徐先兵,湯 帥,林壽發(fā).中國地質(zhì)大學(xué)(武漢)地球科學(xué)學(xué)院,武漢,430074.Department of Earth and Environmental Sciences,University of Waterloo,Ontario NL 3G,Canada
?
贛北景德鎮(zhèn)韌性剪切帶兩類剪切指向及其構(gòu)造意義
徐先兵1,湯 帥1,林壽發(fā)2
1.中國地質(zhì)大學(xué)(武漢)地球科學(xué)學(xué)院,武漢,430074
2.Department of Earth and Environmental Sciences,University of Waterloo,Ontario N2L 3G1,Canada
摘要:景德鎮(zhèn)韌性剪切帶位于新元古代江南造山帶的核部,其構(gòu)造變形特征和形成時(shí)代對華南新元古代至早古生代構(gòu)造演化具有重要的制約意義。景德鎮(zhèn)韌性剪切帶呈北東向展布,全長約180 km,最大出露寬度為~7 km。通過詳細(xì)的野外地質(zhì)調(diào)查和室內(nèi)定向薄片鑒定,在景德鎮(zhèn)韌性剪切帶中識別出了兩期韌性走滑構(gòu)造變形,并研究了其運(yùn)動(dòng)學(xué)指向和形成時(shí)的溫壓條件。早期構(gòu)造變形表現(xiàn)為左旋韌性走滑兼逆沖作用,形成溫度為420~530℃,差應(yīng)力為40~300 MPa;晚期變形主要表現(xiàn)為右旋走滑,形成溫度為300~420℃,差應(yīng)力為120~350 MPa。結(jié)合前人資料,景德鎮(zhèn)韌性剪切帶左旋走滑兼逆沖作用形成于新元古代造山作用的晚期(810~800 Ma),是由同造山擠壓到后造山伸展調(diào)整的結(jié)果;而右旋走滑形成于早古生代,是華南早古生代陸內(nèi)造山作用的產(chǎn)物。
關(guān)鍵詞:運(yùn)動(dòng)學(xué)指向;溫壓條件;景德鎮(zhèn)韌性剪切帶;江南造山帶;華南
First author:XU Xianbing,Ph.D.,E-mail:xbxu2011@cug.edu.cn;bingge1018@gmail.com
江南造山帶是揚(yáng)子與華夏地塊新元古代俯沖-碰撞拼合的產(chǎn)物,發(fā)育不同類型的蛇綠巖、大量的花崗閃長巖以及強(qiáng)烈的韌性變形(白文吉等,1986;Shu et al.,1991,1994;Charvet et al.,1996;Shu and Charvet,1996;Li et al.,2003;Wu et al.,2006;董樹文等,2010;張彥杰等,2011;Li et al.,2013;Zhang et al.,2012,2013;周效華等,2014)。區(qū)域上,景德鎮(zhèn)韌性剪切帶向南西與九嶺南緣的南昌—萬載韌性剪切帶相連,向北東與皖南伏川蛇綠混雜巖帶相連,共同構(gòu)成宜豐—景德鎮(zhèn)—歙縣剪切帶(江西省地礦局,1984;張彥杰等,2011,2012;Wang et al.,2013a)。目前,對北東走向的宜豐—景德鎮(zhèn)—歙縣韌性剪切帶的運(yùn)動(dòng)學(xué)和形成時(shí)代還存在爭論。對于其運(yùn)動(dòng)學(xué)指向,存在由北向南逆沖(張彥杰等,2012)、由南向北逆沖(周新民和王德滋,1988;徐備等,1992;Chu and Lin,2014)、左旋走滑(Shu et al.,1991;舒良樹等,1995;陳伯林等,1998)以及右旋走滑(李德威和盧宇,1991;陳伯林等,1998;Chu and Lin,2014)之爭。對于韌性變形的形成時(shí)代,一種觀點(diǎn)認(rèn)為景德鎮(zhèn)韌性剪切帶是新元古代弧后盆地關(guān)閉的產(chǎn)物(張彥杰等,2011,2012;Wang et al.,2013a;周效華等,2014);另外一種觀點(diǎn)則認(rèn)為其是早古生代陸內(nèi)造山作用的產(chǎn)物(Shu et al.,1991;徐備等,1992;Chu and Lin,2014)。
地質(zhì)和地球物理資料表明宜豐—景德鎮(zhèn)—歙縣韌性剪切帶是超殼斷裂(江西省地礦局,1984;張彥杰等,2011,2012;王鵬程等,2015),其不僅是新元古代弱變形的雙橋山群和強(qiáng)變形溪口巖群的分界線(樓法生等,2003;張彥杰等,2010a,b),還控制著晚古生代至早中生代萍樂坳陷和晚中生代高安盆地的形成和演化(江西省地礦局,1984;鐘南昌,1992)。因此,景德鎮(zhèn)韌性剪切帶的研究對江南造山帶新元古代-早古生代構(gòu)造演化具有重要的制約意義。本文通過對景德鎮(zhèn)韌性剪切帶詳細(xì)的野外地質(zhì)調(diào)查和室內(nèi)定向薄片的研究,探討了剪切帶的幾何學(xué)、運(yùn)動(dòng)學(xué)以及年代學(xué),為江南造山帶新元古代和早古生代造山作用的研究提供了詳實(shí)的資料。
江南造山帶東段是指由南側(cè)NEE向萍鄉(xiāng)—江山—紹興斷裂帶、東側(cè)NNE向東鄉(xiāng)—德興蛇綠混雜巖帶和NE向歙縣伏川蛇綠混雜巖帶以及北側(cè)江南斷裂帶所圍限的皖南—贛北地區(qū)(圖1)(Xu et al.,2015;徐先兵等,2015)。其主要由新元古代濁積巖、花崗閃長巖以及基性-超基性巖組成(江西省地礦局,1984;Li et al.,2003;Wu et al.,2006;Wang et al.,2008,2013b;Zhao et al.,2011;周效華等,2012,2014;Yin et al.,2013;Xu et al.,2014)。
景德鎮(zhèn)韌性剪切帶位于江南造山帶東段的核部,其西起于鄱陽湖東岸,沿北東方向經(jīng)鄱陽、景德鎮(zhèn)、浮梁、休寧,止于晚中生代黃山盆地西緣,全長約180 km(圖2)。剪切帶沿走向呈舒緩波狀展布,在浮梁縣王港鄉(xiāng)至瑤里鎮(zhèn)分散成三條北東向近平行的小型剪切帶,由北至南分別為貓兒頸—桃?guī)X韌性剪切帶、大背塢—金村韌性剪切帶以及下塢—瑤里韌性剪切帶。小型剪切帶出露寬度250~1500 m不等,景德鎮(zhèn)韌性剪切帶出露最大寬度為~7 km。
景德鎮(zhèn)韌性剪切帶卷入的巖石主要為新元古代濁積巖和基性-超基性巖,且被早白堊世花崗巖所侵位,主要由超糜棱巖、糜棱巖以及糜棱巖化巖石組成,與圍巖呈漸變過度關(guān)系。景德鎮(zhèn)韌性剪切帶面理主要由定向排列的石英條帶和黑云母組成,以高角度傾向SE或NW,傾角為60°~90°(圖3A);線理主要由顯著拉長的石英斑晶和絹云母組成,以低角度向NE傾伏為主,傾伏角為15°~35°(圖3B)。構(gòu)造要素特征指示景德鎮(zhèn)韌性剪切帶主要表現(xiàn)為韌性走滑特征,但有明顯地逆沖分量。
詳細(xì)的野外地質(zhì)調(diào)查表明,景德鎮(zhèn)韌性剪切帶中發(fā)育大量運(yùn)動(dòng)學(xué)指向的標(biāo)志,如不對稱褶皺(圖3C)、不對稱旋轉(zhuǎn)碎斑(圖3D)以及S-C組構(gòu)等。宏觀的運(yùn)動(dòng)學(xué)標(biāo)志指示景德鎮(zhèn)韌性剪切帶以左旋走滑為主。
通過對67塊定向薄片的系統(tǒng)觀察,在景德鎮(zhèn)韌性剪切帶鑒別出了兩類運(yùn)動(dòng)學(xué)指向,即左旋走滑和右旋走滑。這兩類運(yùn)動(dòng)學(xué)指向不僅發(fā)育在整個(gè)剪切帶中,而且還發(fā)育在同一個(gè)定向薄片之中(圖4)。系統(tǒng)的觀察表明,右旋走滑標(biāo)志包括壓力影構(gòu)造(圖4A)、不對稱旋轉(zhuǎn)碎斑(圖4C,E,G)、S-C組構(gòu)以及云母魚構(gòu)造等;左旋走滑標(biāo)志包括壓力影構(gòu)造(圖4B),不對稱石英旋轉(zhuǎn)碎斑(圖4D,F(xiàn),H)以及云母魚構(gòu)造。
圖1 江南造山帶東段地質(zhì)簡圖Fig.1 Sketch map of the eastern Jiangnan Orogen
圖2 景德鎮(zhèn)韌性剪切帶地質(zhì)簡圖Fig.2 Sketch map of the Jingdezhen ductile shear zone
圖3 景德鎮(zhèn)韌性剪切帶野外照片F(xiàn)ig.3 Field photos of the Jingdezhen ductile shear zone
景德鎮(zhèn)剪切帶糜棱巖主要石英、黑云母以及少量白云母和長石組成,缺乏合適的溫度計(jì)進(jìn)行變形溫度估算。前人研究表明,石英和長石礦物變形和重結(jié)晶方式可以指示韌性剪切帶的形成溫度(Gapais,1989;Passchier and Trouw,1996;向必偉等,2007;胡玲等,2009;Xu et al.,2011)。
石英由脆性變形向韌性變形的轉(zhuǎn)換溫度為250~300℃(Sibson,1999;Van,1999)。石英的韌性變形方式隨著變形溫度的升高(300~700℃)依次表現(xiàn)為臌脹重結(jié)晶(BLG)、亞顆粒旋轉(zhuǎn)重結(jié)晶(SGR)以及顆粒邊界遷移重結(jié)晶(BGM)(Stipp et al.,2002)。其中,石英BLG形成于300~380℃,在380~420℃表現(xiàn)為BLG和SGR共存;獨(dú)立的SGR形成于420~480℃,與GBM共存形成于470~530℃;而GBM獨(dú)立存在的溫度為530~630℃。
長石在低于300℃是表現(xiàn)為脆性破裂,在300~400℃表現(xiàn)為顯微破裂,波狀消光以及雙晶紋彎曲,高于400℃開始發(fā)生塑性變形和動(dòng)態(tài)重結(jié)晶(Tullis and Yund,1987,1991;Pryer,1993)。
依據(jù)上述標(biāo)準(zhǔn),結(jié)合表1中石英和長石的變形和重結(jié)晶的方式,景德鎮(zhèn)韌性剪切帶左旋走滑兼逆沖變形形成于420~530℃,而右旋走滑形成于300~420℃。石英動(dòng)態(tài)重結(jié)晶顆粒的平均直徑可用來估算差應(yīng)力的大?。═wiss,1977;Post and Tul?lis,1999;Stipp and Tullis,2003)。首先選取具有明顯指示標(biāo)志的定向薄片,確定韌性變形的運(yùn)動(dòng)學(xué)指向。然后確定石英重結(jié)晶作用的方式,并測量顆粒的直徑。每個(gè)樣品中至少選擇40顆石英動(dòng)態(tài)重結(jié)晶顆粒,然后用平均線性法計(jì)算顆粒平均直徑。最后根據(jù)石英重結(jié)晶方式和粒徑大小進(jìn)行投圖(Passchier and Trouw,1996)。如圖5所示,景德鎮(zhèn)韌性剪切帶左旋走滑兼逆沖作用的差應(yīng)力為40~300 MPa,而右旋剪切變形的差應(yīng)力大小為120~350 MPa。
4.1 景德鎮(zhèn)韌性剪切帶的變形時(shí)代
景德鎮(zhèn)韌性剪切帶發(fā)育于新元古代雙橋山群和溪口巖群濁積巖和基性巖之中。鋯石U-Pb年代學(xué)指示卷入變形的濁積巖和基性巖分別形成于840~820 Ma(張彥杰等,2010a;Zhao et al.,2011; Wang et al.,2013b;Yin et al.,2013;Xu et al.,2014)和832±19 Ma(周效華等,2014),指示景德鎮(zhèn)韌性剪切帶形成于~820 Ma之后。景德鎮(zhèn)韌性剪切帶還被早白堊世花崗巖(150~120 Ma)所侵位(余明剛等,2010;趙鵬等,2010),指示其形成于~150 Ma之前。區(qū)域上,景德鎮(zhèn)韌性剪切帶被印支-燕山早期脆性逆沖構(gòu)造所疊加(張彥杰等,2012;王鵬程等,2015),指示韌性變形形成于中生代之前。
圖4 景德鎮(zhèn)韌性剪切帶左旋和右旋走滑運(yùn)動(dòng)學(xué)標(biāo)志Fig.4 Sinistral and dextral shearing markers in the Jingdezhen ductile shear zone
表1 景德鎮(zhèn)韌性剪切帶變形溫度估計(jì)表Table 1 Estimated deformation temperature of samples in the Jingdezhen ductile shear zone
圖5 景德鎮(zhèn)剪切帶差應(yīng)力估算圖Fig.5 Differential stress of the Jingdezhen ductile shear zone (after Passchier and Trouw,1996)
同一構(gòu)造帶如果保存有多期變形特征,其保存的早期變形往往形成溫度較高,而晚期變形則形成溫度較低,否則晚期高溫變形會(huì)抹掉早期低溫構(gòu)造變形的記錄(許志琴等,2007)。因此,景德鎮(zhèn)韌性剪切帶早期變形為中溫北東向左旋走滑兼逆沖構(gòu)造,晚期為低溫北東向右旋韌性剪切變形。
新元古代-早古生代南昌—萬載韌性剪切帶面理(150°∠65°)和線理(60°∠20°)產(chǎn)狀、運(yùn)動(dòng)學(xué)指向(左旋)、形成溫度(500~600℃)以及差應(yīng)力(50~190 MPa)與景德鎮(zhèn)左旋走滑兼逆沖韌性剪切帶基本一致(Shu et al.,1991;舒良樹等,1995)。結(jié)合南昌—萬載韌性剪切帶是景德鎮(zhèn)韌性剪切帶的西延部分(江西省地礦局,1984;張彥杰等,2011,2012;Wang et al.,2013a),景德鎮(zhèn)韌性剪切帶左旋走滑兼逆沖作用也形成于新元古代-早古生代。最近的云母40Ar/39Ar年代學(xué)表明南昌—萬載韌性剪切帶在早古生代(465~380 Ma)表現(xiàn)為由南向北的韌性逆沖和右旋韌性走滑(Chu and Lin,2014)。另外,江南造山帶東段早古生代北北東向韌性剪切帶也表現(xiàn)為右旋走滑特征(Xu et al.,2015)。因此,作者推測景德鎮(zhèn)韌性剪切帶左旋走滑兼逆沖變形發(fā)育于新元古代,而右旋韌性走滑形成于早古生代。
4.2 大地構(gòu)造意義
景德鎮(zhèn)韌性剪切帶具有超殼斷裂特征(江西省地礦局,1984;王鵬程等,2015),指示其可能為地塊碰撞拼合邊界。剪切帶中彰源枕狀玄武巖、輝長巖和輝綠巖形成于新元古代(~830 Ma),且具有弧后盆地蛇綠巖地球化學(xué)特征,指示景德鎮(zhèn)韌性剪切帶在~830 Ma為弧后盆地?cái)U(kuò)張脊(張彥杰等,2011;周效華等,2014)。區(qū)域上,皖南歙縣伏川蛇綠巖也形成于新元古代(~825 Ma)弧后盆地構(gòu)造環(huán)境(Zhang et al.,2012;2013)。上述二者具有相鄰的空間位置、相同的地球化學(xué)特征和形成時(shí)代,因此歙縣斷裂帶在新元古代為景德鎮(zhèn)左旋韌性剪切帶的東延部分(張彥杰等,2011;Wang et al.,2013a;周效華等,2014)。結(jié)合南昌—萬載左旋韌性剪切帶在新元古代為景德鎮(zhèn)左旋韌性剪切帶的西延部分,由上述三條斷裂組成的新元古代宜豐—景德鎮(zhèn)—歙縣剪切帶在~830 Ma為統(tǒng)一的弧后盆地?cái)U(kuò)張脊(江西省地礦局,1984;張彥杰等,2011,2012;Wangetal.,2013a)。
構(gòu)造要素分析表明宜豐—景德鎮(zhèn)韌性剪切帶在新元古代表現(xiàn)為左旋走滑兼逆沖作用,與最古老一期逆沖的構(gòu)造樣式不一致(舒良樹等,1995),因此筆者推測左旋走滑兼逆沖變形的形成時(shí)代晚于逆沖變形。白云母40Ar/39Ar年代學(xué)指示伏川蛇綠巖沿歙縣斷裂帶逆沖到歙縣巖體之上的時(shí)代為768±30 Ma,由逆沖作用導(dǎo)致的德興西灣鈉長花崗巖糜棱巖化的年齡為~799 Ma(胡世玲等,1992)。如果考慮年齡誤差的話,新元古代逆沖作用的40Ar/39Ar年齡為~800 Ma。由于云母40Ar/39Ar年齡的封閉溫度明顯低于鋯石U-Pb年齡的封閉溫度(Leeetal.,1997;McDougallandHarrison,1999),由逆沖作用形成的~800 Ma40Ar/39Ar年齡應(yīng)該是華南新元古代(820~810 Ma)揚(yáng)子與華夏板塊碰撞導(dǎo)致~830 Ma弧后盆地關(guān)閉(Xu et al.,2014;Zhao,2014;Yao et al.,2015)的冷卻年齡。結(jié)合區(qū)域上東鄉(xiāng)—德興韌性剪切帶左旋走滑的形成時(shí)代為768±9 Ma(Shu and Charvet,1996),我們推測新元古代江南造山帶發(fā)育兩期韌性變形作用,早期是與揚(yáng)子與華夏板塊碰撞有關(guān)的逆沖變形,形成時(shí)代為820~810 Ma,其冷卻年齡為~800 Ma;晚期是與造山作用調(diào)整有關(guān)的左旋走滑兼逆沖的壓扭變形,其冷卻年齡為~770 Ma。區(qū)域上,江南造山帶造山后伸展和南華裂谷開始于800~760 Ma(Wang and Li,2003;Li et al.,2008;Zheng et al.,2008;Wang et al.,2010,2012)。因此,江南造山帶北東—北北東向左旋走滑兼逆的韌性沖變形形成于810~800 Ma。
北東向宜豐—景德鎮(zhèn)—歙縣剪切帶在早古生代表現(xiàn)為右旋韌性走滑特征。另外在江南背斜核部還發(fā)育早古生代近東西向和北北東向右旋韌性剪切帶(Yu et al.,2011;Chu and Lin,2014;Xu et al.,2015)。區(qū)域上江南背斜南部主要表現(xiàn)為北東走向的逆沖作用,而在其北部基本無變形(徐備等,1992;舒良樹等,1999,2008;Li et al.,2010;Wang et al.,2013c;Shu et al.,2014),因此其動(dòng)力來自于沿萍鄉(xiāng)—江山—紹興斷裂帶發(fā)育的陸內(nèi)俯沖作用(Faure et al.,2009)。云母40Ar/39Ar年代學(xué)指示北北東向右旋走滑變形明顯早于北東和近東西向右旋走滑,可能與區(qū)域上由南北走向主應(yīng)力向近東西向主應(yīng)力轉(zhuǎn)變有關(guān)(Xu et al.,2015)。
(1)景德鎮(zhèn)韌性剪切帶保存了兩期韌性走滑變形,早期變形為左旋走滑兼逆沖作用,形成溫度為420~530℃,差應(yīng)力為40~300 MPa;晚期變形表現(xiàn)為右旋走滑,形成溫度為300~420℃,差應(yīng)力為120~350 MPa。
(2)景德鎮(zhèn)剪切帶左旋走滑兼逆沖作用形成于新元古代(810~800 Ma),是由同造山擠壓到后造山伸展調(diào)整的結(jié)果;而右旋走滑形成于早古生代,是華南早古生代陸內(nèi)造山作用的產(chǎn)物。
致謝:感謝三位匿名審稿人對本文提出的意見和建議,使得文章結(jié)構(gòu)和文字組織更為合理,并提高了研究深度。
參考文獻(xiàn)(References):
白文吉,甘啟高,楊輕綏,等.1986.江南古陸東南緣蛇綠巖完整層序剖面的發(fā)現(xiàn)和基本特征[J].巖石礦物學(xué)雜志,5(4):289-299.
陳柏林,董法先,沈庭沅.1998.江西大背塢地區(qū)淺變質(zhì)碎屑巖中韌性剪切帶變形特征[J].現(xiàn)代地質(zhì),12(3):311-317.
董樹文,薛懷民,項(xiàng)新葵,等.2010.贛北廬山地區(qū)新元古代細(xì)碧-角斑巖系枕狀熔巖的發(fā)現(xiàn)及其地質(zhì)意義[J].中國地質(zhì),37(4):1021-1033.
胡玲,劉俊來,紀(jì)沫,等編著.2009.變形顯微構(gòu)造識別手冊[M].北京:地質(zhì)出版社.
胡世玲,鄒海波,周新民.1992.江南元古宙碰撞造山帶的兩個(gè)40Ar/39Ar年齡值[J].科學(xué)通報(bào),37(3):286-286.
江西省地礦局.1984.江西省區(qū)域地質(zhì)志[M].北京:地質(zhì)出版社.
李德威,盧宇.1991.江西大背塢含金剪切帶初探[J].江西地質(zhì),5(1): 61-68.
樓法生,黃志忠,宋志瑞,等.2003.華南中部中新元古代造山帶構(gòu)造演化探討[J].地質(zhì)調(diào)查與研究,26(4):200-206.
舒良樹,施央申,郭令智.1995.江南中段板塊-地體構(gòu)造與碰撞造山運(yùn)動(dòng)學(xué)[M].南京:南京大學(xué)出版社.
舒良樹,盧華復(fù),賈東,等,1999.華南武夷山早古生代構(gòu)造事件的40Ar/39Ar同位素年齡研究[J].南京大學(xué)學(xué)報(bào):數(shù)學(xué)半年刊,(6),668-674.
舒良樹,于津海,賈東,等.2008.華南東段早古生代造山帶研究[J].地質(zhì)通報(bào),27(10):1581-1593.
王鵬程,趙淑娟,李三忠,等,2015.長江中下游南部逆沖變形樣式及其機(jī)制[J].巖石學(xué)報(bào),31(1):230-244.
向必偉,朱光,王勇生,等.2007.糜棱巖化過程中礦物變形溫度計(jì)[J].地球科學(xué)進(jìn)展,22(2):126-135.
徐備,郭令智,施央申.1992.皖浙贛地區(qū)元古代地體和多期碰撞造山帶[M].北京:地質(zhì)出版社.
徐先兵,湯帥,李源,等.2015.江南造山帶東段新元古代至早中生代多期造山作用特征[J].中國地質(zhì),42(1):33-50.
許志琴,戚學(xué)祥,楊經(jīng)綏,等.2007.西昆侖康西瓦韌性走滑剪切帶的兩類剪切指向,形成時(shí)限及其構(gòu)造意義[J].地質(zhì)通報(bào),26(10): 1252-1261.
余明剛,邢光福,張彥杰,等.2010.皖贛交界障公山地區(qū)燕山期花崗巖年代學(xué)和地球化學(xué)及成因研究[J].礦物巖石地球化學(xué)通報(bào),28卷增刊:128.
張彥杰,廖圣兵,周孝華,等.2010a.江南造山帶北緣障公山地區(qū)新元古代地層構(gòu)造變形特征及其動(dòng)力學(xué)機(jī)制[J].中國地質(zhì),37(4): 978-994.
張彥杰,周效華,廖圣兵,等.2010b.皖贛鄣公山地區(qū)新元古代地殼組成及造山過程[J].地質(zhì)學(xué)報(bào),84(10):1401-1427.
張彥杰,周效華,廖圣兵,等.2011.江南造山帶北緣鄣源基性巖地質(zhì)-地球化學(xué)特征及成因機(jī)制[J].高校地質(zhì)學(xué)報(bào),17(3):393-405.
張彥杰,廖圣兵,周效華,等.2012.江南造山帶北緣鄣源構(gòu)造帶主要地質(zhì)特征[J].地質(zhì)學(xué)報(bào),86(12):1905-1916.
趙鵬,姜耀輝,廖世勇,等.2010.贛東北鵝湖巖體SHRIMP鋯石U-Pb年齡,Sr-Nd-Hf同位素地球化學(xué)與巖石成因[J].高校地質(zhì)學(xué)報(bào),16(2):218-225.
鐘南昌.1992.江西萍鄉(xiāng)—樂平地區(qū)推覆構(gòu)造[J].中國區(qū)域地質(zhì),19(1): 1-13.
周效華,張彥杰,廖圣兵,等.2012.皖贛相鄰地區(qū)雙橋山群火山巖的LA-ICP-MS鋯石U-Pb年齡及其地質(zhì)意義[J].高校地質(zhì)學(xué)報(bào),18(4): 609-622.
周效華,高天山,馬雪,等.2014.江南造山帶東段鄣源枕狀玄武巖的年代學(xué)與構(gòu)造屬性研究[J].資源調(diào)查與環(huán)境,35(4):235-244.
周新民,王德滋.1988.皖南低87Sr/86Sr初始比的過鋁花崗閃長巖及其成因[J].巖石學(xué)報(bào),4(3):37-45.
Bishop R R 1996.Grain boundary migration in experimentally deformed quartz aggregates:the relationship between dynamically recrystallized grain size and steady state flow stress[M].B Sc thesis,Brown University.Charvet J,Shu L S,Shi Y S,et al.1996.The building of south China: collision of Yangzi and Cathaysia blocks,problems and tentative answers[J].Journal of Asian Earth Sciences,13(3-5):223-235.
Chu Y and Lin W.2014.Phanerozoic polyorogenic deformation in southern Jiuling massif,northern South China block:constraints from structural analysis and geochronology[J].Journal of Asian Earth Sciences,86(1): 117-130.
Faure M,Shu L,Wang B,et al.2009.Intracontinental subduction:a possible mechanism for the Early Palaeozoic Orogen of SE China[J].Terra Nova,21(5):360-368.
Gapais D.1989.Shear structures within deformed granites:mechanical and thermal indicators[J].Geology,17(12):1144-1147.
Lee J K,Williams I S,Ellis D J.1997.Pb,U and Th diffusion in natural zircon[J].Nature,390(6656):159-162.
Li X H,Li Z X,Ge W,et al.2003.Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca.825 Ma?[J].Precambrian Research,122(1):45-83.
Li X H,Li W X,Li Z X,et al.2008.850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang,South China:A major episode of continental rift magmatism during the breakup of Rodinia[J].Lithos, 102:341-357.
Li Z X,Li X H,Wartho J A,et al.2010.Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny,southeastern South China:new age constraints and pressure-temperature conditions[J].Geological Society of America Bulletin,122:772-793.
Li L M,Lin S,Xing G,et al.2013.Geochronology and geochemistry of volcanic rocks from the Shaojiwa Formation and Xingzi Group,Lushan area,SE China:Implications for Neoproterozoic back-arc basin in the Yangtze Block[J].Precambrian Research,238:1-17.
McDougall I and Harrison T M.1999.Geochronology and Thermochronology by the40Ar/39Ar Method[M].Oxford University Press.
Passchier C W and Trouw R A J.1996.Microtectonics[M].Springer verlag Berlin Heidelberg.
Post A and Tullis J.1999.A recrystallized grain size piezometer for experimentally deformed feldspar aggregates[J].Tectonophysics,303 (1):159-173.
Pryer L L.1993.Microstructures in feldspars from a major crustal thrust zone:The Grenville Front,Ontario,Canada[J].Journal of Structural Geology,15:21-36.
Shu L S,Charvet J,Shi Y S,et al.1991.Structural analysis of the Nanchang-Wanzai sinistral ductile shear zone(Jiangnan region,South China)[J].Journal of Asian Earth Sciences,6(l):13-23.
Shu L S,Zhou G Q,Shi Y S,et al.1994.Study of the high-pressure metamorphic blueschist and its Late Proterozoic age in the Eastern Jiangnan belt[J].Chinese Science Bulletin,39:1200-1204.
Shu L S and Charvet J.1996.Kinematics and geochronology of the Proterozoic Dongxiang-Shexian ductile shear zone: with HP metamorphism and ophiolitic mélange(Jiangnan Region,South China)[J].Tectonophysics,267:291-302.
Shu L S,Jahn B M,Charvet J,et al.2014.Early Paleozoic depositional environment and intracontinental orogeny in the Cathaysia Block(South China):implications from stratigraphic,structural,geochemical and geochronologic evidence[J].American Journal of Science,314: 154-186.
Sibson R H.1999.Fault rock distribution and structure within the Alp in fault zone:A preliminary account[J].Bulletin of the Royal Society of New Zealand,18:55-66.
Stipp M,Stünitz H,Heilbronner R,et al.2002.The eastern Tonale fault zone:A natural laboratory’ for crystal p lastic deformation of quartz over a temperature range from 250 to 700℃[J].Journal of Structural Geology,24:1861-1884.
Stipp M and Tullis J.2003.The recrystallized grain size piezometer for quartz[J].Geophysical Research Letters,30(21).Doi:10.1029/ 2003GL018444.
Tullis J and Yund R A.1987.Transition from cataclastic flow to dislocation creep of feldspar:Mechanisms and microstructures[J].Geology,15: 606-609.
Tullis J and Yund R A.1991.Diffusion creep in feldspar aggregates: experimental evidence[J].JournalofStructuralGeology,13(9): 987-1000.
Twiss R J.1977.Theory and applicability of a recrystallized grain size paleopiezometer[M]//Stress in the Earth.Birkh?user Basel.
Van D.1999.Orientationanalysis of localized shear deformation in quartz fibres at the brittle2ductile transition[J].Tectonophysics,303:83-107.
Wang J and Li Z X.2003.History of Neoproterozoic rift basins in South China:implications for Rodinia break-up[J].Precamb.Research,122: 141-158.
Wang X L,Zhao G C,Zhou J C,et al.2008.Geochronology and Hf isotopes of zircon from volcanic rocks of the Shuangqiaoshan Group,South China:Implications for the Neoproterozoic tectonic evolution of the eastern Jiangnan orogeny[J].Gondwana Research,14(3):355-367.
Wang Q,Wyman D A,Li Z X.,et al.2010.Petrology,geochronology and geochemistry of ca 780Ma A-type granites in South China:petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia[J].Precambrian Research,178(1):185-208.
Wang X L,Shu L S,Xing G F,et al.2012.Post-orogenic extension in the eastern part of the Jiangnan orogen:Evidence from ca 800-760 Ma volcanic rocks[J].Precambrian Research,222-223:404-423.
Wang Y J,Zhang A,Cawood P A,et al.2013a.Geochronological,geochemicaland Nd-Hf-Osisotopicfingerprintingofan early Neoproterozoic arc-back-arc system in South China and its accretionary assembly along the margin of Rodinia[J].Precambrian Research,231: 343-371.
Wang W,Zhou M,Yan D,et al.2013b.Detrital zircon record of Neoproterozoic active-margin sedimentation in the eastern Jiangnan Orogen,South China[J].Precambrian Research,235:1-19.
Wang Y J,F(xiàn)an W,Zhang G,et al.2013c.Phanerozoic tectonics of the South China Block:key observations and controversies[J].Gondwana Research,23(4):1273-1305.
Wu R X,Zheng Y F,Wu Y B,et al.2006.Reworking of juvenile crust: element and isotope evidence from Neoproterozoic granodiorite in South China[J].Precambrian Research,146:179-212.
Xu X B,Zhang Y Q,Shu L S,et al.2011.La-ICPMS U-Pb and40Ar/39Ar geochronology of the sheared metamorphic rocks in the Wuyishan: constraints on the timing of Early Palaeozoic and Early Mesozoic tectonothermal events in SE China[J].Tectonophysics,501:71-86.
Xu X B,Xue D J,Li Y,et al.2014.Neoproterozoic sequences along the Dexing-Huangshan fault zone in the eastern Jiangnan orogen,South China:Geochronological and geochemical constrains[J].Gondwana Research,25(1):368-382.
Xu X B,Li Y,Tang S,et al.2015.Neoproterozoic to Early Paleozoic polyorogenic deformation in the southeastern margin of the Yangtze Block:Constraints from structural analysis and40Ar/39Ar geochronology [J].Journal of Asian Earth Sciences,98:141-151.
Yao J,Shu L,Santosh M,et al.2015.Neoproterozoic arc-related andesite and orogeny-related unconformity in the eastern Jiangnan orogenic belt: Constraints on the assembly of the Yangtze and Cathaysia blocks in South China[J].Precambrian Research,262:84-100.
Yin C Q,Lin S,Davis D W,et al.2013.Tectonic evolution of the southeastern margin of the Yangtze Block:Constraints from SHRIMP U-Pb and LA-ICP-MS Hf isotopic studies of zircon from the eastern Jiangnan Orogenic Belt and implications for the tectonic interpretation of South China[J].Precambrian Research,236:145-156.
Yu X Q,Wang D E,Jiang D Z,et al.2011.Deformation stages and Ar-Ar age data of the Wan-Zhe-Gan tectonic zone,southeast China,and their tectonic significance[J].Acta Geological Sinica(English Edition),85(6): 1373-1389.
Zhang S B,Wu R X,Zheng Y F.2012.Neoproterozoic continental accretion in South China:Geochemical evidence from the Fuchuan ophiolite in the Jiangnan orogeny[J].Precambrian Research,220-221:45-64.
Zhang C L,Santosh M,Zou H B,et al.2013.The Fuchuan ophiolite in Jiangnan Orogen:Geochemistry,zircon U-Pb geochronology,Hf isotope and implications for the Neoproterozoic assembly of South China[J].Lithos,179:263-274.
Zhao J H,Zhou M F,Yan D P,et al.2011.Reappraisal of the ages of Neoproterozoicstratain South China:no connection with the Grenvillian orogeny[J].Geology,39(4):299-302.
Zhao G.2014.Jiangnan Orogen in South China:Developing from divergent double subduction[J].Gondwana Research,27(3):1173-1180.
Zheng Y F,Wu R X,Wu Y B,et al.2008.Rift melting of juvenile arc-derived crust:geochemical evidence from Neoproterozoic volcanic and granitic rocksin theJiangnan Orogen,South China[J].Precambrian Research,163:351-383.
中圖分類號:P542.3
文獻(xiàn)標(biāo)識碼:A
文章編號:1006-7493(2016)02-0308-09
DOI:10.16108/j.issn1006-7493.2015090
收稿日期:2015-05-08;修回日期:2015-06-13
基金項(xiàng)目:國家自然科學(xué)基金青年基金項(xiàng)目(41402174)
作者簡介:徐先兵,男,1983年生,博士;E-mail:xbxu2011@cug.edu.cn;bingge1018@gmail.com
Two kinds of Shear Senses and Tectonic Implication of the Jingdezhen Ductile Shear Zone,Northern Jiangxi Province
XU Xianbing1,TANG Shuai1,Lin Shoufa2
1.School of Earth Sciences,China University of Geosciences,Wuhan 430074,China
2.Department of Earth and Environmental Sciences,University of Waterloo,Ontario N2L 3G1,Canada
Abstract:The Jingdezhen ductile shear zone is located at the core of the Neoproterozoic Jiangnan Orogen.Structural features and geochronology of the Jingdezhen ductile shear zone have a key implication for the Neoproterozoic to Early Paleozoic tectonic evolution of the South China Block.The Jingdezhen ductile shear zone is~180 km long in the NE-striking orientation and~7 km in maximum width.Two-phase ductile strike-slip shearing was identified based on detailed field investigation and observation of oriented thin sections.Moreover,the kinematic indicators and temperature-pressure conditions were studied in this paper.The early sinistral ductile strike-slip with thrusting occurred at 400~500℃and differential stress of 40~300 MPa,whereas the dextral ductile shearing at 300~400℃ and differential stress of 120~300 MPa.Combined with the previous work,the sinistral strike-slip with thrusting of the Jingdezhen ductile shear zone took place at late stage of the Neoproterozoic orogen in the South China Block(810~800 Ma),as a result of transformation from syn-orogeny compression to post-orogeny extension.The dextral shearing of the Jingdezhen ductile shear zone occurred in the Early Paleozoic,triggered by the Early Paleozoic intracontinental orogeny of southeast China.
Key words:kinematic indicator;temperature-pressure condition;Jingdezhen ductile shear zone;Neoproterozoic Jiangnan Orogen;South China Block