• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-resolution images based on directional fusion of gradient

    2016-07-19 07:04:50LiqiongWuYepengLiuBrekhnaNingLiuandCaimingZhangcTheAuthor206ThisarticleispublishedwithopenaccessatSpringerlinkcom
    Computational Visual Media 2016年1期

    Liqiong Wu,Yepeng Liu,Brekhna,Ning Liu,and Caiming Zhang()○cThe Author(s)206.This article is published with open access at Springerlink.com

    ?

    Research Article

    High-resolution images based on directional fusion of gradient

    Liqiong Wu1,Yepeng Liu1,Brekhna1,Ning Liu1,and Caiming Zhang1()
    ○cThe Author(s)2016.This article is published with open access at Springerlink.com

    AbstractThis paper proposes a novel method for image magnification by exploiting the property that the intensity of an image varies along the direction of the gradient very quickly.It aims to maintain sharp edges and clear details.The proposed method first calculates the gradient of the low-resolution image by fitting a surface with quadratic polynomial precision.Then,bicubic interpolation is used to obtain initial gradients of the high-resolution(HR)image.The initial gradients are readjusted to find the constrained gradients of the HR image,according to spatial correlations between gradients within a local window.To generate an HR image with high precision,a linear surface weighted by the projection length in the gradient direction is constructed.Each pixel in the HR image is determined by the linear surface.Experimental results demonstrate that our method visually improves the quality of the magnified image.It particularly avoids making jagged edges and bluring during magnification.

    Keywords high-resolution(HR);image magnification;directional fusion;gradient direction

    1School of Computer Science and Technology,Shandong University,Jinan 250101,China.E-mail:L.Wu,wuliqiong.june@gmail.com;C.Zhang,czhang@sdu.edu. cn().

    Manuscript received:2015-11-30;accepted:2015-12-09

    1 Introduction

    The aim of image magnification is to estimate theunknownpixelvaluesofahigh-resolution (HR)version of an image from groups of pixels in a corresponding low-resolution(LR)image[1]. As a basic operation in image processing,image magnification has great significance for applications in many fields,such as computer vision,computer animation,and medical imaging[2].With the

    rapiddevelopmentofvisualizationandvirtual reality,image magnification has been widely applied todiverseapplications,suchashigh-definition television,digital media technology,and image processing software.However,image magnification methodsfacegreatchallengesbecauseofthe increaseddemandforrobusttechnologyand application challenges.In recent years,although many researchers have proposed a variety of methods for image magnification,there is not yet a unified method suitable for all image types.Considering the characteristics of different types of images,it is still hard to achieve low computational time while maintaining edges and detailed texture during the process of magnification.Based on the analysis above,this paper focuses on generating an HR image maintaining the edge sharpness and structural details of a single LR image by means of the directional fusion of image gradients.

    1.1Traditional methods

    Traditional methods,including nearest neighbor,bilinear[3], bicubic[4, 5], andLanczos resampling[6],are widely applied in a variety of commercial software and business applications for image processing.The main advantages of such conventional methods are that they are easy to understand,simple to implement,and fast to calculate.However,there are limitations for these methods.Using a unified mathematical model causes loss of high frequency information at edges.Thus,conventional methods are likely to introduce jagged edges and blur details at significant transitions in an image,such as edges and texture details.

    1.2Advanced methods

    Studies have shown that human eyes are more sensitive to the edges of an image that transmit most of the information of the image,so images with goodquality edges can help to clearly describe boundaries and the outlines of objects.Edges that contain important information are of great significance in image magnification.Various edge-directed methods have been proposed in recent years,most of which take advantage of edge information to overcome the shortcomings of conventional methods,e.g.,Refs.[7-13].

    The edge-guided interpolation method put forward by Li and Orchard[10]is based on image covariance,and exploits local covariance coefficients estimated from the pixel values of the LR image to calculate the covariance coefficients of the HR image,utilizing the geometric duality between LR and HR images. These covariance coefficients are used to perform interpolation.Zhang and Wu[12]present a nonlinear interpolation method,based on inserting a missing pixel in two mutually orthogonal directions,and use a minimum mean square error estimation technique to fuse them for realizing interpolation.

    Zhang et al.[8]propose a method based on a combination of quadratic polynomials to construct a reverse fitting surface for a given image in which the edges of the image act as a constraint,which ensures the fitted surface has a better approximation accuracy.Fan et al.[14]present a robust and efficient high-resolution detail-preserving algorithm based on a least-squares formulation.A gradientguided image interpolation method is presented in Ref.[9],assuming that the variation in pixel values is constant along the edge.The method can be implemented simply and has good edge retention,but it leads to a wide edge transition zone because of the diffusion of the HR image gradients,and so it is not suitable for magnification of images with complicated textures and detail.

    Corresponding patches between low-and highresolution images from a database can be used with machine learning-based techniques or sampling methods to achieve interpolation[15-20].

    Traditionalmethodsoftenintroduceartifacts such as jagged edges and blurred details during magnification.Often,edge-based methods tend to generate artifacts in small scale edge structures and complicated texture details.Learning-based techniques are complex and time-consuming,with theoutcomeinfluencedbythetrainingdata. Because of these issues,this paper proposes a novel method to produce an HR image based on the directional fusion of gradients.

    2 Related work

    In this study,we use a degradation model that assumes the LR image can be directly down-sampled from the HR image,rather than by using Gaussion smoothing.Since the proposed method is partly based on CSF[8]and GGI[9],this section will briefly introduce both methods.

    2.1Quadraticsurfacefittingconstrained (CSF)by edges

    In CSF,image data is supposed to be sampled from an original scene that can be approximated by piecewise polynomials[8].The fitted surface is constructed by a reversal process of image sampling using the edge information as constraints.That makes the surface a good approximation to the original scene,with quadratic polynomial precision. Assuming that Pi,jis an image of size N ×N generally sampled from the original scene F(x,y)on a unit square,so

    where w(x,y)is a weight function set to be 1.

    In the region[i-1.5,i+1.5]×[j-1.5,j+1.5],let u=x-i,v=y-j.See Fig.1.The fitted surface fi,j(x,y)of F(x,y)is defined as

    where a1,a2,a3,a4,a5,and a6are to be determined. Determinationoftheunknowncoefficientsis performed by a least-squares method constrained by edge information[8].Since a good quality surface can help to produce high precision interpolation,wewill later make use of the constructed surface to interpolate gradients.

    Fig.1 Constructing surface.

    2.2Gradient-guided interpolation(GGI)

    In order to eliminate jagged edges,a gradientguided interpolation method is proposed in Ref.[9],based on the idea that the variation in pixel values is constant along the edge direction.GGI uses a Sobel kernel to calculate gradients of the LR image,and adopts bicubic interpolation to determine the gradients of the HR image,then uses gradient diffusion.Finally,the unknown HR pixels Pi,jto be interpolated are divided into three categories with different LR pixels Px,yin the neighborhood Nij.

    Pi,jis estimated by summing the neighborhood pixels Nijweighted by wxy,where a shorter distance carries greater weight.Let dxydenote the distance between Px,yand Pi,jprojected along the gradient direction of Pi,j.Then

    where a=0.2 controls decrease of the exponential,and S is defined as

    Although the method of Ref.[9]provides good qualityinterpolationatedgesbysignificantly decreasing jagged edges,it can cause loss of detail in non-edge regions in some cases.In particular,it is unsuitable for image areas containing complex details and abundant texture.

    3 High-resolution image based on directional fusion of gradient

    In this section,a new magnification method is put forward based on fusion of gradient direction,which exploits the property that the pixel values change very quickly in the gradient direction.From the analysis above,maintaining is sharpness of edges and the clarity of detailed textures becomes the key mission in image magnification,since most information in the image is transmitted by edges and detail textures.Our method first finds approximate gradients of the LR image,then calculates those of the HR image.We estimate the gray values of the unknown pixels in the HR image,using a linear approximation of the neighboring pixels. For simplicity of discussion,we mainly focus on enlargement by a factor of 2,to produce an HR image of size 2m×2n from an LR image of size m×n.The general information flows in our proposed method are shown in Fig.2.

    3.1Calculating the gradients of the HR image

    In order to compute the LR gradients with high accuracy,our method adopts Eq.(2)to compute the LR gradient for each Pi,j.The gradient vector of the LR image is defined as=(gx,gy),where gxand gyare defined as Thus,for each Pi,jwe can get the LR gradients as gx=a4,gy=a5.The LR gradients are used to calculate HR gradients,denoted by=(GX,GY),by bicubically interpolating the LR gradients.

    Fig.2 Flowchart of the method.

    3.2Diffusing the gradients of the HR image The GGI method[9]utilizes the gradient information inordertomaintainthesharpnessofedges. However,the spatial distribution of gradients is not considered effectively during diffusion:the norm of the gradient takes a local maximum in the gradient direction[21].It may cause the gradient direction to change in an inapprorpiate way in detail-rich portions by directly replacing the gradient at a central pixel by the mean of some region,which mayresult in distortion of details.

    Therefore, wetakeaccountofthespatial correlationbetweenthegradientdirectionsto improve the diffusion of gradients-I→G.Diffusion deals with gradient values in the vertical GXand horizontal GYdirections.A local window of size 5×5,with Pi,jas the central pixel,see Fig.3,is used to adjust the gradient direction.Our method adjusts the gradient vector of the center pixel using the average value of gradients whose direction falls within a certain rage relative to that of the central pixel.

    By considering the spatial correlations between gradient directions,our method can approximate HR gradients that not only maintain the sharpness of edges,but also better retain the structure of textures and details.Let k denote the number of pixels satisfying the condition βxy<α,and α=45°.

    After conducting the diffusion of,we obtain the adjusted HR gradientswhich are used to calculate the gray values of HR pixels.

    3.3Estimation of HR image

    In this section,we give the strategy for calculating the unknown pixels of the HR image.In Section 2.2 we noted that the GGI method[9]yields a precise constant.In comparison with GGI,our method provides higher precision of polynomial interpolation by constructing a linear surface to approximate the intensity of the HR image.It performs well in maintaining the details of the image.Depending on the known pixels in the neighborhood window with the unknown pixel as the center(see Fig.4(b)),the unknown pixels of the HR image may be divided into three categories:

    (1)Black I(2n-1,2m-1)H;

    (2)Blue I(2n,2m)H;

    (3)Pink I(2n-1,2m)Hand I(2n,2m-1)H,where n=1,···,N,m=1,···,M.Therefore,the estimation of the unknown pixels in the HR image is achieved in three steps.

    Step 1:

    In this step,we assign the values of LR pixels to the corresponding HR pixels.For an LR image ILof size n×m enlarged to give an HR image of size 2n×2m,we have I(2n-1,2m-1)H=I(n,m)L,where n=1,···,N and m=1,···,M.I(n,m)L and I(2n-1,2m-1)Hare the solid black dots shown in Fig.4(a)and Fig.4(b),respectively.

    Step 2:

    In this step,we use four neighboring black pixels to calculate the central pixels Pi,j(the blue dots in Fig.5(a))satisfying Pi,j∈I(2n,2m)H.In order to precisely obtain Pi,j,we construct a linear surface to approximate the image data via directional fusion of gradients.Within the neighborhood window Nijcentered on Pi,j,our method constructs a linear surface fiH,jusing a linear polynomial as follows:

    Fig.3 Diffusion of gradient. The blue dots Px,ystand for neighboring HR pixels of Pi,j,and the blue arrow represents the gradient direction at Px,y,while the red arrow indicates the gradient direction at Pi,j.βxyis the angle between the gradient directions Pi,jand Px,y.The dashed area defines the range of angles for which the gradient direction of Px,yis positively correlated with that of Pi,j.

    Fig.4 Degradation mode.(a)Pixels of LR image.(b)Pixels of HR image.The solid black dots in(a)represent pixels of the LR image. The dots in(b)are pixels of the HR image,where the black dots are the known pixels of HR image I(2n-1,2m-1)Hthat are directly determined by the corresponding LR image pixels,blue dots stand for the case where I(2n,2m)H,while the pink points represent the cases where I(2n-1,2m)Hor I(2n,2m-1)H.

    Fig.5 Three cases for constructing the linear surface fiH,j. (a)represents the linear surface constructed in Step 2.(b)and(c)represent the linear surface constructed in Step 3.In the figure,black dots give known pixels of the HR image from the corresponding LR pixels,and the blue dots stand for unknown HR pixels calculated in Step 2.

    where a,b,and c are unknown coefficients to be found.

    We determine the unknown coefficients(i.e.,a,b,c)in Eq.(8)by a least-squares method,weighted by the gradients and the values of pixels in the neighborhood window.

    where Nijrepresents the neighboring pixels Px,yofthecentralpixelPi,j,satisfying(x,y) ∈{(-1,1),(1,1),(-1,-1),(1,-1)}.The procedure to calculate wxyis given in Eq.(4)(see Fig.6(a)).

    Minimizing Eq.(9)requires

    Substituting the variables(a,b,c)into Eq.(8)gives the approximate pixel value,i.e.,Pi,j=c.

    Fig.6 Weighting.(a)represents the case of what is solved in Step 2. (b)and(c)are the two situations to be determined in Step 3 using the results of Step 2.The black dots are known pixels of the HR image,and the blue dots are the unknown HR pixels.Px,ystands for the neighboring pixels of Pi,j.is the gradient direction at the center pixel Pi,j.

    Step 3:

    In this step,we use the results of Step 1 and Step 2 to estimate the remianing unknown HR pixels(the pink dots in Fig.4(b),i.e.,Pi,j∈{I(2n-1,2m)H,I(2n,2m-1)H}).The gray value of the central pixel Pi,jis calculated using the same procedure as in Step 2.We use Eq.(8)to construct a linear surface(see Figs.5(b)and 5(c)).ThesurfaceisconstrainedbyEq.(9)in order to get an approximate surface,where (x,y)∈{(-1,0),(0,1),(1,0),(0,-1)}.The weight wxyis calculated from Eq.(4)(see Figs.6(b)and 6(c)).

    Finally,the pixels located on the image boundary are calculated by averaging the existing neighboring pixels,instead of by constructing a surface.

    4 Results and discussion

    In order to verify the effectiveness of the proposed method,we have carried out many experiments with different kinds of images,including natural images,medical images,and synthetic images.The results of our experiments demonstrate that the proposed method can obtain better quality image magnification,especially at edges and in detailrich areas.To demonstrate the advantages of our proposed method,we compare magnification results with several methods,including bicubic interpolation(Bicubic)[4],cubic surface fitting with edges as constraints(CSF)[8],the new edgedirected interpolation method(NEDI)[10],and gradient-guided interpolation(GGI)[9].We now analyze the experimental results in detail.

    In the experiment,we carried out tests with different types of images by magnifying LR images of size 256×256 to get HR images of size 512× 512.Figures 7 and 8 show the magnified images with labeling of local windows containing edges and details extracted from the HR image.Comparing the corresponding regions of the boat image in Fig.7,we can see that our method is more capable of dealing with edge portions of an image,while other methods introduce jagged edges or blurring artifacts near edges.It is also clear from Fig.8 that Bicubic[4]and CSF[8]methods tend to introduce bluring artifacts:see the moustache of the baboon. NEDI[10]produces zigzags that are particularlyevident,while GGI[9]causes loss of detail in the area of the moustache.Our method leads to better visual quality than other methods.

    Fig.7 Results of magnifying the boat image:(a)ground truth;(b)Bicubic;(c)CSF;(d)NEDI;(e)GGI;(f)ours.

    Fig.8 Results of magnifying the baboon image:(a)ground truth;(b)Bicubic;(c)CSF;(d)NEDI;(e)GGI;(f)ours.

    We also conducted experiments with MRI images of a brain which were segmented into four classes by theMICO(multiplicativeintrinsiccomponent optimization)segmentationalgorithm[22]. Although the results of MICO algorithm provide high accuracy segmentation,there are still rough edges due to limitations of the segmentation method. Figures 9(a)-9(f)show Bicubic,CSF,NEDI,GGI,and our results from top to bottom.The results of magnification shown in Fig.9 illustrate that our method can deal well with a segmented image with severe zigzags,effectively retaining sharp edges while avoiding jagged artifacts during magnification.

    For synthetic images,F(xiàn)ig.10,F(xiàn)ig.11,and Fig.12 show the map of gray values at edge portions after applying several methods mentioned above.It is clear that our method is able to maintain the sharpest edges with less blur:other methods produce fuzzy data around the edges which results in blurring artifacts.

    Inordertoevaluatethequalityofthe magnification results,we use the three objective methodsbasedoncomparisonswithexplicit numerical criteria[23],including peak signal to noise ratio(PSNR),structural similarity(SSIM),and percentage edge error(PEE).PSNR measures the disparity between the magnified image and the ground truth image,and is defined as

    where the mean square error(MSE)between two images is

    SSIM measures the similarity of the structural information between the magnified image and the ground truth image[24].It is related to quality perceived by the human visual system(HVS),and is given by

    whereμSandμIdenote the mean value of the ground truth image and the magnified image respectively,σSand σIrepresent variances of the corresponding images,and σSIdenotes the covariance of the two images.

    For the images shown in Fig.13,values of PSNR and SSIM are listed in Table 1 and Table 2,respectively.It is clear that our proposed method performs well in most cases,giving the highest values for PSNR and SSIM.

    In addition,the percentage edge error(PEE)[25]was also used to measure perceptual errors.PEE is very suitable for measuring dissatisfaction of image magnification,where the major artifact is blurring.PEE measures the closeness of details in the interpolated image to the ground truth image.Generally in image interpolation,a positive value of PEE means that the magnified image is over smoothed,with likely loss of details.Thus,a method with smaller PEE performs better at avoiding blurring artifacts.PEE is defined by

    where ESSdenotes the edge strength of the ground truth image and ESIis that of the magnified image. ES is defined as

    where EI(i,j)denotes the edge intensity value of the image.

    The PEE values for each interpolation method are shown in Table 3.It is clear that the PEE value for the proposed method is very low compared with the values for other techniques,so structural edges are better preserved and less blurring is produced in our method.

    The analysis of the experimental results above shows that the proposed method achieves a good balance between edge-preservation and blurring,performing especially well on synthetic images and segmented medical images.The major drawback of this method lies in the limitation of using the gradients only in horizontal and vertical directions,making it hard to get accurate gradient values for images with very low contrast.Our future work will consider how to calculate gradients in more directions,and use a surface of high accuracy to approximate the image data.We hope to develop a method for magnification that can maintain edgesanddetailedtextureperfectlywithlow computational time.

    5 Conclusions

    This paper presents a novel method of producing anHR image by making use of gradient information.It maintains sharpness of edges and clear details in an image.Our proposed method first obtains LR image gradient values by fitting a surface with quadratic polynomial precision,then the method adopts a bicubic method to get initial values of the HR image gradients.It then adjusts the gradients according to the spatial correlation in the gradient direction to constrain the gradients of the HR image.Finally it estimates the missing pixels using a linear surface weighted by neighboring LR pixels.Experimental results demonstrate that our proposed method can achieve good quality image enlargement,avoiding jagged artifacts that arise by direct interpolation;it preserves sharp edges by gradient fusion.

    Fig.9 Enlarged image of a brain.(A)and(B)are segmented brain images produced by MICO.Images(a),(b),and(c)are results of enlarging a specified area of(A).Images(d),(e),and(f)are the results of enlarging a specified area of(B).

    Fig.10 Magnification of vertical edges:(a)original image and gray value;(b)ours;(c)Bicubic;(d)CSF;(e)NEDI;(f)GGI.

    Acknowledgements

    The authors would like to thank the anonymous reviewers for their valuable suggestions that greatly improved the paper.This project was supported by the National Natural Science Foundation of China(Nos.61332015,61373078,61572292,and 61272430),and National Research Foundation for the Doctoral Program of Higher Education of China (No.20110131130004).

    References

    [1]Siu, W.-C.; Hung, K.-W.Reviewofimage interpolation and super-resolution.In:Proceedings ofAsia-PacificSignal&InformationProcessing Association Annual Summit and Conference,1-10,2012.

    [2]Gonzalez,R.C.;Woods,R.E.DigitalImage Processing,3rd edn.Upper Saddle River,NJ,USA: Prentice-Hall,Inc.,2006.

    Fig.11 Magnification of horizontal edges:(a)original image and gray value;(b)ours;(c)Bicubic;(d)CSF;(e)NEDI;(f)GGI.

    [3]Franke,R.Scattered data interpolation:Tests of some methods.Mathematics of Computation Vol.38,No. 157,181-200,1982.

    [4]Keys,R.G.Cubic convolution interpolation for digital image processing.IEEE Transactions on Acoustics,Speech and Signal Processing Vol.29,No.6,1153-1160,1981.

    [5]Park,S.K.;Schowengerdt,R.A.Image reconstruction by parametric cubic convolution.Computer Vision,Graphics,and Image Processing Vol.23,No.3,258-272,1983.

    [6]Duchon,C.E.Lanczos filtering in one and two dimensions.Journal of Applied Meteorology Vol.18,No.8,1016-1022,1979.

    [7]Allebach,J.;Wong,P.W.Edge-directed interpolation. In:Proceedings of International Conference on Image Processing,Vol.3,707-710,1996.

    [8]Zhang,C.;Zhang,X.;Li,X.;Cheng,F(xiàn).Cubic surface fitting to image with edges as constraints. In:Proceedings of the 20th IEEE International Conference on Image Processing,1046-1050,2013.

    [9]Jing,G.;Choi,Y.-K.;Wang,J.;Wang,W.Gradient guided image interpolation.In:Proceedings of IEEE International Conference on Image Processing,1822-1826,2014.

    [10]Li, X.; Orchard, M.T.Newedge-directed interpolation.IEEE Transactions on Image Processing Vol.10,No.10,1521-1527,2001.

    [11]Tam,W.-S.;Kok,C.-W.;Siu,W.-C.Modified edgedirected interpolation for images.Journal of Electronic Imaging Vol.19,No.1,013011,2010.

    [12]Zhang,D.;Wu,X.An edge-guided image interpolation algorithm via directional filtering and data fusion.IEEE Transactions on Image Processing Vol.15,No. 8,2226-2238,2006.

    [13]Zhang,L.;Zhang,C.;Zhou,Y.;Li,X.Surface interpolation to image with edge preserving.In: Proceedings of the 22nd International Conference on Pattern Recognition,1055-1060,2014.

    [14]Fan,H.;Peng,Q.;Yu,Y.A robust high-resolution details preserving denoising algorithm for meshes. Science China Information Sciences Vol.56,No.9,1-12,2013.

    [15]Chang,H.;Yeung,D.-Y.;Xiong,Y.Super-resolution through neighbor embedding.In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Vol.1,I,2004.

    [16]Dong,W.; Zhang,L.; Lukac,R.; Shi,G. Sparse representation based image interpolation with nonlocal autoregressive modeling.IEEE Transactions on Image Processing Vol.22,No.4,1382-1394,2013.

    [17]Freeman,W.T.;Jones,T.R.;Pasztor,E.C.Examplebased super-resolution.IEEE Computer Graphics and Applications Vol.22,No.2,56-65,2002.2861-2873,2010.

    Fig.12 Magnification of diagonal edges:(a)original image and gray value;(b)ours;(c)Bicubic;(d)CSF;(e)NEDI;(f)GGI.

    Fig.13 Test images.Top row,left to right:cameraman,baboon,boat,goldhill,lake.Bottom row:peppers,couple,Lena,crowd,medical.

    Table 1 Values of PSNR

    Table 2 Values of SSIM

    [21]Ohtake,Y.; Suzuki, H.Edgedetectionbased multi-material interface extraction on industrial CT volumes.Science China Information Sciences Vol.56,No.9,1-9,2013.

    [22]Li,C.;Gore,J.C.;Davatzikos,C.Multiplicative intrinsic component optimization(MICO)for MRI biasfieldestimationandtissuesegmentation. Magnetic Resonance Imaging Vol.32,No.7,913-923,2014.

    [23]Hore,A.;Ziou,D.Image quality metrics:PSNR vs.SSIM.In:Proceedings of the 20th International Conference on Pattern Recognition,2366-2369,2010. [24]Wang,Z.;Bovik,A.C.;Sheikh,H.R.;Simoncelli,E.P.Image quality assessment:From error visibility to structural similarity.IEEE Transactions on Image Processing Vol.3,No.4,600-612,2004.

    [25]Al-Fohoum,A.S.;Reza.A.M.Combined edge crispiness and statistical differencing for deblocking JPEG compressed images.IEEE Transactions on Image Processing Vol.10,No.9,1288-1298,2001.

    Liqiong Wu received her B.S.degree in computer science and technology from Shandong University,Jinan,China,in 2014.Currently,she is a master student intheSchoolofComputerScience and Technology,Shandong University,Jinan,China.Her research interests include computer graphics and image processing.

    Table 3 Values of PEE as percentages

    [18]Sun,J.;Sun,J.;Xu,Z.;Shum,H.-Y.Image superresolution using gradient profile prior.In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,1-8,2008.

    [19]Wu,W.;Liu,Z.;He,X.Learning-based super resolution using kernel partial least squares.Image and Vision Computing Vol.29,No.6,394-406,2011.

    [20]Yang,J.;Wright,J.;Huang,T.S.;Ma,Y.Image super-resolutionviasparserepresentation.IEEE Transactions on Image Processing Vol.19 No.11,

    Yepeng Liu received his B.S.degree in computer science and technology from Shandong University,Jinan,China,in 2014.Heiscurrentlypursuingthe Ph.D.degree in the School of Computer ScienceandTechnology, Shandong University,Jinan,China.His research interestsincludecomputergraphics,image processing,and geometry processing.

    BrekhnareceivedherB.S.degree incomputerscienceandtechnology fromtheUniversityofPeshawar,Pakistan,in 2010.She received her M.S.degree in computer science and technologyfromComsatsInstitute ofTechnology,Islamabad,Pakistan,in 2013.Currently,she is a Ph.D. candidateintheSchoolofComputerScienceand Technology,Shandong University,Jinan,China.Her researchinterestsincludeimageprocessing,computer graphics,and machine learning.Ning Liu received her B.S.degree in library science from Wuhan University. Since 2002,she has been an associate researchlibrarianintheSchoolof ComputerScienceandTechnology,Shandong University,Jinan,China.

    Caiming Zhang is a professor and doctoral supervisor of the School of Computer Science and Technology at Shandong University.He received his B.S.and master degrees in computer science from Shandong University in 1982and1984, respectively, and Ph.D.degree in computer science from Tokyo Institute of Technology,Japan,in 1994.From 1997 to 2000,Dr.Zhang has held a visiting position at the University of Kentucky,USA.His research interests include CAGD,CG,information visualization,and medical image processing.

    Open AccessThe articles published in this journal aredistributedunderthetermsoftheCreative Commons Attribution 4.0 International License(http:// creativecommons.org/licenses/by/4.0/),whichpermits unrestricted use,distribution,and reproduction in any medium,provided you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.

    Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript,please go to https://www. editorialmanager.com/cvmj.

    乱系列少妇在线播放| 精品人妻偷拍中文字幕| 国产高潮美女av| 国产av国产精品国产| 国产色爽女视频免费观看| 少妇人妻 视频| 免费黄网站久久成人精品| 2018国产大陆天天弄谢| 青春草国产在线视频| av天堂中文字幕网| 国产成人免费无遮挡视频| 黄色配什么色好看| 久久久久久久精品精品| 国产伦理片在线播放av一区| 97在线人人人人妻| 色婷婷av一区二区三区视频| 在线亚洲精品国产二区图片欧美 | 久热这里只有精品99| av免费在线看不卡| 免费黄网站久久成人精品| 欧美亚洲 丝袜 人妻 在线| 国产成人aa在线观看| 边亲边吃奶的免费视频| 视频中文字幕在线观看| 日本黄色日本黄色录像| 欧美亚洲 丝袜 人妻 在线| 日韩 亚洲 欧美在线| 亚洲精品aⅴ在线观看| 亚洲四区av| 久久久精品免费免费高清| 国产成人一区二区在线| 日韩成人伦理影院| 色吧在线观看| 香蕉精品网在线| 久久久午夜欧美精品| 亚洲欧美中文字幕日韩二区| 少妇人妻 视频| 日本wwww免费看| 免费人妻精品一区二区三区视频| 大香蕉久久网| 老师上课跳d突然被开到最大视频| 麻豆成人午夜福利视频| 麻豆国产97在线/欧美| 国产成人一区二区在线| 成人无遮挡网站| 成人毛片a级毛片在线播放| 国产精品一二三区在线看| 3wmmmm亚洲av在线观看| 亚洲人与动物交配视频| 亚洲精品亚洲一区二区| 亚洲精品456在线播放app| 99热国产这里只有精品6| 中文字幕av成人在线电影| 亚洲人成网站在线观看播放| 女的被弄到高潮叫床怎么办| 免费观看无遮挡的男女| 联通29元200g的流量卡| 午夜激情久久久久久久| 国产免费又黄又爽又色| 亚洲国产欧美在线一区| 亚洲av成人精品一区久久| 亚洲怡红院男人天堂| 欧美日韩亚洲高清精品| 国产爱豆传媒在线观看| 一本久久精品| 欧美区成人在线视频| videossex国产| 国产精品一区二区在线观看99| av国产精品久久久久影院| 免费大片黄手机在线观看| 亚洲aⅴ乱码一区二区在线播放| 内射极品少妇av片p| 18+在线观看网站| 亚洲精品乱久久久久久| 日本欧美视频一区| 国产精品免费大片| 亚洲人成网站在线观看播放| 久久ye,这里只有精品| 中文资源天堂在线| 午夜免费鲁丝| 国产探花极品一区二区| 嫩草影院新地址| 亚洲中文av在线| 久久韩国三级中文字幕| 免费av不卡在线播放| 欧美xxxx黑人xx丫x性爽| 亚洲成人av在线免费| 18禁裸乳无遮挡免费网站照片| 国产熟女欧美一区二区| 婷婷色综合www| 国产免费一级a男人的天堂| 在线免费十八禁| 日韩av在线免费看完整版不卡| 久久精品国产亚洲网站| 自拍偷自拍亚洲精品老妇| 香蕉精品网在线| 日本wwww免费看| 黄色欧美视频在线观看| 97在线视频观看| 亚洲性久久影院| 亚洲aⅴ乱码一区二区在线播放| 精品国产露脸久久av麻豆| 99久国产av精品国产电影| 熟女电影av网| 日韩亚洲欧美综合| 亚洲av欧美aⅴ国产| 国产精品一二三区在线看| 日韩精品有码人妻一区| 久久久a久久爽久久v久久| 国产精品一区二区在线不卡| 久久精品国产亚洲av涩爱| 大片免费播放器 马上看| 天堂中文最新版在线下载| 熟女人妻精品中文字幕| 午夜福利在线在线| 国产精品久久久久久久久免| 亚洲国产av新网站| 涩涩av久久男人的天堂| 亚洲精品色激情综合| 久久精品熟女亚洲av麻豆精品| 丰满迷人的少妇在线观看| 亚洲人成网站在线观看播放| 最近中文字幕高清免费大全6| 免费av不卡在线播放| 国产人妻一区二区三区在| 国产午夜精品久久久久久一区二区三区| 久久精品国产a三级三级三级| 国产亚洲91精品色在线| 日日摸夜夜添夜夜添av毛片| 丰满乱子伦码专区| 国产精品.久久久| 亚洲三级黄色毛片| 亚洲av成人精品一区久久| 建设人人有责人人尽责人人享有的 | 中文字幕久久专区| 欧美成人a在线观看| 这个男人来自地球电影免费观看 | 亚洲丝袜综合中文字幕| 一区二区三区四区激情视频| 免费观看的影片在线观看| 永久免费av网站大全| 国产中年淑女户外野战色| 国产精品一区www在线观看| 啦啦啦中文免费视频观看日本| 国产一区亚洲一区在线观看| 久久精品人妻少妇| 久久久久久久久久成人| 久久久精品免费免费高清| 亚洲欧美成人精品一区二区| 亚洲精品一二三| 美女cb高潮喷水在线观看| 欧美精品一区二区免费开放| 联通29元200g的流量卡| 亚洲高清免费不卡视频| 欧美亚洲 丝袜 人妻 在线| 成人美女网站在线观看视频| 日韩成人av中文字幕在线观看| 高清黄色对白视频在线免费看 | 激情五月婷婷亚洲| 久久久久久久久久人人人人人人| 少妇熟女欧美另类| 久久精品国产自在天天线| av视频免费观看在线观看| 18禁在线无遮挡免费观看视频| 一区二区三区精品91| 成人一区二区视频在线观看| 97热精品久久久久久| 一区在线观看完整版| 国产av一区二区精品久久 | 男女国产视频网站| 久久人妻熟女aⅴ| 蜜桃久久精品国产亚洲av| 一级二级三级毛片免费看| 国产免费一级a男人的天堂| 久久精品国产a三级三级三级| 视频中文字幕在线观看| 男女边摸边吃奶| 国产成人a区在线观看| 国产免费一区二区三区四区乱码| 街头女战士在线观看网站| 免费少妇av软件| 一级毛片我不卡| 精华霜和精华液先用哪个| 午夜视频国产福利| 亚洲国产精品成人久久小说| 久久久久久久久大av| 成人免费观看视频高清| a级毛色黄片| 国产视频首页在线观看| 色吧在线观看| 欧美成人精品欧美一级黄| 777米奇影视久久| 大陆偷拍与自拍| 精品亚洲成国产av| 中文字幕精品免费在线观看视频 | 少妇精品久久久久久久| 男人和女人高潮做爰伦理| 久久久久久人妻| 国产毛片在线视频| 亚洲av二区三区四区| 婷婷色综合大香蕉| 国产精品一及| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久伊人网av| 国产黄片美女视频| 精品视频人人做人人爽| 久久99热6这里只有精品| 亚洲av电影在线观看一区二区三区| 日日啪夜夜撸| 亚洲国产精品999| 99热这里只有是精品在线观看| 国产精品精品国产色婷婷| 日产精品乱码卡一卡2卡三| 国产午夜精品一二区理论片| 下体分泌物呈黄色| 亚洲av综合色区一区| 国产乱人偷精品视频| 色哟哟·www| 日韩中字成人| www.色视频.com| 日韩欧美精品免费久久| 国产精品久久久久成人av| 国产老妇伦熟女老妇高清| 久久国产精品男人的天堂亚洲 | 丰满乱子伦码专区| 精品国产三级普通话版| 成人毛片60女人毛片免费| 内射极品少妇av片p| 国产精品麻豆人妻色哟哟久久| 最近的中文字幕免费完整| 久久国产亚洲av麻豆专区| 一边亲一边摸免费视频| 亚洲精品日韩av片在线观看| 午夜福利在线观看免费完整高清在| 国产午夜精品一二区理论片| 高清毛片免费看| 51国产日韩欧美| 男男h啪啪无遮挡| 国产精品欧美亚洲77777| 26uuu在线亚洲综合色| 两个人的视频大全免费| www.av在线官网国产| 日韩一区二区视频免费看| 亚洲av不卡在线观看| 人妻少妇偷人精品九色| 久久国产亚洲av麻豆专区| 国国产精品蜜臀av免费| 亚洲欧洲国产日韩| 亚洲精品日韩在线中文字幕| 国产高清不卡午夜福利| 日日摸夜夜添夜夜添av毛片| 国产色爽女视频免费观看| 亚洲av综合色区一区| 成人二区视频| 成人高潮视频无遮挡免费网站| 亚洲真实伦在线观看| 激情五月婷婷亚洲| 亚洲精品第二区| 国产精品一区www在线观看| 久久韩国三级中文字幕| 日韩强制内射视频| av免费在线看不卡| 亚洲天堂av无毛| 国产爱豆传媒在线观看| 久久国产精品大桥未久av | 成人二区视频| 日韩 亚洲 欧美在线| 一本久久精品| 一二三四中文在线观看免费高清| 亚洲真实伦在线观看| 亚洲欧美一区二区三区黑人 | 久久久久久九九精品二区国产| 亚洲av二区三区四区| 久久久久久久久久成人| 国产在线男女| 国产成人精品一,二区| 久热久热在线精品观看| 狂野欧美激情性bbbbbb| 中文字幕精品免费在线观看视频 | 午夜日本视频在线| 寂寞人妻少妇视频99o| 夫妻性生交免费视频一级片| 尾随美女入室| 涩涩av久久男人的天堂| 日韩亚洲欧美综合| 天美传媒精品一区二区| 成人特级av手机在线观看| 成人国产av品久久久| 亚洲精品一二三| 国产69精品久久久久777片| 国产精品爽爽va在线观看网站| 欧美97在线视频| 一区二区三区免费毛片| 亚洲性久久影院| 亚洲不卡免费看| 夫妻午夜视频| 老司机影院毛片| 日日摸夜夜添夜夜添av毛片| 国产黄片美女视频| 免费观看a级毛片全部| 日本午夜av视频| 中文天堂在线官网| 国产日韩欧美在线精品| 国产在视频线精品| 午夜激情久久久久久久| av.在线天堂| 国产在线男女| 91精品国产九色| 在线观看免费高清a一片| 97超视频在线观看视频| 亚洲在久久综合| 少妇精品久久久久久久| 国产精品不卡视频一区二区| 永久网站在线| 久久精品人妻少妇| 中文欧美无线码| 精品人妻视频免费看| 成人国产麻豆网| 久久久成人免费电影| 男女免费视频国产| 精品久久久噜噜| 亚洲成人一二三区av| 日韩欧美精品免费久久| 成人18禁高潮啪啪吃奶动态图 | 久久精品久久久久久噜噜老黄| 成人亚洲欧美一区二区av| 成人午夜精彩视频在线观看| 国产一级毛片在线| 久久久欧美国产精品| 伦精品一区二区三区| 亚洲欧美成人精品一区二区| 免费人成在线观看视频色| tube8黄色片| 日韩国内少妇激情av| 少妇丰满av| 国产成人a∨麻豆精品| 久热久热在线精品观看| 日韩,欧美,国产一区二区三区| 国产真实伦视频高清在线观看| 黄色怎么调成土黄色| 热99国产精品久久久久久7| 在线观看一区二区三区激情| 三级经典国产精品| 十八禁网站网址无遮挡 | 国产一区有黄有色的免费视频| 国产精品一区二区在线观看99| 美女国产视频在线观看| 在线免费十八禁| 久久这里有精品视频免费| 男的添女的下面高潮视频| 一级爰片在线观看| 久久婷婷青草| 一级毛片黄色毛片免费观看视频| 一级a做视频免费观看| 国产老妇伦熟女老妇高清| 涩涩av久久男人的天堂| 国产高清不卡午夜福利| 日韩伦理黄色片| 国产成人免费无遮挡视频| 乱系列少妇在线播放| 日韩电影二区| 人妻夜夜爽99麻豆av| 爱豆传媒免费全集在线观看| 欧美丝袜亚洲另类| 国产在线男女| 国产黄色免费在线视频| 丰满乱子伦码专区| 国产人妻一区二区三区在| 性高湖久久久久久久久免费观看| 久久久久久久久大av| 在线观看国产h片| 99热全是精品| 不卡视频在线观看欧美| 身体一侧抽搐| 黑人高潮一二区| 毛片女人毛片| 国产精品一二三区在线看| 国产精品人妻久久久久久| 午夜视频国产福利| 亚洲激情五月婷婷啪啪| 国产精品爽爽va在线观看网站| 亚洲成人一二三区av| 国产在线免费精品| 国产精品一区二区在线观看99| 天美传媒精品一区二区| 国产欧美日韩一区二区三区在线 | 99热6这里只有精品| 插逼视频在线观看| 日本色播在线视频| 王馨瑶露胸无遮挡在线观看| 天堂俺去俺来也www色官网| 老熟女久久久| 网址你懂的国产日韩在线| 久久精品久久久久久噜噜老黄| 毛片一级片免费看久久久久| 在线免费十八禁| 99久久精品国产国产毛片| 国内揄拍国产精品人妻在线| 色哟哟·www| 青春草国产在线视频| 国产成人freesex在线| 亚洲欧美日韩无卡精品| 嫩草影院入口| 十八禁网站网址无遮挡 | 日本av免费视频播放| 午夜激情久久久久久久| 各种免费的搞黄视频| 欧美少妇被猛烈插入视频| 建设人人有责人人尽责人人享有的 | 国产欧美日韩一区二区三区在线 | 亚洲色图av天堂| 久久久亚洲精品成人影院| 亚洲伊人久久精品综合| 99热全是精品| 日本黄色日本黄色录像| 亚洲伊人久久精品综合| 一级二级三级毛片免费看| 热re99久久精品国产66热6| 91精品一卡2卡3卡4卡| 免费高清在线观看视频在线观看| 久久人人爽av亚洲精品天堂 | 两个人的视频大全免费| 伦理电影免费视频| 成人二区视频| 国产黄片美女视频| 2018国产大陆天天弄谢| 国产 一区 欧美 日韩| 欧美日韩精品成人综合77777| 下体分泌物呈黄色| 熟女电影av网| 嫩草影院入口| 国产又色又爽无遮挡免| av国产免费在线观看| 久久精品国产a三级三级三级| 日本av免费视频播放| 女性被躁到高潮视频| 男女啪啪激烈高潮av片| 婷婷色综合www| 免费看不卡的av| 久久人人爽人人爽人人片va| 伊人久久国产一区二区| 免费不卡的大黄色大毛片视频在线观看| 久久久久久久国产电影| 汤姆久久久久久久影院中文字幕| 婷婷色综合www| 久久久久久九九精品二区国产| 欧美成人一区二区免费高清观看| 一个人看视频在线观看www免费| 91精品国产国语对白视频| 国产精品国产av在线观看| 色吧在线观看| 国产精品伦人一区二区| 免费人妻精品一区二区三区视频| 五月天丁香电影| 十八禁网站网址无遮挡 | 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品欧美亚洲77777| 极品少妇高潮喷水抽搐| 久久久久精品久久久久真实原创| 一个人免费看片子| 国产精品秋霞免费鲁丝片| 亚洲精品456在线播放app| 人妻制服诱惑在线中文字幕| 丰满迷人的少妇在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产黄色免费在线视频| 51国产日韩欧美| 久久精品国产亚洲av涩爱| 国产av国产精品国产| 久久亚洲国产成人精品v| 一本—道久久a久久精品蜜桃钙片| 久久久久久久亚洲中文字幕| 亚洲美女视频黄频| 亚洲精品456在线播放app| 日韩制服骚丝袜av| 久久久久久久大尺度免费视频| 少妇人妻一区二区三区视频| 免费在线观看成人毛片| 两个人的视频大全免费| 成年免费大片在线观看| 久久99蜜桃精品久久| 久久 成人 亚洲| 最近中文字幕2019免费版| 毛片一级片免费看久久久久| 身体一侧抽搐| 精品一区二区三区视频在线| 女性生殖器流出的白浆| 免费观看的影片在线观看| 久久久久久久久久人人人人人人| 男人爽女人下面视频在线观看| 黑丝袜美女国产一区| 青春草亚洲视频在线观看| 午夜免费观看性视频| 色婷婷av一区二区三区视频| 国产免费又黄又爽又色| 欧美精品国产亚洲| 在线播放无遮挡| 国国产精品蜜臀av免费| 男人添女人高潮全过程视频| 欧美一区二区亚洲| 日韩在线高清观看一区二区三区| 99久久综合免费| 亚洲av二区三区四区| 国产精品熟女久久久久浪| 美女脱内裤让男人舔精品视频| 日本av手机在线免费观看| 九九在线视频观看精品| 一本久久精品| 自拍偷自拍亚洲精品老妇| 99热6这里只有精品| 搡女人真爽免费视频火全软件| 一级爰片在线观看| 欧美日韩视频高清一区二区三区二| 夫妻性生交免费视频一级片| 深爱激情五月婷婷| 国产男女超爽视频在线观看| 国产亚洲欧美精品永久| 熟女av电影| 啦啦啦在线观看免费高清www| 色5月婷婷丁香| 青春草亚洲视频在线观看| 波野结衣二区三区在线| 亚洲国产精品一区三区| 人人妻人人看人人澡| 天天躁日日操中文字幕| h日本视频在线播放| 精品人妻熟女av久视频| 中文字幕av成人在线电影| 久久久久国产精品人妻一区二区| 免费高清在线观看视频在线观看| 国产精品久久久久久久久免| 日韩中文字幕视频在线看片 | 国产亚洲91精品色在线| 中文资源天堂在线| 插阴视频在线观看视频| 日产精品乱码卡一卡2卡三| 国产在线一区二区三区精| 国产亚洲午夜精品一区二区久久| 久久精品国产亚洲av涩爱| 中文字幕精品免费在线观看视频 | 一级毛片 在线播放| 精品久久久噜噜| 国产精品女同一区二区软件| 亚洲电影在线观看av| 成年免费大片在线观看| 一本—道久久a久久精品蜜桃钙片| 日韩在线高清观看一区二区三区| 最后的刺客免费高清国语| 国产亚洲5aaaaa淫片| 日日啪夜夜爽| 大片电影免费在线观看免费| 成人午夜精彩视频在线观看| 久久6这里有精品| 91久久精品电影网| 亚洲不卡免费看| 亚洲精品国产色婷婷电影| 老司机影院毛片| 国产乱来视频区| 18禁裸乳无遮挡动漫免费视频| 色5月婷婷丁香| 国内精品宾馆在线| av国产免费在线观看| 久久婷婷青草| 亚洲成人手机| 这个男人来自地球电影免费观看 | 高清不卡的av网站| 22中文网久久字幕| 99久久人妻综合| 青春草亚洲视频在线观看| 夜夜看夜夜爽夜夜摸| 国产一级毛片在线| 国产亚洲欧美精品永久| 国产黄片美女视频| 秋霞在线观看毛片| 亚洲精品乱久久久久久| 亚洲国产日韩一区二区| 丝袜脚勾引网站| 日韩制服骚丝袜av| 日日摸夜夜添夜夜添av毛片| 国产亚洲精品久久久com| 婷婷色综合大香蕉| 99久久精品一区二区三区| 欧美xxxx黑人xx丫x性爽| 国产亚洲5aaaaa淫片| 99热这里只有是精品50| 免费观看无遮挡的男女| 男女啪啪激烈高潮av片| 国产亚洲av片在线观看秒播厂| 国产精品成人在线| 亚洲av不卡在线观看| 亚洲伊人久久精品综合| 欧美人与善性xxx| 一区二区三区免费毛片| 亚洲欧美一区二区三区黑人 | 亚洲人与动物交配视频| 亚洲综合色惰| 日韩一区二区视频免费看| 校园人妻丝袜中文字幕| h日本视频在线播放| 51国产日韩欧美| 欧美日韩精品成人综合77777| 直男gayav资源| 国产亚洲午夜精品一区二区久久| 91精品一卡2卡3卡4卡| 老司机影院成人| 国产精品国产三级专区第一集| 欧美 日韩 精品 国产| 免费av中文字幕在线| 精品少妇黑人巨大在线播放| 91精品国产国语对白视频| 亚洲精品久久久久久婷婷小说| 纯流量卡能插随身wifi吗| 各种免费的搞黄视频| 伦理电影大哥的女人| 精品一区二区三区视频在线|