• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Learning multi-kernel multi-view canonical correlations for image recognition

    2016-07-19 05:44:36YunHaoYuanYunLiJianjunLiuChaoFengLiXiaoBoShenGuoqingZhangandQuanSenSuncTheAuthor06ThisarticleispublishedwithopenaccessatSpringerlinkcom
    Computational Visual Media 2016年2期

    Yun-Hao Yuan(),Yun Li(),Jianjun Liu,Chao-Feng Li,Xiao-Bo Shen,Guoqing Zhang,and Quan-Sen Sun?cThe Author(s)06.This article is published with open access at Springerlink.com

    ?

    Research Article

    Learning multi-kernel multi-view canonical correlations for image recognition

    Yun-Hao Yuan1,2(),Yun Li1(),Jianjun Liu2,Chao-Feng Li2,Xiao-Bo Shen3,4,Guoqing Zhang3,and Quan-Sen Sun3
    ?cThe Author(s)2016.This article is published with open access at Springerlink.com

    AbstractIn this paper,we propose a multi-kernel multi-view canonical correlations(M2CCs)framework for subspace learning.In the proposed framework,the input data of each original view are mapped into multiple higher dimensional feature spaces by multiple nonlinear mappings determined by different kernels.This makes M2CC can discover multiple kinds of useful information of each original view in the feature spaces.With the framework,we further provide a specific multi-view feature learning method based on direct summation kernel strategy and its regularized version.The experimental results in visual recognition tasks demonstrate the effectiveness and robustness of the proposed method.

    Keywordsimage recognition;canonical correlation;multiple kernel learning;multi-view data;feature learning

    1 Introduction

    Multi-view canonical correlation analysis(MCCA)

    1Department of Computer Science,College of Information Engineering,Yangzhou University,Yangzhou 225127,China.E-mail:Y.-H.Yuan,yyhzbh@163.com();Y. Li,liyun@yzu.edu.cn().

    2Department of Computer Science,Jiangnan University,Wuxi 214122,China.E-mail:J.Liu,liuofficial@163.com;C.-F.Li,wxlichaofeng@126.com.

    3School of Computer Science,Nanjing University of Science and Technology,Nanjing 210094,China.E-mail:X.-B.Shen,njust.shenxiaobo@gmail.com;G. Zhang,xiayang14551@163.com;Q.-S.Sun,sunquansen@ njust.edu.cn.

    4SchoolofInformationTechnologyandElectrical Engineering,the University of Queensland,Brisbane QLD 4072,Australia.

    Manuscript received:2015-12-01;accepted:2016-02-08[1,2]is a powerful technique for finding the linear correlations among multiple(more than two)high dimensional random vectors.Currently,it has been applied to various real-world applications such as blind source separation[3],functional magnetic resonance imaging(fMRI)analysis[4,5],remote sensing image analysis[6],and target recognition[7].

    In recent years,the generalizations of MCCA haveattractedincreasingattentionandsome impressiveresultshavebeenobtained.Among all the extensions,an attractive direction is the nonlinear one.Bach and Jordan[8]proposed a kernel MCCA(KMCCA)method which minimizes the minimal eigenvalue of the correlation matrix of the projected univariate random variables.Later,Yu et al.[9]presented a weighted KMCCA1Although the authors refer to their method as weighted multiple kernel CCA,it is necessary to point out that the real meaning of“multiple kernel”is to use m kernel functions for all the m views,i.e.,only one kernel for each view,rather than conventional multiple kernel learning in the popular literature[10,11].to extract lowdimensionalprojectionsfromheterogenous datasets for data visualization and classification tasks.Recently,Rupnik and Shawe-Taylor[12]developed another KMCCA method directly based on the sum of correlations criterion[2],which can be regarded as a natural extension of kernel CCA (KCCA)[8,13]and has been demonstrated to be effective in cross-lingual information retrieval.

    However,in practice KMCCA must face two mainissues.Thefirstishowtoselectthe types and parameters of the kernels for good performance.Currently,although the choice for kernel types and parameters can usually be achieved bysomecrossvalidationmethods[14],these methods have expensive computational costs when handlingalargenumberofkerneltypesandparameters.Second,KMCCA essentially is a singlekernel-based learning method,i.e.,only one kernel function for each view.As pointed out in Ref.[15],a single kernel can only characterize some but not all geometrical structures of the original data.Thus,it is obvious that KMCCA does not sufficiently exploit the geometrical information hidden in each view.This may lead to the challenge that KMCCA is not always applicable to the data with complex multi-view structures.

    Over the past few years,researchers have shown the necessity to consider multiple kernels rather than a single fixed kernel in practical applications;see,for example,Refs.[10,11,16,17].Multiple kernel learning(MKL),proposed by Lanckriet et al.[10]in the case of support vector machines(SVM),refers to the process of learning the optimal combination of multiple pre-specified kernel matrices.Using the idea of MKL,Kim et al.[18]proposed to learn an optimal kernel over a given convex set of kernels for discriminant analysis,while Yan et al.[19]presented a non-sparse multiple kernel Fisher discriminant analysis,which imposes a general lpnorm regularization on the kernel weights.Lin et al.[20]generalized the framework of MKL for a set of manifold-based dimensionality reduction algorithms.These investigations above have shown thatlearningperformancecanbesignificantly enhanced if multiple kernel functions or kernel matrices are considered.

    Thispaperisanextendedversionofour previous work[21].In contrast,in this paper wepresentageneralmulti-kernelmulti-view canonical correlations(M2CCs)framework for joint image representation and recognition,and show theconnectionstootherkernellearning-based canonical correlation methods.In the proposed framework,the input data of each view are mapped into multiple higher dimensional feature spaces by implicitly nonlinear mappings determined by different kernels.This enables M2CC to uncover multiple kinds of characteristics of each original view in the feature spaces.Moreover,the M2CC framework can be employed as a general platform fordevelopingnewmulti-viewfeaturelearning algorithms.Based on the M2CC framework,we presentanexamplealgorithmformulti-view learning,and further suggest its regularized version that can avoid the singularity problem,prevent the overfitting,and provide the flexibility in real world.In addition,more experiments are done to evaluate the effectiveness of the proposed method.

    2Kernel MCCA

    KMCCA [12,22]can not only be considered as a nonlinear variant of MCCA,but also a multiview extension of KCCA.Specifically,given m viewsfrom the same n images,where)represents a data matrix of the ith view containing pi-dimensional sample vectors in its columns,assume there is a nonlinear mapping for each view X(i),i.e.,

    which implicitly projects the original data into a higher dimensional feature space Fi.Let

    denotethetransformeddataoforiginal X(i).KMCCA aims to compute one set of projection vectors{α(i)∈Fi}mi=1by the following optimization problem: Note that we assume that every φi(X(i))in Eq.(1)has been centered,i.e.,)=0,i= 1,2,···,m.The details about the data centering process can be found in Ref.[23].

    Taking advantage of the following two equations:

    and

    we can equivalently transform the optimization problem in Eq.(1)into the following:

    Let α(i)=φi(X(i))β(i)with β(i)∈Rn.By means of kernel trick[8,23],the problem in Eq.(2)can be reformulated as

    where Ki=φi(X(i))Tφi(X(i))is the kernel Gram matrix determined by a certain kernel function.

    Using the Lagrange multiplier technique,we can solve the problem in Eq.(3)by the following multivariate eigenvalue problem(MEP)[24]:

    3 Multi-kernel multi-view canonical correlations framework

    In this section,we use the idea of MKL to build amulti-kernelmulti-viewcanonicalcorrelations (M2CCs)framework,where each set of original data are mapped into multiple high dimensional feature spaces.

    3.1Motivation

    As discussed in Section 1,on one hand,KMCCA is very time-consuming to choose appropriate kernel types and parameters for the optimal performance in practical classification applications.Also,KMCCA only employs a kernel function for each of multiple views.Thus,in essence it is a single kernelbasedsubspacelearningmethod.Thismakes KMCCA more difficult to discover multiple kinds of geometrical structure information of each original view in the higher dimensional Hilbert space.On the other hand,many studies[15,18-20]show that MKL can significantly improve the learning performance forclassificationtasksandhasthecapability of uncovering a variety of different geometrical structures of the original data.Moreover,MKL can also help kernel-based algorithms relax the selection of kernel types and parameters.Motivated by the advantages of MKL,we consider multiple kernel functions for each original view and propose a multikernel multi-view canonical correlations framework for multi-view feature learning,which can provide a unified formulation for a set of kernel canonical correlation methods.To the best of our knowledge,such an MKL framework of MCCA is novel.

    3.2Formulation

    Suppose m-view features from the same n imagesith view and pidenotes the dimensionality of the samples.For each view X(i),assume there are ni>1 nonlinear mappings:

    which implicitly map the original data X(i)into nidifferenthigherdimensionalfeaturespaces,respectively.Note that the number of nonlinear mappings,ni,maybedifferentfordifferent views.Let us denote

    where fi(·)is an ensemble function of nonlinear mappings,i=1,2,···,m and k=1,2,···,n.Letα(i)be the projection axis of φfi(X(i))in the feature space,then the M2CC framework can be defined as

    where g(·)denotes a multi-view correlation criterion function among the projectionsNote that we assume eachhas been centered.

    As can be seen from Eq.(6),it is clear that many classical kernel canonical correlation methods can be subsumed into the M2CC framework by defining different multi-view correlation criteria and ensemble mappingsif we impose that the number of nonlinear mappings in each view is equal to one,i.e.,n1=n2=···=nm=1.For example:

    ?Reduce to KMCCA.When the multi-view correlation criterion function g is defined as the sum of correlations between every pair of views,i.e.,

    ?Reduce to KCCA.When m=2 and multi-view correlation criterion g is defined as the correlation between two views,i.e.,

    i=1,2,M2CC becomes KCCA.

    As a result,one can design new multiple view data learning algorithms via defining different multiview correlation criterion functions and ensemble mappings

    4 Example algorithm:direct sum based M2CC

    In this section,we give a specific multi-view learning algorithm,where all nonlinear mappings for each view share the same weight.We also present its regularized version which can prevent overfitting and avoid the singularity of the matrix.

    4.1Model

    By means of the idea from the sum of correlations [12,22],our direct summation based M2CC model can be defined as

    Using the dual representation theorem,we have

    where βT=(β(1)T,β(2)T,···,β(m)T)∈Rmn.

    As we can see,different ensemble mappingsin Eq.(9)will result in different models.Thus,in this paper we define these ensemble mappings as

    i=1,2,···,m.AccordingtoEq.(10), the optimization problem in Eq.(9)can be further converted as

    4.2Algorithmic derivation

    To solve the optimization problem in Eq.(11),weusing the kernel trick[21],where K(i)kdenotes the kernel matrix corresponding to the kth nonlinear mapping in the ith view,and k=1,2,···,ni.Now,the problem in Eq.(11)can be formulated equivalently as

    Let us denote

    By the Lagrange multiplier technique,we can solve the problem in Eq.(12)by the following generalized eigenvalue problem:

    It is clear that the objective function in Eq.(12)canbemaximizeddirectlybycalculatingthe eigenvectorsoftheeigen-equation(14).Thus, we choose a set of eigenvectorscorresponding to the first d largest eigenvalues as the dual solution vectors of our method.Once the dual solution vectors are obtained,we can perform multi-view feature extractionforagivenmulti-viewobservation whereisann-dimensionalcolumndenoting the jth kernel function in the ith view, i=1,2,···,m.

    4.3Regularization

    In real-world applications,it is possible that the matrix diag(K(11),K(22),···,K(mm))in Eq.(14)is singular.In such case,the classical algorithm can not be directly used to solve the generalized eigenvalue problem.Thus,to avoid the singularity and prevent overfitting,we need to build a regularized version,which is the following: whereare the regularization parameters and k·k denotes the 2-norm of vectors.

    Following the same approach as in Section 4.2,we have

    If the singularity/overfitting problem occurs,or some applications need to control the flexibility of the proposed method,we can utilize Eq.(17)instead of Eq.(14)to calculate the dual vectors

    5 Experiments

    In this section,we perform two face recognition experiments to test the performance of our proposed methodusingthefamousAT&T1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase. html.andYale databases.Moreover,we compare the proposed method with kernel PCA(KPCA)and KMCCA for revealing the effectiveness.In all the experiments,the nearest neighbor(NN)classifiers with Euclidean distance and cosine distance metrics are used for recognition tasks.

    5.1Candidate kernels

    In our experiments,we adopt three views in total from the same face images and we use three kinds of kernel functions for the ith view in our proposed method,as follows:

    ?linear kernel

    ?Radial basis function(RBF)kernel where σiis set to the average value of all the l2-norm distancesas used in Ref.[15];

    ?polynomial kern?el

    where diis set to i+1,i=1,2,3.

    In KMCCA,we use the above three kinds of kernels with the same parameters,i.e.,linear kernel for the first view,RBF kernel for the second,and polynomial kernel for the last.

    In addition,for a fair comparison with KMCCA and our proposed method,we perform KPCA by first stacking three views together into a single view and then using one of the above-described kernels.

    5.2Compared methods

    To demonstrate how the recognition performance can be improved by our method,we compare thefollowing nine methods:

    ?KPCA-Lin which uses a linear kernel.

    ?KPCA-RBF which uses an RBF kernel.

    ?KPCA_PolA which uses a polynomial kernel with order A,where A_takes 2,3,and 4 respectively.

    ?KMCCA_PolA where one of three views uses the polynomial kernel with order A and A takes 2,3,and 4 respectively.

    ?Our method which is the new one proposed in this paper.

    5.3Experiment on the AT&T database

    The AT&T database contains 400 face images from 40 persons.There are 10 grayscale images per person with a resolution of 92×112.In some persons,the images are taken at different time.The lighting,facial expressions,and facial details are also varied.The images are taken with a tolerance for some tilting and rotation of the face up to 20 degree,and have some variation in the scale up to about 10%.Ten images of one person are shown in Fig.1.

    Inthisexperiment, weemploythesame preprocessing technique as used in Refs.[25-27]to obtain three-view data.That is,we first perform Coiflets,Daubechies,andSymletsorthonormal wavelet transforms to obtain three sets of lowfrequency sub-images(i.e.,three views)from original face images,respectively.Then,the K-L transform is employed to reduce the dimensionality of each view to 150.The final formed three views,each with 150 dimensions,are used in our experiment.

    In this experiment,N images(N=4,5,6,and 7)per person are randomly chosen for training,while the remaining 10-N images are used for testing.For each N,we perform 10 independent recognition tests to evaluate the performances of KPCA,KMCCA,and our method.Tables 1-4 show the average recognition rates of each method under NN classifiers with Euclidean distance and cosine distance and their corresponding standard deviations.

    Fig.1 Ten face images of a person in the AT&T database.

    From Tables 1-4,we can see that our proposed method outperforms KMCCA and the baseline algorithm KPCA,no matter how many training samples per person are used.Particularly when the number of training samples is less,our method improves more compared with other methods.On the whole,KMCCA achieves better recognition results than KPCA.Moreover,KPCA with RBF kernel performs better than with linear and polynomial kernels.

    Table 1 Average recognition rates(%)with 4 and 5 training samples under Euclidean distance on the AT&T database and standard deviations_____________________________________________________

    Table 2 Average recognition rates(%)with 6 and 7 training samples under Euclidean distance on the AT&T database and standard deviations_________________________________________________________

    Table 3 Average recognition rates(%)with 4 and 5 training samples under cosine distance on the AT&T database and standard deviations_____________________________________________________

    Table 4 Average recognition rates(%)with 6 and 7 training samples under cosine distance on the AT&T database and standard deviations

    5.4Experiment on the Yale database

    The Yale database[28]contains 165 grayscale images of 15 persons.Each person has 11 images with different facial expressions and lighting conditions,i.e.,center-light,with glasses,happy,left-light,without glasses,normal,right-light,sad,sleepy,surprised,and wink.Each image is cropped and resized to 100×80 pixels.Figure 2 shows eleven images of one person.

    In this experiment,the Coiflets,Daubechies,and Symlets wavelet transforms are again performed on original face images to form three-view data.Also,their dimensions are,respectively,reduced to 75,75,and 75 by K-L transform.For each person,five images are randomly selected for training,and the remaining six images for testing.Thus,the total number of training samples and testing samples is,respectively,75 and 90.Ten-run tests are performed to examine the recognition performances of each method.Figures 3 and 4 show the average recognitionresultsofeachmethodunderthe Euclidean and cosine NN classifiers.As can be seen from Figs.3 and 4,our proposed method is superior to KPCA and KMCCA.KPCA performs the worst and the RBF kernel is still more effective than other kernels in KPCA.These conclusions are overall consistent with those drawn from Section 5.3.

    Fig.2 Eleven images of a person in the Yale face database.

    Fig.3 Average recognition rates with Euclidean distance on the Yale database.

    Fig.4 Average recognition rates with cosine distance on the Yale database.

    6 Conclusions

    In this paper,we have proposed an M2CC framework for multi-view image recognition.The central idea ofM2CCistomapeachofmultipleviews to multiple higher dimensional feature spaces by multiple nonlinear mappings determined by different kernels.This enables M2CC to discover multiple kinds of useful information of each original view in the feature spaces.In addition,the M2CC framework can be used as a general platform for developing new algorithms related to MKL as well as MCCA.As shown in this paper,we have proposed a new specific multi-view feature learning algorithm where all the nonlinear mappings for each view aretreated equally.Two face recognition experiments demonstrate the effectiveness of our method.

    Acknowledgements

    This work is supported by the National Natural ScienceFoundationofChinaunderGrant Nos.61402203,61273251,and61170120,the FundamentalResearchFundsfortheCentral Universities under Grant No.JUSRP11458,and the Program for New Century Excellent Talents in University under Grant No.NCET-12-0881.

    References

    [1]Horst,P.Relations among m sets of measures. Psychometrika Vol.26,No.2,129-149,1961.

    [2]Kettenring,J.R.Canonical analysis of several sets of variables.Biometrika Vol.58,No.3,433-451,1971.

    [3]Li,Y.O.;Adali,T.;Wang,W.;Calhoun,V.D. Joint blind source separation by multiset canonical correlation analysis.IEEE Transactions on Signal Processing Vol.57,No.10,3918-3929,2009.

    [4]Correa,N.M.;Eichele,T.;Adal?,T.;Li,Y.-O.;Calhoun,V.D.Multi-set canonical correlation analysis for the fusion of concurrent single trial ERP and functional MRI.NeuroImage Vol.50,No.4,1438-1445,2010.

    [5]Li,Y.-O.;Eichele,T.;Calhoun,V.D.;Adali,T.Group study of simulated driving fMRI data by multiset canonical correlation analysis.Journal of Signal Processing Systems Vol.68,No.1,31-48,2012.

    [6]Nielsen,A.A.Multiset canonical correlations analysis and multispectral,truly multitemporal remote sensing data.IEEE Transactions on Image Processing Vol.11,No.3,293-305,2002.

    [7]Thompson,B.;Cartmill,J.;Azimi-Sadjadi,M.R.;Schock,S.G.A multichannel canonical correlation analysis feature extraction with application to buried underwater target classification.In:Proceedings of International Joint Conference on Neural Networks,4413-4420,2006.

    [8]Bach,F(xiàn).R.;Jordan,M.I.Kernel independent component analysis.The Journal of Machine Learning Research Vol.3,1-48,2003.

    [9]Yu,S.;De Moor,B.;Moreau,Y.Learning with heterogenous data sets by weighted multiple kernel canonical correlation analysis.In:Proceedings of IEEE Workshop on Machine Learning for Signal Processing,81-86,2007.

    [10]Lanckriet,G.R.G.;Cristianini,N.;Bartlett,P.;Ghaoui,L.E.;Jordan,M.I.Learning the kernel matrix with semidefinite programming.The Journal of Machine Learning Research Vol.5,27-72,2004.

    [11]Sonnenburg,S.;R¨atsch,G.;Sch¨afer,C.;Sch¨olkopf,B. Large scale multiple kernel learning.The Journal of Machine Learning Research Vol.7,1531-1565,2006.

    [12]Rupnik,J.;Shawe-Taylor,J.Multi-view canonical correlation analysis.In:Proceedings of Conference on Data Mining and Data Warehouses,2010.Available at http://ailab.ijs.si/dunja/SiKDD2010/Papers/Rupnik Final.pdf.

    [13]Hardoon,D.R.;Szedmak,S.R.;Shawe-Taylor,J.R.Canonical correlation analysis:An overview with application to learning methods.Neural Computation Vol.16,No.12,2639-2664,2004.

    [14]Chapelle,O.;Vapnik,V.;Bousquet,O.;Mukherjee,S.Choosing multiple parameters for support vector machines.Machine Learning Vol.46,Nos.1-3,131-159,2002.

    [15]Wang,Z.;Chen,S.;Sun,T.MultiK-MHKS:A novel multiple kernel learning algorithm.IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.30,No.2,348-353,2008.

    [16]Rakotomamonjy,A.;Bach,F(xiàn).;Canu,S.;Grandvalet,Y.More efficiency in multiple kernel learning.In: Proceedings of the 24th International Conference on Machine Learning,775-782,2007.

    [17]Xu,X.; Tsang,I.W.; Xu,D.Softmargin multiple kernel learning.IEEE Transactions on Neural Networks and Learning Systems Vol.24,No.5,749-761,2013.

    [18]Kim,S.-J.;Magnani,A.;Boyd,S.Optimal kernel selection in kernel fisher discriminant analysis.In: Proceedings of the 23rd International Conference on Machine Learning,465-472,2006.

    [19]Yan,F(xiàn).;Kittler,J.;Mikolajczyk,K.;Tahir,A.Nonsparse multiple kernel fisher discriminant analysis.The Journal of Machine Learning Research Vol.13,No.1,607-642,2012.

    [20]Lin,Y.Y.;Liu,T.L.;Fuh,C.S.Multiple kernel learning for dimensionality reduction.IEEE TransactionsonPatternAnalysisandMachine Intelligence Vol.33,No.6,1147-1160,2011.

    [21]Yuan,Y.-H.;Shen,X.-B.;Xiao,Z.-Y.;Yang,J.-L.;Ge,H.-W.;Sun,Q.-S.Multiview correlation feature learning with multiple kernels.In:Lecture Notes in Computer Science,Vol.9243.He,X.;Gao,X.;Zhang,Y.et al.Eds.Springer International Publishing,518-528,2015.

    [22]Kan,M.;Shan,S.;Zhang,H.;Lao,S.;Chen,X.Multi-view discriminant analysis.In:Lecture Notes in Computer Science,Vol.7572.Fitzgibbon,A.;Lazebnik,S.;Perona,P.;Sato,Y.;Schmid,C.Eds.Springer Berlin Heidelberg,808-821,2012.

    [23]Sch¨olkopf,B.;Smola,A.;M¨uller,K.-R.Nonlinear componentanalysisasakerneleigenvalue problem.NeuralComputationVol.10, No.5,1299-1319,1998.

    [24]Chu,M.T.;Watterson,J.L.On a multivariate eigenvalue problem,part I:Algebraic theory and apower method.SIAM Journal on Scientific Computing Vol.14,No.5,1089-1106,1993.

    [25]Yuan,Y.-H.;Sun,Q.-S.Fractional-order embedding multiset canonical correlations with applications to multi-feature fusion and recognition.Neurocomputing Vol.122,229-238,2013.

    [26]Yuan,Y.-H.;Sun,Q.-S.Graph regularized multiset canonicalcorrelationswithapplicationstojoint featureextraction.PatternRecognitionVol.47,No.12,3907-3919,2014.

    [27]Yuan, Y.-H.;Sun, Q.-S.Multisetcanonical correlations using globality preserving projections with applications to feature extraction and recognition. IEEE Transactions on Neural Networks and Learning Systems Vol.25,No.6,1131-1146,2014.

    [28]Dai,D.Q.;Yuen,P.C.Face recognition by regularized discriminant analysis.IEEE Transactions on Systems,Man,and Cybernetics,Part B(Cybernetics)Vol.37,No.4,1080-1085,2007.

    Yun-HaoYuan received his M.Sc. degreeincomputerscienceand technology from Yangzhou University (YZU),China,in 2009,and Ph.D. degreeinpatternrecognitionand intelligencesystemfromNanjing University of Science and Technology (NUST),China,in 2013.He received two National Scholarships from the Ministry of Education,China,an Outstanding Ph.D.Thesis Award,and two Topclass Scholarships from NUST.He was with the Department of Computer Science and Technology,Jiangnan University,China,from 2013 to 2015,as an associate professor.He is currently an assistant professor with the Department of Computer Science and Technology,College of Information Engineering,YZU.He is the author or co-author of more than 35 scientific papers.He serves as a reviewer of several international journals such as IEEE TNNLS,IEEE TSMC: Systems.He is a member of ACM,International Society of Information Fusion(ISIF),and China Computer Federation (CCF).His research interests include pattern recognition,machine learning,image processing,and information fusion.

    YunLi received his M.Eng.degree incomputerscienceandtechnology from Hefei University of Technology,China,in 1991,and Ph.D.degree in control theory and control engineering from Shanghai University,China,in 2005.He is a professor with the School of Information Engineering,Yangzhou University,China.He is the author of more than 70 scientific papers.He is currently a member of ACM and China Computer Federation(CCF).His research interests includepatternrecognition,informationfusion,data mining,and cloud computing.

    Jianjun Liu received his B.Sc.degree inappliedmathematicsandPh.D. degreeincomputersciencefrom NanjingUniversityofScienceand Technology, China, in2009and 2014,respectively.He is currently a lecturer with the School of Internet ofThingsEngineering,Jiangnan University,China.His research interests are in the areas of spectral unmixing,hyperspectral image classification,image processing,sparse representation,and compressive sensing.

    Chao-FengLireceivedhisPh.D. degreeinremotesensingimage processing from the Chinese University of Mining and Technology,Xuzhou,China,in 2001.He has published more than 70 technical articles.Currently,he is a professor with Jiangnan University. His research interests include image processing,computer vision,and image and video quality assessment.

    Xiao-Bo Shen received his B.E.degree incomputerscienceandtechnology fromNanjingUniversityofScience andTechnology, China, in2011,where he is currently working toward his Ph.D.degree with the School of Computer Science and Technology.His researchinterestsincludepattern recognition,imageprocessing,computervision,and information fusion.

    Guoqing Zhang received his B.Sc. and master degrees from the School ofInformationEngineeringin YangzhouUniversityin2009and 2012,respectively.He is currently a Ph.DcandidatewiththeSchoolof ComputerScienceandEngineering,NanjingUniversityofScienceand Technology,China.His research interests include pattern recognition,machinelearning,imageprocessing,and computer vision.

    Quan-SenSunreceivedhisPh.D degreeinpatternrecognitionand intelligencesystemfromNanjing University of Science and Technology (NUST),China,in2006.Heisa professorwiththeDepartmentof Computer Science in NUST.He visited the Department of Computer Science and Engineering,the Chinese University of Hong Kong,in 2004 and 2005.He has published more than 100 scientific papers.His current interests include pattern recognition,image processing,remote sensing information system,and medicine image analysis.

    Open AccessThe articles published in this journal aredistributedunderthetermsoftheCreative Commons Attribution 4.0 International License(http:// creativecommons.org/licenses/by/4.0/), whichpermits unrestricted use,distribution,and reproduction in any medium,provided you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.

    Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript,please go to https://www. editorialmanager.com/cvmj.

    曰老女人黄片| 欧美成狂野欧美在线观看| 亚洲熟女精品中文字幕| 亚洲精品乱久久久久久| 两人在一起打扑克的视频| 久久久精品国产亚洲av高清涩受| 99久久精品国产亚洲精品| 国产97色在线日韩免费| 欧美大码av| 我的亚洲天堂| 一区二区三区乱码不卡18| 九色亚洲精品在线播放| 久久久久久免费高清国产稀缺| 精品国产超薄肉色丝袜足j| 国产日韩欧美在线精品| 蜜桃在线观看..| 成年人免费黄色播放视频| 51午夜福利影视在线观看| 欧美人与性动交α欧美精品济南到| 亚洲精品自拍成人| 纵有疾风起免费观看全集完整版| 免费看十八禁软件| av福利片在线| 亚洲第一欧美日韩一区二区三区 | 人人妻人人爽人人添夜夜欢视频| www.av在线官网国产| 欧美激情高清一区二区三区| a级毛片在线看网站| 午夜精品久久久久久毛片777| 两人在一起打扑克的视频| av网站在线播放免费| 脱女人内裤的视频| 乱人伦中国视频| 五月开心婷婷网| 69精品国产乱码久久久| 中文字幕高清在线视频| 极品少妇高潮喷水抽搐| 欧美日韩亚洲综合一区二区三区_| 视频区图区小说| 啦啦啦在线免费观看视频4| 亚洲精品中文字幕在线视频| 日本精品一区二区三区蜜桃| 亚洲美女黄色视频免费看| 成人影院久久| 欧美日韩黄片免| 国产伦理片在线播放av一区| 成人手机av| 制服人妻中文乱码| 欧美日韩黄片免| 99国产精品免费福利视频| 青草久久国产| 大码成人一级视频| 制服诱惑二区| 亚洲成人免费av在线播放| 丁香六月天网| 99精品欧美一区二区三区四区| 成在线人永久免费视频| 叶爱在线成人免费视频播放| 色精品久久人妻99蜜桃| 99香蕉大伊视频| 91麻豆av在线| 国产高清国产精品国产三级| 亚洲国产欧美网| 国产视频一区二区在线看| 亚洲精品一区蜜桃| 国产免费av片在线观看野外av| 国产三级黄色录像| 中亚洲国语对白在线视频| 精品久久久久久电影网| av天堂久久9| 一区二区三区乱码不卡18| 精品亚洲成a人片在线观看| 久久中文字幕一级| 亚洲国产中文字幕在线视频| 又紧又爽又黄一区二区| 国产欧美日韩精品亚洲av| 亚洲熟女精品中文字幕| 久久精品国产综合久久久| 亚洲伊人色综图| 精品久久久久久久毛片微露脸 | 我要看黄色一级片免费的| 无遮挡黄片免费观看| 国产亚洲精品久久久久5区| 国产精品亚洲av一区麻豆| 欧美 亚洲 国产 日韩一| 搡老岳熟女国产| 男女下面插进去视频免费观看| 亚洲精品国产一区二区精华液| 母亲3免费完整高清在线观看| 亚洲精品乱久久久久久| 99热全是精品| 大香蕉久久网| 99久久精品国产亚洲精品| 无限看片的www在线观看| 免费少妇av软件| 欧美精品人与动牲交sv欧美| 国产高清国产精品国产三级| 飞空精品影院首页| 十八禁网站免费在线| 精品人妻熟女毛片av久久网站| 在线亚洲精品国产二区图片欧美| 午夜视频精品福利| 久久天堂一区二区三区四区| 欧美日韩亚洲综合一区二区三区_| 国产成人影院久久av| 亚洲精品美女久久av网站| 少妇裸体淫交视频免费看高清 | 亚洲av欧美aⅴ国产| 91麻豆av在线| 一本久久精品| 一区二区三区激情视频| 两个人免费观看高清视频| 69av精品久久久久久 | 法律面前人人平等表现在哪些方面 | 亚洲伊人久久精品综合| 两个人看的免费小视频| 亚洲专区国产一区二区| 精品视频人人做人人爽| 亚洲性夜色夜夜综合| 亚洲人成电影免费在线| 国产1区2区3区精品| 欧美 日韩 精品 国产| 亚洲精品美女久久久久99蜜臀| 麻豆av在线久日| 中文精品一卡2卡3卡4更新| 正在播放国产对白刺激| 女人爽到高潮嗷嗷叫在线视频| 国产精品免费视频内射| 精品人妻1区二区| 在线观看免费视频网站a站| 天天添夜夜摸| 夜夜夜夜夜久久久久| 在线十欧美十亚洲十日本专区| 精品视频人人做人人爽| 精品国产乱码久久久久久小说| 99九九在线精品视频| 久久狼人影院| 最黄视频免费看| 美国免费a级毛片| 日韩视频在线欧美| 国产熟女午夜一区二区三区| 一本久久精品| 男女床上黄色一级片免费看| 国产国语露脸激情在线看| 热99re8久久精品国产| 岛国毛片在线播放| 两性夫妻黄色片| 精品一区二区三区av网在线观看 | 色综合欧美亚洲国产小说| 国产亚洲精品一区二区www | 中文字幕av电影在线播放| 新久久久久国产一级毛片| 国产精品久久久久久人妻精品电影 | 亚洲情色 制服丝袜| 久久久久久久国产电影| 伊人亚洲综合成人网| 黑人欧美特级aaaaaa片| 乱人伦中国视频| 亚洲av欧美aⅴ国产| 午夜免费鲁丝| 99国产极品粉嫩在线观看| 国产福利在线免费观看视频| 精品国产乱子伦一区二区三区 | 亚洲欧洲精品一区二区精品久久久| 久久久久久人人人人人| 麻豆av在线久日| 啦啦啦在线免费观看视频4| 波多野结衣av一区二区av| 中亚洲国语对白在线视频| 精品国内亚洲2022精品成人 | 黄片播放在线免费| 少妇 在线观看| 国产又爽黄色视频| 欧美激情极品国产一区二区三区| 久久精品成人免费网站| 国产国语露脸激情在线看| 国产片内射在线| 老司机影院成人| 在线观看一区二区三区激情| 精品国产一区二区三区久久久樱花| 女警被强在线播放| 精品国产乱子伦一区二区三区 | 超色免费av| 黑人猛操日本美女一级片| a级毛片黄视频| 亚洲第一av免费看| 日韩欧美免费精品| 国产区一区二久久| 国产成+人综合+亚洲专区| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕人妻丝袜制服| 操美女的视频在线观看| 亚洲精品久久午夜乱码| 一级a爱视频在线免费观看| 日韩视频在线欧美| 19禁男女啪啪无遮挡网站| 久久性视频一级片| 欧美精品av麻豆av| 欧美成人午夜精品| 他把我摸到了高潮在线观看 | 欧美人与性动交α欧美精品济南到| 一级毛片女人18水好多| 999精品在线视频| 国产成人a∨麻豆精品| 婷婷成人精品国产| a级片在线免费高清观看视频| 伊人亚洲综合成人网| 一级毛片精品| 国产91精品成人一区二区三区 | 91九色精品人成在线观看| 日韩欧美一区二区三区在线观看 | 国产有黄有色有爽视频| 啦啦啦视频在线资源免费观看| 亚洲国产看品久久| 三级毛片av免费| 97人妻天天添夜夜摸| 久久亚洲国产成人精品v| 超色免费av| 成人影院久久| 麻豆乱淫一区二区| 99国产精品免费福利视频| 如日韩欧美国产精品一区二区三区| 人人妻人人添人人爽欧美一区卜| 久久国产精品影院| av视频免费观看在线观看| 日韩人妻精品一区2区三区| 国产精品 欧美亚洲| 亚洲专区国产一区二区| 1024香蕉在线观看| 母亲3免费完整高清在线观看| 午夜成年电影在线免费观看| 九色亚洲精品在线播放| 91麻豆精品激情在线观看国产 | 久久国产精品人妻蜜桃| 婷婷成人精品国产| 成人亚洲精品一区在线观看| 夜夜夜夜夜久久久久| 热99国产精品久久久久久7| 国产淫语在线视频| av网站免费在线观看视频| 亚洲精品久久午夜乱码| 蜜桃在线观看..| 一本—道久久a久久精品蜜桃钙片| 动漫黄色视频在线观看| 亚洲精品自拍成人| 亚洲午夜精品一区,二区,三区| 国产欧美亚洲国产| 国产日韩一区二区三区精品不卡| 国产日韩欧美在线精品| 日本撒尿小便嘘嘘汇集6| 动漫黄色视频在线观看| 久久久久国内视频| 亚洲欧美清纯卡通| 久久国产精品大桥未久av| 久久人人爽av亚洲精品天堂| 久久亚洲精品不卡| 老司机福利观看| 超碰97精品在线观看| 欧美日韩亚洲综合一区二区三区_| 50天的宝宝边吃奶边哭怎么回事| 成年动漫av网址| 热99re8久久精品国产| 日韩中文字幕欧美一区二区| 伊人亚洲综合成人网| 咕卡用的链子| 成人亚洲精品一区在线观看| xxxhd国产人妻xxx| 亚洲av美国av| 欧美大码av| 久久国产精品男人的天堂亚洲| 别揉我奶头~嗯~啊~动态视频 | 一区在线观看完整版| 色播在线永久视频| 老熟女久久久| 老司机影院毛片| 精品一区二区三区av网在线观看 | 国产在线视频一区二区| 久久影院123| 亚洲第一av免费看| 爱豆传媒免费全集在线观看| av天堂在线播放| 波多野结衣一区麻豆| av免费在线观看网站| 成人亚洲精品一区在线观看| 亚洲色图综合在线观看| 男女床上黄色一级片免费看| 国产高清国产精品国产三级| 欧美黑人精品巨大| 国产男女内射视频| 欧美在线黄色| 亚洲综合色网址| av线在线观看网站| 国产精品秋霞免费鲁丝片| 亚洲三区欧美一区| 久久久久国内视频| 亚洲精品成人av观看孕妇| 国产伦人伦偷精品视频| 午夜91福利影院| 19禁男女啪啪无遮挡网站| 久久国产精品人妻蜜桃| a级片在线免费高清观看视频| 熟女少妇亚洲综合色aaa.| 亚洲伊人色综图| 午夜精品久久久久久毛片777| 亚洲欧美激情在线| 亚洲一区二区三区欧美精品| 亚洲一区中文字幕在线| 高清黄色对白视频在线免费看| 精品国产国语对白av| 十八禁网站免费在线| av天堂久久9| 欧美黑人精品巨大| 免费av中文字幕在线| 美女午夜性视频免费| 国产区一区二久久| 免费黄频网站在线观看国产| 久久人妻熟女aⅴ| 中国国产av一级| 精品视频人人做人人爽| 熟女少妇亚洲综合色aaa.| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品亚洲av一区麻豆| 亚洲中文字幕日韩| 国产不卡av网站在线观看| av在线老鸭窝| 男女之事视频高清在线观看| 亚洲欧洲日产国产| 国产日韩欧美视频二区| 一本一本久久a久久精品综合妖精| 日本av免费视频播放| 狂野欧美激情性bbbbbb| 午夜福利在线观看吧| a级毛片黄视频| 亚洲精品中文字幕一二三四区 | 啦啦啦啦在线视频资源| 又大又爽又粗| 日韩中文字幕欧美一区二区| 桃红色精品国产亚洲av| 精品国产超薄肉色丝袜足j| 亚洲av国产av综合av卡| 一区二区三区激情视频| 亚洲熟女精品中文字幕| 精品国产超薄肉色丝袜足j| 超色免费av| 亚洲欧美日韩另类电影网站| 三级毛片av免费| 热99国产精品久久久久久7| 丝袜美腿诱惑在线| 国产精品久久久久成人av| 久久国产精品大桥未久av| 精品高清国产在线一区| 国产av精品麻豆| 亚洲国产欧美网| 色94色欧美一区二区| 窝窝影院91人妻| 捣出白浆h1v1| 美女福利国产在线| 最近中文字幕2019免费版| 91精品伊人久久大香线蕉| 美女高潮喷水抽搐中文字幕| 黄片播放在线免费| 久久久水蜜桃国产精品网| 国产成人av激情在线播放| 男女床上黄色一级片免费看| 国产av国产精品国产| 亚洲精品美女久久久久99蜜臀| 色视频在线一区二区三区| 99国产精品免费福利视频| 黄色a级毛片大全视频| 在线精品无人区一区二区三| 亚洲精品av麻豆狂野| 日韩,欧美,国产一区二区三区| 国产成人av激情在线播放| 91精品三级在线观看| 精品一区二区三区av网在线观看 | 国产精品一区二区在线观看99| 精品少妇内射三级| 久久久国产精品麻豆| 热re99久久国产66热| 国产精品.久久久| 丁香六月欧美| 亚洲人成77777在线视频| 久久 成人 亚洲| videosex国产| av电影中文网址| 丝袜美腿诱惑在线| 美女国产高潮福利片在线看| 国产精品 国内视频| 黄色视频在线播放观看不卡| 嫁个100分男人电影在线观看| 亚洲中文字幕日韩| 中文字幕人妻熟女乱码| 日本五十路高清| 免费不卡黄色视频| 午夜影院在线不卡| 国产精品欧美亚洲77777| 在线永久观看黄色视频| 亚洲av电影在线观看一区二区三区| 一本一本久久a久久精品综合妖精| 50天的宝宝边吃奶边哭怎么回事| 日韩熟女老妇一区二区性免费视频| 精品少妇内射三级| 男女之事视频高清在线观看| 欧美激情久久久久久爽电影 | 国产日韩一区二区三区精品不卡| 成年人免费黄色播放视频| 真人做人爱边吃奶动态| 黄色视频,在线免费观看| 欧美人与性动交α欧美软件| 亚洲精华国产精华精| 国产视频一区二区在线看| 欧美成狂野欧美在线观看| 国产高清视频在线播放一区 | 久久精品aⅴ一区二区三区四区| 欧美另类一区| 在线精品无人区一区二区三| 丝袜美足系列| 国产免费福利视频在线观看| 侵犯人妻中文字幕一二三四区| 久久性视频一级片| 好男人电影高清在线观看| e午夜精品久久久久久久| 在线观看一区二区三区激情| www.熟女人妻精品国产| 十八禁网站网址无遮挡| 欧美日韩国产mv在线观看视频| 免费观看av网站的网址| 久久国产精品影院| 69精品国产乱码久久久| 男女午夜视频在线观看| 久久久国产一区二区| 两个人免费观看高清视频| 久久国产精品人妻蜜桃| 性高湖久久久久久久久免费观看| 中文字幕精品免费在线观看视频| 母亲3免费完整高清在线观看| 亚洲熟女毛片儿| 免费观看a级毛片全部| 老熟女久久久| 欧美另类亚洲清纯唯美| 亚洲成人国产一区在线观看| 一区二区三区四区激情视频| 91av网站免费观看| 亚洲精品第二区| 麻豆国产av国片精品| 99国产极品粉嫩在线观看| 亚洲国产欧美在线一区| 精品乱码久久久久久99久播| 男男h啪啪无遮挡| 精品免费久久久久久久清纯 | 成人免费观看视频高清| netflix在线观看网站| 亚洲精品中文字幕一二三四区 | 亚洲,欧美精品.| 日日摸夜夜添夜夜添小说| 最近中文字幕2019免费版| 色老头精品视频在线观看| 久久精品成人免费网站| 久久久久久久国产电影| 亚洲国产欧美在线一区| 亚洲男人天堂网一区| 男男h啪啪无遮挡| 国产免费福利视频在线观看| 韩国高清视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 美女午夜性视频免费| 国产日韩一区二区三区精品不卡| 人人妻人人澡人人爽人人夜夜| 在线十欧美十亚洲十日本专区| 最新的欧美精品一区二区| 12—13女人毛片做爰片一| e午夜精品久久久久久久| 在线观看免费视频网站a站| 国产成人av激情在线播放| 老司机影院毛片| 9热在线视频观看99| 国产一区二区三区av在线| 国产深夜福利视频在线观看| 亚洲国产中文字幕在线视频| 日本黄色日本黄色录像| av不卡在线播放| 免费高清在线观看视频在线观看| 亚洲伊人色综图| 日本猛色少妇xxxxx猛交久久| 91精品三级在线观看| 女人爽到高潮嗷嗷叫在线视频| 母亲3免费完整高清在线观看| 亚洲精品国产区一区二| 国产区一区二久久| 蜜桃在线观看..| 中文字幕高清在线视频| 伊人亚洲综合成人网| 亚洲国产欧美日韩在线播放| 大码成人一级视频| 亚洲成av片中文字幕在线观看| 91九色精品人成在线观看| 色精品久久人妻99蜜桃| 王馨瑶露胸无遮挡在线观看| 丝袜美腿诱惑在线| 黑人巨大精品欧美一区二区mp4| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品久久久av美女十八| 丰满迷人的少妇在线观看| 亚洲人成77777在线视频| 777久久人妻少妇嫩草av网站| 亚洲天堂av无毛| 午夜福利视频在线观看免费| 搡老乐熟女国产| 色94色欧美一区二区| a 毛片基地| 在线观看免费午夜福利视频| 美女午夜性视频免费| 黄色怎么调成土黄色| 肉色欧美久久久久久久蜜桃| 在线观看www视频免费| 亚洲av男天堂| 国产91精品成人一区二区三区 | 精品人妻一区二区三区麻豆| 成人影院久久| 最近中文字幕2019免费版| 国产视频一区二区在线看| 老司机午夜十八禁免费视频| kizo精华| 精品久久久精品久久久| 在线观看免费日韩欧美大片| 丁香六月天网| 亚洲情色 制服丝袜| 免费观看人在逋| 天堂俺去俺来也www色官网| av片东京热男人的天堂| 亚洲,欧美精品.| 人妻人人澡人人爽人人| 青草久久国产| 天天影视国产精品| 啦啦啦中文免费视频观看日本| 最近最新中文字幕大全免费视频| 飞空精品影院首页| 亚洲精品国产一区二区精华液| www.av在线官网国产| 下体分泌物呈黄色| 亚洲欧美成人综合另类久久久| 日本精品一区二区三区蜜桃| 免费在线观看视频国产中文字幕亚洲 | 在线观看舔阴道视频| 欧美精品一区二区大全| 久热爱精品视频在线9| 嫁个100分男人电影在线观看| 国产免费视频播放在线视频| 久久久精品区二区三区| 香蕉国产在线看| 亚洲全国av大片| 18禁裸乳无遮挡动漫免费视频| 一区福利在线观看| 正在播放国产对白刺激| 亚洲国产日韩一区二区| 天天躁日日躁夜夜躁夜夜| 男女免费视频国产| 手机成人av网站| 亚洲激情五月婷婷啪啪| 国产精品国产三级国产专区5o| 久久精品亚洲av国产电影网| 亚洲伊人色综图| 成人18禁高潮啪啪吃奶动态图| 国产av精品麻豆| 国产无遮挡羞羞视频在线观看| 色综合欧美亚洲国产小说| 亚洲中文av在线| 亚洲五月色婷婷综合| 免费不卡黄色视频| 亚洲成av片中文字幕在线观看| 色老头精品视频在线观看| 黄色片一级片一级黄色片| 国产亚洲av片在线观看秒播厂| 法律面前人人平等表现在哪些方面 | 免费在线观看完整版高清| 久久热在线av| 黄色视频不卡| 欧美日韩国产mv在线观看视频| 永久免费av网站大全| 国产无遮挡羞羞视频在线观看| 亚洲国产av影院在线观看| 国产淫语在线视频| 久久久久视频综合| 欧美黑人精品巨大| 国产精品一区二区在线不卡| 精品人妻在线不人妻| 欧美在线一区亚洲| 一级a爱视频在线免费观看| 精品熟女少妇八av免费久了| 新久久久久国产一级毛片| 夫妻午夜视频| 亚洲精品国产精品久久久不卡| 中文字幕精品免费在线观看视频| 啪啪无遮挡十八禁网站| 动漫黄色视频在线观看| 在线观看免费午夜福利视频| 97在线人人人人妻| 亚洲欧洲日产国产| 精品国产一区二区三区久久久樱花| 国产精品久久久久久精品古装| 欧美日韩亚洲国产一区二区在线观看 | 精品国产乱码久久久久久小说| 国产精品久久久人人做人人爽| 又黄又粗又硬又大视频| 在线观看免费午夜福利视频| 亚洲精品一二三| 久久久久网色| 操美女的视频在线观看| 亚洲精品美女久久av网站| 又紧又爽又黄一区二区| 91麻豆av在线| 宅男免费午夜| 一级毛片精品| 最近最新中文字幕大全免费视频| 亚洲精品成人av观看孕妇|