā)現(xiàn)中緬邊境的瘧原蟲在K-13基因有82.4%(28/34)存在137-142位點(diǎn)NN插入,另有點(diǎn)突變?yōu)镋252Q 、F446I、C469Y、 R539T、P553L、 P574L、H719N,有基因點(diǎn)突變的蟲株均有137-142位點(diǎn)NN插入,與Feng J等[7]報(bào)道的中緬邊境惡性瘧原蟲K-13基因變異基本一致,變異主要集中在F446I;而有些報(bào)道[8-10]提示東南亞地區(qū)K-13 變異主要為C580Y變異。本次實(shí)驗(yàn)未發(fā)現(xiàn)A676D,N458Y,P441L等點(diǎn)突變[7,11],有待于擴(kuò)大樣本量進(jìn)一步研究。本試驗(yàn)發(fā)現(xiàn)有K-13基因變異組和無(wú)變異組的三種青蒿素類抗瘧藥的IC50值無(wú)明顯差異,但 K-13基因變異組的RSA高于未變異組,表明K-13基因變異的瘧原蟲在DHA的壓力下有更高的生存率,提示K-13基因的變異可能與瘧原蟲對(duì)青蒿素類藥物的耐藥有關(guān)。該研究同時(shí)提醒我們,RSA實(shí)驗(yàn)是理想的檢測(cè)青蒿素類藥物抗性的方法。
參考文獻(xiàn):
[1]Kyaw MP, Nyunt MH, Chit K, et al. Reduced susceptibility ofPlasmodiumfalciparumto artesunate in Southern Myanmar[J]. Plos One,2013,8(3): e57689. DOI: 10.1371/journal. Pone. 0057689
[2]Denis MB, Tsuyuoka R, Poravuth Y, et al. Surveillance of the efficacy of artesunate and mefloquine combination for the treatment of uncomplicated falciparum malaria in Cambodia[J]. Trop Med Int Health,2006, 11(9): 1360-1366. DOI: 10.1111/j.1365-3156.2006.01690.x
[3]Trager W,Jensen JB.Human malaria parasites in continous culture[J].Science,1976,193(4254):673-675. DOI:10.1645/0022-3395(2005)091[0484:HMPICC]2.0.CO;2
[4]Cui L, Wang Z, Miao J,et al. Mechanisms ofinvitroresistance to dihydroartemisinin inPlasmodiumfalciparum[J]. Mol Microbiol, 2012,86(1): 111-128. DOI:10.1111/j.1365-2958.2012.08180.X
[5]Codd A,Teuscher F,Kyle DE, et al.Artemisinin-induced parasite dormancy: a plausible mechanism for treatment failure[J].Malaria J, 2011, 10(1): 56. DOI: 10. 1186 / 1475-2875-10-56
[6]Shannon TH, Christopher G, Joana C,et al. Independent emergence of artemisinin resistance mutations amonPlasmodiumfalciparumin southeast asia[J]. J Infect Dis, 2014, 211(5):680-688. DOI: 10.1093/infdis/jiu491
[7]Feng J, Zhou D, Lin Y, et al . Amplification of pfmdr1, pfcrt,pvmdr1 and K13-propeller polymorphism associated withPlasmodiumfalciparumandPlasmodiumvivaxat the China-Myanmar border [J]. Antimicrob Agents Chemother 2015,59(5):2554-2559. DOI : 10 .1128/ AAC .04843-14
[8]Ashley EA, Dhorda M, Fairhurst RM,et al.Spread of Artemisinin resistance inPlasmodiumfalciparummalaria[J]. N Engl J Med, 2014,371(5):1099-1104. DOI: 10.1056/NEJMoa1314981
[9]Nyunt MH, Hlaing T, Oo HW,et al. Molecularassessment of artemisinin-resistance markers, polymorphisms in the K13propeller and a multidrug-resistance gene, in eastern and western borderareas of Myanmar [J]. Clin Infect Dis, 2015,60(8):1208-1215. doi: 10.1093/cid/ciu1160
[10]Takala-Harrison S, Jacob CG, Arze C, et al. Independent emergence of artemisinin resistance mutations amongPlasmodiumfalciparumin Southeast Asia [J]. J Infect Dis,2015,211(5):670-679. DOI:10.1093/infdis/jiu491
[11]Tun KM, Imwong M, Lwin KM,et al. Spread ofartemisinin-resistantPlasmodiumfalciparumin Myanmar: a cross-sectional survey of the K13 molecular marker [J]. Lancet Infect Dis, 2015:15(5):415-421.DOI:10.1016/S1473-3099(15)70032-0
DOI:10.3969/j.issn.1002-2694.2016.03.002
通訊作者:楊照青, Email:zhaoqingy92@hotmail.com
中圖分類號(hào):R382.3
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1002-2694(2016)03-0219-05
Corresponding author:Yang Zhao-qing ,Email: zhaoqingy92@hotmail.com
收稿日期:2015-10-08;修回日期:2016-01-15
In vitro susceptibility of Plasmodium falciparum to artemisinin drugs and K13-propeller polymorphisms at the China-Myanmar border
ZHANG Yan-mei1,2,3,WU Yan-rui4,HU Yue5,WANG Li-qiong1,RUAN Yong-hua5,MA Ning1,LI Si-man6,WANG Ying-na1,JIA Dan-dan1,XIANG Zheng1,YANG Zhao-qing1
(1.DepartmentofParasitology,KunmingMedicalUniversity,Kunming650500,China;2.DepartmentofInfectiousDiseases,theFirstAffiliatedHospitalofKunmingMedicalUniversity,Kunming650032,China;3.YunnanProvincialCollaborativeInnovationCenterofPublicHealthandDiseasePreventionandControl,Kunming650031,China;4.TheDepartmentofcellBiologyandMedicalGenetics,KunmingMedicalUniversity,Kunming650500,China;5.TheDepartmentofPathologyandPathophsiology,KunmingMedicalUniversity,Kunming650500,China;6.TheDepartmentofBiochemistryandMolecularBiology,KunmingMedicalUniversity,Kunming650500,China)
Abstract:This study aims to evaluate drug resistance mechanism to artemisinin derivatives in Plasmodium falciparum. The parasites of patients collected from the China-Myanmar border from 2008 to 2010 were cultured in vitro,and DNAs were extracted. The full-length of K13 gene was sequenced in all samples using polymerase chain reaction and direct sequencing methods. To measure drug susceptibilities in artesunate (AS), dihydroartemisinin (DHA) and artemisinin (ART) , we calculated the 50% inhibitory concentrations (IC50s). Parasites were exposed to high-dose of dihydroartemisinin in ring stage for 6 hours, and the survival rates of the ring stage (RSA) was calculated after 66 hours. We found that there were no difference in IC50s in patient isolates and Standard strain-3D7, and RSA in parasite isolates was significantly higher than 3D7. Sever point mutations(E252Q F446I C469Y R539T P553L P574L H719N)were identified in 58.8% of the parasite isolates, and F446I mutation predominated in 44.1% of the parasite isolates. NN-insert mutation predominated in 82.4%,the total point mutations were accompanied by NN-insert. All sample were divided into two groups:gene mutation and no-mutation.We found that there were no difference in IC50in gene mutation and no-mutation in K-13, and RSA in parasite isolates with K13 mutations was significantly higher than that in wild-type isolates. This result suggest that K13 mutations were possible correlated with artemisinin resistance.
Keywords:Plasmodium falciparum; artemisinin derivatives; drug resistance; PF3D7_1343700
國(guó)家自然科學(xué)基金(No.U1202226,81161120421,31260508)和云南省科技廳—昆明醫(yī)科大學(xué)應(yīng)用基礎(chǔ)研究聯(lián)合專項(xiàng)(No.2015FB034, 2014FB005),昆明醫(yī)科大學(xué)創(chuàng)新基金(2014-D2)聯(lián)合資助;云南公共衛(wèi)生與疾病防控協(xié)同創(chuàng)新中心項(xiàng)目(No.2014YNPHXT05);云南省自然科學(xué)基金(No.2012FB153),張艷梅,吳艷瑞同等貢獻(xiàn)