胡萬龍,賈志磊,2,王金榮*,侯克選,王淑華.甘肅省西部礦產資源重點實驗室,蘭州大學地質科學與礦產資源學院蘭州730000;2.甘肅省地質礦產勘查開發(fā)局,蘭州730000
?
南祁連化石溝花崗巖年代學、地球化學特征及其構造意義
胡萬龍1,賈志磊1,2,王金榮1*,侯克選1,王淑華1
1.甘肅省西部礦產資源重點實驗室,蘭州大學地質科學與礦產資源學院蘭州730000;
2.甘肅省地質礦產勘查開發(fā)局,蘭州730000
摘要:化石溝二長花崗巖呈長條狀侵入于泥盆系-石炭系阿木尼克組。巖石LA-ICP-MS鋯石U-Pb加權平均年齡為252.0± 2.1 Ma,形成于晚二疊世。巖石高SiO2(69.8%~72.2%)、Al2O3(14.2%~15.4%),低的TiO2、MgO含量(分別為0.28%~0.36%、0.60%~0.77%),A/CNK=1.08~1.14,富堿(Na2O+K2O=6.57%~8.00%);相對富集Th、K、Pb,虧損Nb、Ta、P、Ti,低Sr(201×10-6~248×10-6),高Y(19.4×10-6~24.0×10-6),富集LREE,(La/Yb)N=10.8~18.4,中等負Eu異常(δEu=0.55~0.68);全巖(87Sr/86Sr)i為0.7060~0.7061,εNd(t)為1.63~1.84,εHf(t)=8.79。二長花崗巖的全巖Nd和Hf模式年齡分別為780~794 Ma和694 Ma。綜合研究表明二長花崗巖是新元古代中期形成的玄武質下地殼在晚古生代晚期玄武質巖漿底侵加熱作用下發(fā)生部分熔融的產物,形成于造山擠壓向后造山伸展轉變的構造環(huán)境。
關鍵詞:二長花崗巖;地球化學;晚二疊世;構造環(huán)境;化石溝;南祁連山
祁連造山帶位于青藏高原東北緣,是橫貫中國東西的中央造山帶的重要組成部分(任紀舜和黃汲清,1980;馮益民和吳漢泉,1992;馮益民和何長平,1996;殷鴻福和張克信,1998;葛肖虹和劉俊來,1999;姜春發(fā)等,2000;陸松年等,2006;許志琴等,2006;Qiu和Wijbrans,2008;Tseng et al.,2009;楊經綏等,2010;Song et al.,2013;Zheng et al.,2013),其南接柴達木地塊,西北以阿爾金斷裂為界,與塔里木地塊接壤,北為阿拉善地塊(圖1a)。祁連造山帶演化與阿爾金斷裂、柴北緣地塊北緣密切相關,許多學者對阿爾金—祁連—柴北緣構造系統(tǒng)的進行了大量的研究(Sun et al.,2000;Sobel et al.,2001;Yang et al.,2001,2006;Song and Niu,2004;Song et al.,2005,2006,2012;Zhang et al.,2005,2009;Xiao et al.,2009;余吉遠等,2012;董順利等,2013;Wang et al.,2013;Zhang et al.,2013;Yu et al.,2013;Ker et al.,2015;Xu et al.,2015;Yu et al.,2015;Huang et al.,2016),如在柴北緣、阿爾金地區(qū)超高壓變質帶的發(fā)現(xiàn),以及阿爾金與祁連—柴北緣構造系統(tǒng)的對比研究等。
花崗巖作為造山帶中普遍存在的酸性侵入體,記錄了板塊構造及地殼演化過程的大量信息。至今,對祁連造山帶花崗巖的研究主要集中于北祁連地區(qū),并且時代上又以早古生代及以前居多(毛景文和簡平,2000;王曉地等,2004;吳才來等,2004,2010;秦海鵬,2012;Chen et al.,2012,2014),而對南祁連及晚古生代花崗巖的研究相對較為薄弱。本文在野外地質調查的基礎上,對祁連地塊西南緣二長花崗巖進行巖石學、礦物學、地球化學和年代學研究,對厘清柴北緣—南祁連晚古生代構造演化過程具有重要的科學意義。
圖1 研究區(qū)大地構造簡圖(a,據(jù)崔軍文等,1999)和研究區(qū)地質簡圖(b)Fig.1 Schematic tectonic map(a)and simplified geological map(b)of the study area
研究區(qū)位于祁連地塊西南緣,阿爾金—柴北緣—祁連構造帶南部的交匯處。出露地層主要為古元古代達肯大坂群、泥盆系和石炭系,其中古元古代達肯大坂群分布廣泛,出露面積約占研究區(qū)面積的3/4,泥盆系和石炭系主要分布于研究區(qū)的中部。研究區(qū)花崗巖類發(fā)育,其形成時代主要為晚泥盆世和中-晚二疊世(圖1b)。本文所研究的二長花崗巖呈長條狀分布在研究區(qū)南部,侵入于泥盆碳紀阿木尼克組。區(qū)內斷裂以南北向及北西向為主,控制著巖體及地層的展布。
二長花崗巖具細?;◢徑Y構,塊狀構造。巖石由石英(23%)、黑云母(12%)、白云母(1%)、斜長石(45%)、條紋長石(12%)、微斜長石(7%)組成,副礦物有少量磷灰石、榍石、鋯石、磁鐵礦等。黑云母呈片狀,具暗褐-淡黃褐色多色性,粒度0.2~1.0 mm;白云母的粒度為0.3~0.4 mm,零星可見。斜長石為板狀或長柱狀,粒度0.3~1.8 mm,核部普遍為大量細小的絹云母、隱晶質簾石集合體以及少量碳酸鹽、粘土等所交代,邊緣見到微量粘土化,顯示成分的環(huán)帶特征,而邊緣干涉色升高形成的更-鈉長石邊清楚,聚片雙晶零星可見,整體上以中-更長石為主。條紋長石、近寬板狀,粒度0.6~2.4 mm,不均勻出現(xiàn),具滴狀、棒狀條紋結構,微高嶺土化,大者包裹斜長石并對其交代,具鈉長石反應邊。微斜長石,它形填隙狀分布,粒度0.2~0.9 mm,具格子狀雙晶,微高嶺土化,可見石英半嵌入。石英為它形粒狀,粒度0.2~1.8 mm,較均勻分布(圖2)。
樣品采集位置見圖1(b)。巖石主量元素、微量元素、Sr-Nd-Hf同位素分析由西北大學大陸動力學國家重點實驗室完成。主量元素分析采用XRF分析,儀器由日本RIGAKU公司生產的RIX2100,分析精度優(yōu)于1%~5%。微量元素分析利用美國Perkin Elmer公司生產的Elan6100DRC型ICP-MS分析測定,絕大多數(shù)元素的相對誤差和相對標準偏差小于 5%,分析方法流程見 Govindaraju (1994)、Li(1997)、劉曄等(2007),分析結果列于表1。全巖Sr-Nd-Hf同位素由多接收電感耦合等離子體質譜儀(MC-ICP-MS,NuPlama HR,Nu Instruments,Wrexham,UK)分析,分析結果列于表2。
為精選鋯石,首先將新鮮的巖石樣品粉碎至120目以下,用人工淘洗和電磁選方法富集鋯石,再通過雙目鏡手工精選單顆粒鋯石。本次鋯石定年樣品與主、微量元素的樣品相對應。鋯石LA-ICP-MS的U-Pb年齡測定由中國地質大學(北京)巖石圈構造與深部過程及探測技術教育部重點實驗室完成,ICP-MS為7500a型等離子質譜儀,激光器為美國New Wave貿易有限公司生產的UP193SS型,年齡計算時以標準鋯石TEM為外標進行同位素比值校正,標準鋯石91500,Qinghu,Plesovice為監(jiān)控盲樣,元素含量以國際標樣NIST610為外標,29Si為內標計算,NIST612和NIST614做監(jiān)控盲樣,204Pb校正方法同Andersen (2002),分析誤差±1σ,分析結果列于表3。
圖2 化石溝二長花崗巖顯微照片F(xiàn)ig.2 Photomicrographs of the monzonitic granites from the Huashigou
二長花崗巖LA-ICP-MS鋯石U-Pb年齡測定結果列于表3,鋯石的陰極發(fā)光(CL)圖像及分析點位見圖3,從樣品YQ-25中選取的鋯石具有完好的柱狀晶形,少量為近等軸狀,錐面和晶面發(fā)育,大多數(shù)顯示良好的巖漿震蕩環(huán)帶結構特征,另外,鋯石分析點具有變化的U(40×10-6~2928×10-6)、Th (124×10-6~760×10-6)含量和Th/U值(0.25~1.38),上述特征均表明它們是巖漿結晶形成的(Vavra 1990;Paterson et al.,1992,吳元保和鄭永飛,2004,李長民,2009),測定年齡可以代表巖石形成的時代。
表1 化石溝地區(qū)二長花崗巖主量(wt.%)和微量元素(×10-6)地球化學分析結果Table 1 Major(wt.%)and trace element(×10-6)compositions of monzonitic granites from the Huashigou area
表2 化石溝地區(qū)二長花崗巖Sr-Nd-Hf同位素分析數(shù)據(jù)Table 2 Sr-Nd-Hf isotope analysis of monzonitic granites from the Huashigou area
表3 化石溝地區(qū)二長花崗巖LA-ICP-MS鋯石U-Pb測年結果Table 3 LA-ICP-MS U-Pb data of monzonitic granites from the Huashigou area
圖3 化石溝二長花崗巖鋯石陰極發(fā)光圖像Fig.3 Cathodo luminescence(CL)images of zircons from the Huashigou monzonitic granites
二長花崗巖共測定了16顆鋯石,年齡變化范圍窄,206Pb/238U年齡較為集中,加權平均年齡為252.0±2.1Ma(MSWD=1.7,n=16)(圖4),表明其形成于晚二疊世,代表巖石的結晶年齡。
4.1 主量元素
巖石具高的SiO2(SiO2=69.8%~72.2%)和Al2O3(14.2%~15.4%)含量,低的TiO2(0.28%~0.36%)、CaO(1.88%~2.34%)和MgO(0.60%~0.77%)含量,Mg#也較低,為28~30,全堿含量高,Na2O+K2O=6.57%~8.00%,并相對富鈉(Na2O/K2O=1.4~2.22)。在SiO2-(Na2O+K2O)圖解上巖石投影點均落在花崗巖的區(qū)域內(圖5),SiO2-K2O圖解顯示二長花崗巖為鈣堿性系列(圖6);樣品的鋁飽和指數(shù)A/CNK介于1.08~1.4,平均為1.1,具弱過鋁質花崗巖的特點(圖7)。
圖4 化石溝二長花崗巖(YQ-25)鋯石206Pb/238U-207Pb/235U諧和曲線Fig.4 Concordia diagram of Zircon206Pb/238U-207Pb/235U for the Huashigou monzonitic granite(YQ-25)
圖5 SiO2-(Na2O+K2O)分類圖(據(jù)Middlemost,1985)Fig.5 Classification plots of SiO2-(Na2O+K2O)of granites rocks
4.2 微量元素
稀土元素球粒隕石配分圖(圖8a)顯示巖石富集輕稀土元素(LREE),(La/Sm)N=4.0~4.7,(La/ Yb)N=11~22,指示輕稀土元素之間發(fā)生一定程度的分餾作用;重稀土元素(HREE)則呈平坦型,(Gd/Yb)N=1.8~2.8,中等負Eu異常(δEu平均為0.62),ΣREE=174×10-6~257×10-6。
圖6 SiO2-K2O圖解(據(jù)Peccerillo和Taylor,1976)Fig.6 Diagram of SiO2-K2O
圖7 A/NK-A/CNK圖解(據(jù)Maniar和Piccoli.,1989)Fig.7 Diagram of A/NK-A/CNK
巖石Y/Nb比(2.84~3.13)接近于下地殼的比值,Rb/Sr比(0.34~0.56)略低于安第斯花崗閃長巖的平均值(Green and Pearson,1987;Green,1995;Barth et al.,2000);低的Sr含量(208.5×10-6~248.3× 10-6)、高的Y(19.4×10-6~24.0×10-6)、Yb(1.98×10-6~2.12×10-6),低Sr/Y(8.5~12.3),類似于浙江—福建的中生代花崗巖(張旗等,2008),指示巖石源于地殼厚度較薄的下地殼物質的部分熔融。在微量元素原始地幔標準化蛛網(wǎng)圖(圖8b)中,巖石富集Th、K、Pb,相對虧損Nb、Ta、P、Ti,反映了該花崗巖具有典型的大陸地殼的特點(Davies et al.,1987)。
圖8 化石溝地區(qū)二長花崗巖稀土元素球粒隕石標準化配分圖(a)和微量元素原始地幔標準化蛛網(wǎng)圖(b)(球粒隕石標準化值和原始地幔標準化值據(jù)取自Sun和Mcdonough,1989)Fig.8 Chondrite-normalized REE patterns(a)and Primary mantle-normalized trace element spider diagram(b)for the monzonitic granites from Huashigou area(chondrite normalized and primitive mantle values from Sun and Mcdonough,1989)
4.3 Sr-Nd-Hf同位素
晚二疊世二長花崗巖全巖樣品的Sr-Nd-Hf同位素分析結果列于表2,巖石Sr初始比值(87Sr/86Sr)I為0.7060~0.7061,略大于巖石形成時的地球Sr初始比值(87Sr/86Sr)t=0.7042和現(xiàn)代地球平均值0.7045;(143Nd/144Nd)I為0.512397~0.512408,εNd(t)==+ 1.63~+1.84;(176Hf/177Hf)I=0.28286,εHf(t)==+8.79。二長花崗巖Nd、Hf模式年齡(TDM2)分別為780~794 Ma和694 Ma,代表源巖玄武質巖漿離開地幔的時間。
5.1 巖石成因
圖9 化石溝二長花崗巖10000Ga/Al-K2O/MgO、FeOt/MgO、(K2O+Na2O)、(K2O+Na2O)/CaO、Ce、Y、Zr、Nb圖解(據(jù)Whalen等,1987)Fig.9 Diagramof10000Ga/Al-K2O/MgO、FeOt/MgO、(K2O+Na2O)、(K2O+Na2O)/CaO、Ce、Y、Zr、NbfortheHuashigoumonzoniticgranites
巖石高Si和Al,低Ti、Mg與Ca,富堿,為弱過鋁質鈣堿性系列,巖漿分異程度較高。在10000Ga/Al-K2O/MgO、FeOt/MgO、(K2O+Na2O)、(K2O+Na2O)/CaO、Ce、Y、Zr、Nb圖解(圖9)中顯示巖石具有較高分異程度的I-S型花崗巖的特征;低Sr、高Y、Yb及低的Sr/Y比值,以及富集Th、K、Pb和LREE,相對虧損Nb、Ta、P、Ti,HREE配分型式為平坦型,δEu平均值為0.62,以及具有高的REE總量,類似典型地殼物質部分熔融形成的花崗巖類的地球化學特征;低Sr含量,中等的負Eu異常,高Rb/Sr(0.34~0.56)和Ba/Rb (3.90~5.39)值表明巖漿源區(qū)有斜長石的殘留或巖漿作用過程中發(fā)生過斜長石分離結晶作用。高的Y、Yb含量和HREE平坦型的配分型式表明源區(qū)沒有石榴子石的殘留,部分熔融深度淺、壓力低。
Sr-Nd-Hf同位素特征表明巖石來源于底侵的玄武質下地殼的部分熔融。(87Sr/86Sr)I略大于0.7045、(143Nd/144Nd)I>0.512638以及略大于0的εNd(t)值和正的εHf(t)值表明花崗巖源巖可能來自于地幔部分熔融底侵作用形成的新生地殼,或下地殼基性物質在晚古生代晚期受到底侵玄武質巖漿加熱作用下發(fā)生部分熔融過程中可能存在兩者混合作用。二長花崗巖Nd、Hf模式年齡TDM2分別為780~794 Ma和694 Ma,表明其源巖巖漿離開地幔的時間為新元古代,比本區(qū)出露的古元古代地層年輕,同時,在εNd(t)-(87Sr-86Sr)I圖中(圖10a)顯示虧損地?;蚰贻p的下地殼在巖石形成過程中起主導作用;在εHf(t)-εNd(t)圖中(圖10b)顯示樣品投影點落入地幔趨勢中,具有類似地幔的同位素組成。因此,通過二長花崗巖Nd、Hf模式年齡和該區(qū)地層時代的對比,并結合巖石的同位素特征可以確定二長花崗巖源巖應為玄武質下地殼(新生地殼),在晚古生代晚期其受到底侵的玄武質巖漿加熱作用發(fā)生部分熔融形成花崗巖漿。
5.2 大地構造意義
圖10 εNd(t)-(87Sr-86Sr)I(a)(據(jù)Jahn等,2000)和εHf(t)-εNd(t)(b)(據(jù)Vervoort等,1999,2011)Fig.10 Diagram of εNd(t)-(87Sr-86Sr)I(a)and εHf(t)-εNd(t)(b)
研究區(qū)二長花崗巖巖石地球化學及同位素地球化學特征研究表明其源于玄武質下地殼,在后期底侵的玄武巖漿加熱作用下發(fā)生部分熔融形成花崗巖漿,低Sr高Y指示其部分熔融深度相對較淺,即暗示當時地殼厚度相對較薄。在Rb-(Y+Nb)構造環(huán)境判別圖解中(圖11)顯示形成于后碰撞的伸展環(huán)境;在R1-R2圖解上(圖12),樣品點顯示其形成環(huán)境為同碰撞-造山晚期,暗示化石溝晚二疊世二長花崗巖應為造山晚期的伸展構造體制下地殼物質發(fā)生部分熔融的結果。
南祁連地體夾持在黨河斷裂帶與柴北緣斷裂帶之間,西被阿爾金南緣斷裂所截。在柴北緣斷裂帶南北兩側出露有新太古代-古元古代變質巖系,以達肯大坂群為代表。本文所獲得的花崗巖Nd、Hf模式年齡(TDM2分別為780~794Ma和694 Ma)推測,在新元古代中期,由于地幔物質上涌降壓發(fā)生部分熔融形成的玄武質巖漿底侵于古元古代地殼之下,即形成了新生的下地殼。這與金川超鎂鐵質巖(李獻華等,2004;Li et al.,2004;田毓龍等,2007)、北祁連西段大陸溢流玄武巖(夏林圻等,1999,2000)及塔里木西北緣大陸溢流玄武巖和雙峰式火山(王飛等,2010;王洪浩等,2013)在形成時間上應為同一構造事件的產物,即與Rodinia超大陸裂解作用有關的巖漿活動。柴北緣早古生代含柯石英超高壓變質帶(楊經綏等,1998,2000,2001,2002a,2002b;Zhang et al.,2001)及與其相伴的島弧花崗巖-火山巖組合(張建新等,1998;史仁燈等,2004;吳才來等,2004;索書田等,2004;Yang et al.,2002)的發(fā)現(xiàn)對認識中國西部大陸構造格架及板塊體制的演化過程具有十分重要的意義。此外,還識別出柴北緣大柴旦地區(qū)與柴達木陸塊深俯沖有關的花崗巖(鋯石SHRIMP U-Pb年齡446.3±3.9Ma)和與板片折返有關的花崗巖(鋯石SHRIMP U-Pb年齡為408.5±2.8 Ma和403.3±3.8 Ma)(吳才來等,2007)。柴北緣超高壓變質巖榴輝巖峰期變質年齡為494.6±6.5 Ma,榴輝巖中的多硅白云母退變冷卻年齡為466.7±1.2 Ma(39Ar-40Ar坪年齡)和465.9±5.4 Ma(等時線年齡)(張建新等,2000),而在都蘭發(fā)育有代表超高壓變質的深俯沖大陸地殼折返到地殼淺部的含柯石英糜棱巖化花崗質片麻巖中含柯石英包裹體之白云母Ar-Ar坪年齡為401.5 Ma(楊經綏等,2001)。一般認為含柯石英/金剛石的超高壓變質巖系是大陸地殼深俯沖的產物,因此,柴北緣超高壓變質巖帶是形成于陸-陸碰撞之后大陸持續(xù)深俯沖的構造環(huán)境,并非洋-陸的環(huán)境。由此可知,南祁連古大洋洋-陸俯沖作用應在495 Ma之前結束,而在495~466 Ma之間可能存在陸-陸深俯沖的過程,到約401Ma前,俯沖的超高壓變質板塊發(fā)生斷離、折返,地殼快速隆升并伴有相應的殼內巖漿活動。
圖11 化石溝二長花崗巖Rb-(Y+Nb)構造環(huán)境判別圖解(據(jù)Pearce等,1984)Fig.11 Diagram of Rb-(Y+Nb)for the Huashigou monzonitic granites
柴北緣地區(qū)在晚古生代巖漿活動較為活躍,主要為板塊俯沖結束后,各地塊之間的位置調整等活動引發(fā)的巖漿作用。大柴旦地區(qū)的巴嘎柴達木湖東南的花崗巖小巖體和大頭羊溝花崗巖體的年齡分別為374.5±1.6 Ma、372.0±2.7 Ma(吳才來等,2007);嗷嘮河石英閃長巖體年齡為372.1±2.6 Ma,屬晚古生代泥盆紀;三岔溝巖體的兩期花崗巖年齡分別為271.2±1.5 Ma、259.9±1.2 Ma,屬晚古生代二疊紀(吳才來等,2008),以上花崗巖體形成與碰撞隆起后造山帶上不同塊體之間的拉伸、滑塌、伸展作用有關。本文所研究的化石溝二長花崗巖體主要分布在祁連地塊西南緣,阿爾金—柴北緣—祁連構造帶南部的交匯處,巖體LA-ICP-MS鋯石U-Pb年齡為252.0±2.1 Ma,形成于晚二疊世,其形成于類似碰撞后伸展的構造背景,與柴北緣地區(qū)的晚古生代花崗巖具有相似的構造環(huán)境,這說明在晚二疊世柴北緣—南祁連構造活動仍在進行,這在時間和空間上對柴北緣陸陸碰撞的演化過程具有補充和完善作用。
圖12 化石溝二長花崗巖R1-R2圖解(據(jù)Batchelor和Bowden,1985)Fig.12 DiagramofR1-R2fortheHuashigoumonzoniticgranites
綜上所述,在新元古代時期Rodinia超大陸裂解的背景下形成的南祁連古大洋向北發(fā)生洋-陸俯沖、陸-陸俯沖及俯沖的超高壓變質板塊發(fā)生斷離、折返,地殼快速隆升,最終造山等構造過程?;瘻隙L花崗巖是在后造山期間不同塊體之間的伸展滑塌構造環(huán)境下,新元古代中期底侵的玄武質下地殼在晚古生代晚期地幔上隆、減壓熔融形成的玄武質巖漿加熱作用下發(fā)生部分熔融形成的。因此,化石溝二長花崗巖成因及其形成的構造動力學背景的研究對厘清柴北緣—南祁連晚古生代構造演化過程具有重要的科學意義。
化石溝二長花崗巖LA-ICP-MS鋯石U-Pb年齡為252.0±2.1 Ma,全巖Nd、Hf模式年齡TDM2分別為780~794 Ma和694 Ma,結合巖石地球化學及同位素地球化學研究表明,二長花崗巖源于新元古代中期底侵的玄武質下地殼,在晚古生代晚期地幔上隆、減壓熔融形成的玄武質巖漿底侵加熱作用下發(fā)生部分熔融形成的,形成于后造山的伸展構造背景。因此,化石溝二長花崗巖成因及其形成的構造動力學背景的研究對厘清柴北緣—南祁連晚古生代構造演化過程具有重要的科學意義。
致謝:甘肅省地質礦產開發(fā)局第四地質礦產勘查院王方成、陳燁高級工程師在野外工作期間給予了極大支持和幫助;兩位審稿人對本文進行了細致地評審并提出了富有建設性的意見,在此一并表示衷心的感謝。
參考文獻(References):
崔軍文,唐哲民,鄧晉福,等.1999.阿爾金斷裂系[M].北京:地質出版社.
董順利,李忠,高劍,等.2013.阿爾金—祁連—昆侖造山帶早古生代構造格架及結晶巖年代學研究進展[J].地質論評,59(4):731-746.
馮益民,何世平.1996.祁連山大地構造與造山作用[M].北京:地質出版社.
馮益民,吳漢泉.1992.北祁連山及其鄰區(qū)古生代以來的大地構造演化初探[J].西北地質科學,13(2):61-73.
葛肖虹,劉俊來.1999.北祁連造山帶的形成與背景[J].地學前緣,6(4): 223-229.
姜春發(fā),王宗起,李錦鐵,等.2000.中央造山帶開合構造[M].北京:地質出版社.
李獻華,蘇犁,宋彪,等.2004.金川超鎂鐵侵入巖SHRIMP鋯石U-Pb年齡及地質意義[J].科學通報,49(4):401-402.
李長民.2009.鋯石成因礦物學與鋯石微區(qū)定年綜述[J].地質調查與研究,32(3):161-174.
劉曄,柳小明,胡兆初,等.2007.ICP-MS測定地質樣品中37個元素的準確性和長期穩(wěn)定性分析[J].巖石學報,23:1203-1210.
陸松年,于海峰,李懷坤,等.2006.“中央造山帶”早古生代縫合帶及構造分區(qū)概述[J].地質通報,12:1368-1380.
毛景文,簡平.2000.北祁連西段花崗質巖體的鋯石U-Pb年齡報道[J].地質論評,46(6):616-620.
秦海鵬.2012.北祁連造山帶早古生代花崗巖巖石學特征及其與構造演化的關系[D].北京:中國地質科學院.
任紀舜,黃汲清.1980.中囯大地構造及其演化:1:400萬中囯大地構造圖簡要說明[M].科學出版社.
史仁燈,楊經綏,吳才來,等.2004.柴達木北緣超高壓變質帶中的島弧火山巖[J].地質學報,78(1):52-64.
索書田,鐘增球,周漢文,等.2004.中國中央造山帶內兩個超高壓變質帶關系[J].地質學報,78(2):156-165.
田毓龍,武栓軍,孟蓉,等.2007.金川超鎂鐵質巖體LA-ICPMS鋯石U-Pb年齡[J].礦物學報,27(2):211-217.
王飛,王博,舒良樹.2010.塔里木西北緣阿克蘇地區(qū)大陸拉斑玄武巖對新元古代裂解事件的制約[J].巖石學報,26(2):547-558.
王洪浩,李江海,楊靜懿,等.2013.塔里木陸塊新元古代—早古生代古板塊再造及漂移軌跡[J].地球科學進展,28(6):637-647.
王曉地,汪雄武,楊偉,等.2004.北祁連西段加里東期花崗巖類與鎢成礦作用的關系淺議[J].華南地質與礦產,(1):17-23.
吳才來,郜源紅,吳鎖平,等.2008.柴北緣西段花崗巖鋯石SHRIMP U-Pb定年及其巖石地球化學特征[J].中國科學(D輯)38(8): 930-949.
吳才來,郜源紅,吳鎖平,等.2007.柴達木盆地北緣大柴旦地區(qū)古生代花崗巖鋯石SHRIMP定年[J].巖石學報,23(8):1861-1875.
吳才來,徐學義,高前明,等.2010.北祁連早古生代花崗質巖漿作用及構造演化[J].巖石學報,26(4):1027-1044.
吳才來,楊經綏,楊宏儀,等.2004.北祁連東部兩類Ⅰ型花崗巖定年及其地質意義[J].巖石學報,20(3):425-432.
吳元保,鄭永飛.2004.鋯石成因礦物學研究及其對U-Pb年齡解釋的制約[J].科學通報,49(16):1589-1604.
夏林圻,夏祖春,趙江天,等.2000.北祁連山西段元古宙大陸溢流玄武巖性質的確定[J].中國科學:(D輯),30(1):1-8.
夏林圻,夏祖春,徐學義,等.1999.祁連山元古宙大陸溢流玄武巖[J].地質論評,45(7):1028-1037.
許志琴,楊經綏,李海兵,等.2006.中央造山帶早古生代地體構架與高壓/超高壓變質帶的形成[J].地質學報,80(12):1793-1806.
楊經綏,宋述光,許志琴,等.2001.柴北緣早古生代高壓-超高壓變質帶中發(fā)現(xiàn)典型的超高壓礦物-柯石英[J].地質學報,75(2):175-179.
楊經綏,吳才來,史仁燈.2002a.阿爾金山米蘭紅柳溝的席狀巖墻群:海底擴張的重要證據(jù)[J].地質通報,21(2):69-74.
楊經綏,許志琴,裴先治,等.2002b.秦嶺發(fā)現(xiàn)金剛石:橫貫中國中部巨型超高壓變質帶新證據(jù)及古生代和中生代兩期深俯沖作用的識別[J].地質學報,76(2):484-495.
楊經綏,許志琴,馬昌前.等.2010.復合造山作用和中國中央造山帶的科學問題[J].中國地質,37(1):1-11.
楊經綏,許志琴,宋述光,等.2000.青海都蘭榴輝巖的發(fā)現(xiàn)及對中國中央造山帶內高壓超-高壓變質帶研究的意義[J].地質學報,74(2): 175-179.
楊經綏,許志琴,李海兵,等.1998.我國西部柴北緣地區(qū)發(fā)現(xiàn)榴輝巖[J].科學通報,43(14):1544-1549.
殷鴻福,張克信.1998.中央造山帶的演化及其特點[J].地球科學:中國地質大學學報,23(5):437-442.
余吉遠,李向民,馬中平,等.2012.南祁連乙什春基性-超基性巖體LA-ICP-MS鋯石U-Pb年齡及其地質意義[J].高校地質學報,18 (1):158-163.
張建新,許志琴,徐惠芬,等.1998.北祁連加里東期俯沖-增生楔結構及動力學[J].地質科學,33(5):290-299.
張建新,楊經綏,許志琴,等.2000.柴北緣榴輝巖的峰期和退變質年齡:來自U-Pb及Ar-Ar同位素測定的證據(jù)[J].地球化學,3(1): 217-222.
張旗,王焰,熊小林,等.2008.埃達克巖和花崗巖:挑戰(zhàn)與機遇[M].北京:中國大地出版社.
Andersen T.2002.Correction of common lead in U-Pb analyses that do not report 204 Pb[J].Chemical geology,192(1):59-79.
Barth M G,McDonough W F and Rudnick R L.2000.Tracking the budget of Nb and Ta in the continental crust[J].Chemical Geology,165(3):197-213.
Batchelor R A and Bowden P.1985.Petrogenetic interpretation of granitoid rock series using multicationic parameters[J].Chemical geology,48(1): 43-55.
Chen Y X,Song S G,Niu Y,et al.2014.Melting of continental crust during subduction initiation:A case study from the Chaidanuo peraluminous granite in the North Qilian suture zone [J].Geochimica et Cosmochimica Acta,132:311-336.
Chen Y X,Xia X H and Song S G.2012.Petrogenesis of Aoyougou high-silica adakite in the North Qilian orogen,NW China:evidence for decompression melting of oceanic slab[J].Chinese Science Bulletin,57 (18):2289-2301.
Davies G R and Macdonald R.1987.Crustal Influences in the Petrogenesis of the Naivasha Basalt-Comendite Complex:Combined Trace Element and Sr-Nd-Pb Isotope Constraints[J].JournalofPetrology,28(6): 1009-1031.
Govindaraju G.1994.Compilation of working values and sample description for 383 geostandards[J].Geostandards Newslett.,18:1-158.
Green T H and Pearson N J.1987.An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure ad temperature[J].Geochim Cosmocim Acta,51(1):55-62.
Green T H.1995.Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system [J].Chemical Geology,120(3): 347-359.
Huang H,Niu Y and Mo X.2016.Syn-collisional granitoids in the Qilian Block on the Northern Tibetan Plateau:A long-lasting magmatism since continental collision through slab steepening[J].Lithos,246-247: 99-109.
Irving A J and Green D H.1976.Geochemistry and petrogenesis of the Newer Basalts of Victoria and South Australia[J].Journal of the Geological Society of Australia,23(1):45-66.
Jahn B,Wu F and Hong D.2000.Important crustal growth in the Phanerozoic:Isotopic evidence of granitoids from east-central Asia[J].Journal of Earth System Science,109(1):5-20.
Ker C M,Yang H J,Zhang J,et al.2015.Compositional and Sr-Nd-Hf isotopic variations of Baijingsi eclogites from the North Qilian orogen,China:Causes,protolith origins,and tectonic implications[J].Gondwana Research,28(2):721-734.
Li X,Su L,Song B,et al.2004.SHRIMP U-Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance[J].Chinese Science Bulletin,49(4):420-422.
Li X H.1997.Geochemistry of the Longsheng ophiolite from the southern margin of Yangtze craton,SE China[J].Geochemical Journal,31: 323-327.
Maniar P D and Piccoli P M.1989.Tectonic discrimination of granitoids[J].Geological society of America bulletin,101(5):635-643.
Paterson B A,Stephens W E,Rogers G,et al.1992.The nature of zircon inheritance in two granite plutons[J].Transactions of the Royal Society of Edinburgh:Earth Sciences,83(1-2):459-471.
Pearce J A,Harris N B W and Tindle A G.1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks [J].Journal of petrology,25(4):956-983.
Peccerillo A and Taylor S R.1976.Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area,northern Turkey [J].Contributions to mineralogy and petrology,58(1):63-81.
Qiu H N and Wijbrans J R.2008.The Paleozoic metamorphic history of the Central Orogenic Belt of China from 40 Ar/39 Ar geochronology of eclogite garnet fluid inclusions[J].Earth and Planetary Science Letters,268(3):501-514.
Sobel E R,Arnaud N,Jolivet M,et al.2001.Jurassic to Cenozoic exhumation history oftheAltyn Tagh range,northwest China,constrained by40Ar/39Ar and apatite fission track thermochronology[J].Paleozoic and Mesozoic tectonic evolution of central and eastern Asia,194:247.
Song S,Niu Y L,Su L,et al.2013.Tectonics of the North Qilian orogen,NW China[J].Gondwana Research,23(4):1378-1401.
Song S and Niu Y.2004.Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt,Northern Tibetan Plateau,NW China [J].American Mineralogist,89(8-9):1330-1336.
Song S,Su L,Li X,et al.2012.Grenville-age orogenesis in the Qaidam-Qilian block:The link between South China and Tarim [J].Precambrian Research,220:9-22.
Song S,Zhang L,Niu Y,et al.2005.Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt,Northern Tibetan Plateau:a record of complex histories from oceanic lithosphere subduction to continental collision[J].Earth and Planetary Science Letters,234(1):99-118.
Song S,Zhang L,Niu Y,et al.2006.Evolution from oceanic subduction to continental collision:a case study from the Northern Tibetan Plateau based on geochemical and geochronological data[J].Journal of Petrology,47(3):435-455.
Sun S S and McDonough W F.1989.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society,London,Special Publications,42(1):313-345.
Sun Yangui,Chen Zhengxing,Liu Yong’an,et al.2000.Junction and evolution of the Qinling,Qilian and Kunlun orogenic belts[J].Acta Geologica Sinica(English edition),74(2):223-228.
Tseng C Y,Yang H J,Yang H Y,et al.2009.Continuity of the North Qilian and North Qinling orogenic belts,Central Orogenic System of China: evidence from newly discovered Paleozoic adakitic rocks[J].Gondwana Research,16(2):285-293.
Vavra G.1990.On the kinematics of zircon growth and its petrogenetic significance:a cathodoluminescence study [J].Contributions to Mineralogy and Petrology,106(1):90-99.
Vervoort J D,Patchett P J,Blichert-Toft J,et al.1999.Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system [J].Earth and Planetary Science Letters,168(1):79-99.
Vervoort J D,Plank T and Prytulak J.2011.The Hf-Nd isotopic composition of marine sediments[J].Geochimica et Cosmochimica Acta,75(20): 5903-5926.
Wang C,Liu L,Yang W Q,et al.2013.Provenance and ages of the Altyn Complex in Altyn Tagh:Implications for the early Neoproterozoic evolution of northwestern China[J].Precambrian Research,230: 193-208.
Whalen J B,Currie K L and Chappell B W.1987.A-type granites: geochemicalcharacteristics,discrimination and petrogenesis[J].Contributions to mineralogy and petrology,95(4):407-419.
Xiao W,Windley B F,Yong Y,et al.2009.Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan,NW China[J].Journalof Asian Earth Sciences,35(3):323-333.
Xu X,Song S,Su L,et al.2015.The 600-580Ma continental rift basalts in North Qilian Shan,northwest China:Links between the Qilian-Qaidam block and SE Australia,and the reconstruction of East Gondwana[J].Precambrian Research,257:47-64.
Yang J S,Wu C,Zhang J,et al.2006.Protolith of eclogites in the north Qaidam and Altun UHP terrane,NW China:Earlier oceanic crust?[J].Journal of Asian Earth Sciences,28(2):185-204.
Yang J S,Xu Z,Zhang J,et al.2001.Tectonic significance of early Paleozoic high-pressure rocks in Altun-Qaidam-Qilian Mountains,northwest China[J].Memoirs-Geological Society of America,151-170.
Yang J S,Xu Z Q,Zhang J X,et al.2002.Early Paleozoic North Qaidam UHP metamorphic belt on the north-eastern Tibetan plateau and a paired subduction model[J].Terra Nova,14(5):397-404.
Yu S Y,Zhang J X,del Real P G,et al.2013.The Grenvillian orogeny in the Altun-Qilian-North Qaidam mountain belts of northern Tibet Plateau: Constraints from geochemical and zircon U-Pb age and Hf isotopic study of magmatic rocks[J].Journal of Asian Earth Sciences,73: 372-395.
Yu S,Zhang J,Qin H,et al.2015.Petrogenesis of the early Paleozoic low-Mg and high-Mg adakitic rocks in the North Qilian orogenic belt,NW China:Implications for transition from crustal thickening to extension thinning[J].Journal of Asian Earth Sciences,107:122-139.
Zhang G,Zhang L and Christy A G.2013.From oceanic subduction to continental collision:An overview of HP-UHP metamorphic rocks in the North Qaidam UHP belt,NW China[J].Journal of Asian Earth Sciences,63:98-111.
Zhang H F,Sun M,Lu F X,et al.2001.Geochemical significance of a garnet lherzolite from the Dahongshan kimberlite,Yangtze Craton,southern China[J].Geochemical Journal,35(5):315-331.
Zhang J X,Mattinson C G,Meng F C,et al.2005.An Early Palaeozoic HP/ HT granulite-garnet peridotite association in the south Altyn Tagh,NW China:P-T history and U-Pb geochronology[J].Journal of metamorphic Geology,23(7):491-510.
Zhang J X,Meng F C,Li J P,et al.2009.Coesite in eclogite from the North Qaidam Mountains and its implications[J].Chinese Science Bulletin,54 (6):1105-1110.
Zheng Y F,Xiao W J and Zhao G.2013.Introduction to tectonics of China [J].Gondwana Research,23(4):1189-1206.
中圖分類號:P588.121;P595;P597
文獻標識碼:A
文章編號:1006-7493(2016)02-0242-12
DOI:10.16108/j.issn1006-7493.2015153
Corresponding author:WANG Jinrong,Professor;E-mail:jrwang@lzu.edu.cn
收稿日期:2015-07-18;修回日期:2016-04-28
基金項目:甘肅省2009年礦產資源補償費項目甘肅省阿克塞縣化石溝銅礦成礦條件及成礦遠景預測(甘國土資勘發(fā)〔2009〕15號);中央高?;究蒲袠I(yè)務費專項資金(lzujbky-2013-113)聯(lián)合資助
作者簡介:胡萬龍,男,1989年生,碩士研究生,研究方向為巖石地球化學;E-mail:huwl13@lzu.edu.cn
*通訊作者:王金榮,男,1958年生,教授,研究方向為巖石大地構造學;E-mail:jrwang@lzu.edu.cn
Geochronology and Geochemistry Characteristics of the Granites from the Huashigou Area,South Qilian and Their Tectonic Significance
HU Wanlong1,JIA Zhilei1,2,WANG Jinrong1*,HOU Kexuan1,WANG Shuhua1
1.Key Laboratory of Mineral Resources in Western China,School of Earth Sciences,Lanzhou University,Lanzhou 730000,China;
2.Gansu Provincial Bureau of Geology and Mineral Exploration&Development,Lanzhou 730000,China
Abstract:The monzonitic granites intruded into Devonian-Carboniferous Amunike formation in a long strip fashion in the Huashigou area.According to the zircon U-Pb weighted mean age of 252.0±2.1Ma determined using LA-ICP-MS,it was suggested that the rock was formed in late Permian.Monzonitic granites contain rich SiO2(69.8%~72.2%)and Al2O3(14.2%~15.4%),and low TiO2,MgO (0.28%~0.36%,0.60%~0.77%,respectively),with A/CNK=1.08~1.14,rich alkali(Na2O+K2O=6.57%~8.00%),relatively enriched Th,K,Pb,depleted Nb,Ta,P and Ti,low content of Sr(201×10-6~248×10-6),high content of Y(19.4×10-6~24.0×10-6),enriched LREE,(La/ Yb)N=10.8~18.4,moderate anomaly negative Eu(δEu=0.55~0.68);whole-rock(87Sr/86Sr)I=0.7060~0.7061,εNd(t)=1.63~1.84,and εHf(t)= 8.79.The Nd and Hf model ages of whole-rock of monzonitic granites are 780~794 Ma and 694 Ma,respectively.Overall,our study shows that the Huashigou monzonitic granites is the product of partial melting of Mid-Neoproterozoic basaltic lower crust by the underplating heating of late Paleozoic basaltic magma under the tectonic setting of orogenic compression transforming into post orogenic extension.
Key words:monzonitic granites;geochemistry;late Permian;tectonic setting;Huashigou;south Qilian Mountain