陳曉波,李 崧,陳曉端,王杰亮,何麗珠,王水鋒,鄧志威,程歡利,高 燕,劉泉林
1. 北京師范大學應用光學北京重點實驗室與物理系,北京 100875
2. 北京科技大學材料科學與工程學院,北京 100083
3. 國家納米科學中心納米材料實驗室,北京 100190
鈮酸釔里Bi3+敏化Tm3+的近紅外量子剪裁發(fā)光的濃度效應
陳曉波1,李 崧1,陳曉端1,王杰亮1,何麗珠2,王水鋒1,鄧志威1,程歡利1,高 燕3,劉泉林2
1. 北京師范大學應用光學北京重點實驗室與物理系,北京 100875
2. 北京科技大學材料科學與工程學院,北京 100083
3. 國家納米科學中心納米材料實驗室,北京 100190
尋找新能源為全球目前面臨著的重要課題,其中最理想的新能源為太陽能。近紅外量子剪裁發(fā)光方法可以把硅或鍺太陽能電池響應不夠靈敏的大能量光子成倍的轉換成為太陽能電池響應靈敏的小能量光子,能夠解決光譜失配的問題,較大幅度的提高太陽能電池的效率。很有意義。報道了摻Tm3+Bi3+的鈮酸釔磷光粉樣品材料的近紅外量子剪裁發(fā)光的濃度效應。通過測量激發(fā)譜與發(fā)光譜,發(fā)現(xiàn)Tm0.058Bi0.010Y0.932NbO4有很強的1 820.0 nm近紅外量子剪裁發(fā)光; 進一步的分析發(fā)現(xiàn),它們是由交叉能量傳遞過程導致的多光子量子剪裁發(fā)光; 還發(fā)現(xiàn)了有著很強的Bi3+對Tm3+的敏化近紅外量子剪裁發(fā)光,302.0 nm光激發(fā)導致的Tm0.058Bi0.010Y0.932NbO4相對Tm0.005Y0.995NbO4的1 820.0 nm近紅外量子剪裁發(fā)光的增強達到175.5倍。該結果對探索多光子近紅外量子剪裁鍺太陽能電池比較有意義。
近紅外量子剪裁發(fā)光; Tm3+; Bi3+; YNbO4; 太陽能電池
尋找新能源為全球目前面臨著的重要課題。其中最理想的新能源為太陽能[1-10],太陽能的儲藏量很豐富,五十分鐘照射在地球上的太陽能就足夠全球一年的能源消費; 同時,太陽能也很干凈,沒有任何污染。然而,太陽能的利用卻很不足,已利用的太陽能相對于它的儲藏量來說相去很遠,主要原因為太陽能電池高的造價和低的效率; 其中,70%的能量損耗為熱化損耗和透過損耗。因此利用近紅外量子剪裁把一個大能量光子剪裁成多個小能量光子[10],從而調整太陽光譜更好的匹配太陽能電池,確實為一種前景很好的提高太陽能電池效率的辦法[8-16]。我們知道鍺太陽能電池為一種很好的新太陽能電池,已經應用在鍺、硅鍺和多節(jié)級聯(lián)太陽能電池。鍺的能帶帶隙0.67 eV∶300 K (5 404 cm-1=1 850.5 nm)很小[1-8],它可以的吸收幾乎所有的近紅外太陽光譜,因此它的透過損耗很小[7-8, 11-12, 14]。如果運用近紅外量子剪裁把紫外和可見光轉換成略短于1 800 nm的近紅外光,大大的提高總的發(fā)光強度,我們可以預見此種多光子量子剪裁鍺太陽能電池會有很高的發(fā)電效率。
自從Vergeer和Meijerink報道YbxY1-xPO4∶Tb3+材料的二級近紅外量子剪裁以來[1],Meijerink[1, 15]、邱建榮與周佳佳[7, 11-12]、王元生與陳大欽[5-6]、黃小勇、陳永虎、陳金燈與郭海、張勤遠[14]和我們小組[8-9]等已經報道了兩百多篇近紅外量子剪裁發(fā)光課題的工作。主要為以Yb3+為受主激活中心的大約1 100 nm發(fā)光的近紅外量子剪裁,用在雙光子量子剪裁硅太陽能電池,最大的發(fā)電效率僅能達到約39%[10]; 但是,Tm3+受主激活中心的大約1 800 nm發(fā)光的近紅外量子剪裁發(fā)光課題到目前為止只有大約十篇報道[8, 14],Tm3+受主激活中心可以用在多光子量子剪裁鍺太陽能電池,它最大的發(fā)電效率可能達到約58%[9]。因此,該課題的研究既為很有意義的也為迫切的。我們研究了鈮酸釔里Bi3+敏化Tm3+的近紅外量子剪裁發(fā)光的濃度效應,發(fā)現(xiàn)有著很強的Bi3+對Tm3+的敏化近紅外量子剪裁發(fā)光。
1.1 樣品
所用樣品為aTm0.058Bi0.010Y0.932NbO4,bTm0.200Bi0.010Y0.790NbO4和cTm0.005Y0.995NbO4磷光粉樣品。鈮酸釔的磷光粉樣品為用高溫固相反應辦法制備而成的。所用原料為高純度的Y2O3(99.99%),Nb2O5(99.99%)與Tm2O3(99.99%),把它們按化學計量比組成稱量,然后,混合、研磨、壓制成為餅,最后,在爐子里在空氣中在1 400 ℃燒結5 h制備而成。
1.2 儀器
所用儀器裝備為FL3-2iHR穩(wěn)態(tài)瞬態(tài)熒光光譜儀(Horiba-JY公司)。激發(fā)光源為氙燈,可見探測器為R2658p光電倍增管,紅外探測器為DSS-IS020L固體銻化銦探測器,對所有的實驗結果,同一個圖的幾條實驗曲線間的相對熒光光強已經可以直接比較。
2.1 激發(fā)光譜
首先,把熒光接收波長固定在802.5 nm,測量了a(Tm0.058Bi0.010Y0.932NbO4),b(Tm0.200Bi0.010Y0.790NbO4)和c(Tm0.005Y0.995NbO4)磷光粉樣品在300~710 nm波長范圍的可見激發(fā)譜,結果如圖1所示。鈮酸釔的磷光粉樣品在紫外到可見有三組銳線激發(fā)峰,主要的峰值波長分別位于356.5, 461.5和682.0 nm。容易指認出它們依次為Tm3+的3H6—1D2,3H6—1G4, 與3H6—3F3的吸收躍遷[16]。還可以看出它們還有一組302.0 nm的寬帶的紫外激發(fā)峰,指認出它為Bi3+的1S0—3P1的吸收躍遷。
圖1 熒光接收波長固定在802.5 nm時的磷光粉的可見激發(fā)光譜
Fig.1 The visible excitation spectra ofa,bandcphosphorus powder, when the fluorescence with the central wavelength at 802.5 nm
隨后,把熒光接收波長固定在1 820.0 nm,測量了aTm0.058Bi0.010Y0.932NbO4,bTm0.200Bi0.010Y0.790NbO4和cTm0.005Y0.995NbO4磷光粉樣品在300~850 nm波長范圍的激發(fā)光譜,結果如圖2所示??梢钥闯鲡壦後惖牧坠夥蹣悠酚形褰M激發(fā)譜峰,主峰分別位于302.0, 362.0, 468.0, 682.0與789.0 nm,它們依次為Bi3+的1S0—3P1的吸收躍遷與Tm3+的3H6—1D2,3H6—1G4,3H6—3F3和3H6—3H4的吸收躍遷[16]。從圖2的激發(fā)譜可以看出越高能級的光激發(fā)導致的1 820.0 nm紅外發(fā)光的增強越強,因此它是一種多光子近紅外量子剪裁發(fā)光現(xiàn)象。
圖2 熒光接收波長固定在1 820.0 nm時磷光粉的激發(fā)光譜
Fig.2 The excitation spectra ofa,bandcphosphorus powder, when the fluorescence with the central wavelength at 1 820.0 nm near-infrared wavelength
2.2 發(fā)光光譜
接著,測量了aTm0.058Bi0.010Y0.932NbO4,bTm0.200Bi0.010Y0.790NbO4和cTm0.005Y0.995NbO4磷光粉樣品的可見發(fā)光光譜。302.0 nm的Bi3+的1S0—3P1的吸收躍遷波長被選來作為激發(fā)波長,測量了418~700 nm的發(fā)光光譜,該結果如圖3所示,從圖3可以看出aTm0.058Bi0.010Y0.932NbO4與bTm0.200Bi0.010Y0.790NbO4有很強的456.0 nm的寬帶發(fā)光峰,容易指認出它們?yōu)锽i3+的3P1—1S0的寬帶發(fā)光,而且隨著Tm3+濃度的提高,該發(fā)光峰的發(fā)光強度迅速減小,它證實了能量迅速從Bi3+傳遞給了Tm3+。鈮酸釔里Tm3+的357.0 nm3H6—1D2激發(fā)峰也被選作激發(fā)波長測量了418~700與700~1 020 nm的發(fā)光光譜, 該結果如圖4與圖5所示。可以看出它們有很強的(452.5, 456.5 nm),較小的(656.5, 662.0 nm)與中等的(789.0, 802.5 nm)的發(fā)光,容易指認出它們?yōu)門m3+的1D2—3F4,1G4—3F4與3H4—3H6的發(fā)光躍遷[16]。鈮酸釔里Tm3+的461.5 nm3H6—1G4激發(fā)峰也被選作激發(fā)波長測量了510~850 nm的發(fā)光光譜,該結果如圖6所示??梢钥闯鏊鼈冇兄械鹊?48.0 nm與中等的791.5 nm的發(fā)光,容易指認出它們?yōu)門m3+的1G4—3F4與3H4—3H6的發(fā)光躍遷。鈮酸釔里Tm3+的682.0 nm3H6—3F3激發(fā)峰也被選作激發(fā)波長測量了750~1 020 nm的發(fā)光光譜,該結果如圖7所示; 可以看出它們有中等的802.5 nm的發(fā)光,容易指認出它為Tm3+的3H4—3H6的發(fā)光躍遷。
圖3 302.0 nm光激發(fā)Bi3+的1S0—3P1躍遷時,磷光粉在418~700 nm波段的可見發(fā)光光譜
Fig.3 The visible luminescence spectra ofa,bandcphosphorus powder in the wavelength range of 418~700 nm, when the 302.0 nm1S0—3P1excitation peak of Bi3+ion is selected as the excitation wavelength
圖4 357.0 nm光激發(fā)Tm3+的3H6—1D2躍遷時,磷光粉在418~700 nm波段的可見發(fā)光光譜
Fig.4 The visible luminescence spectra ofa,bandcphosphorus powder in the wavelength range of 418~700 nm, when the 357.0 nm3H6—1D2excitation peak of Tm3+ion is selected as the excitation wavelength
圖5 357.0 nm光激發(fā)Tm3+的3H6—1D2躍遷時,熒光粉
Fig.5 The luminescence spectra ofa,bandcphosphorus powder in the wavelength range of 700~1 020 nm, when the 357.0 nm3H6—1D2excitation peak of Tm3+ion is selected as the excitation wavelength
最后,測量了aTm0.058Bi0.010Y0.932NbO4,bTm0.200Bi0.010Y0.790NbO4和cTm0.005Y0.995NbO4磷光粉樣品的紅外發(fā)光光譜。
302.0 nm的Bi3+的1S0—3P1的吸收躍遷波長被選來作為激發(fā)波長,我們測量了1 200~2 800 nm的發(fā)光光譜,該結果如圖8所示,從圖8可以看出aTm0.058Bi0.010Y0.932NbO4與bTm0.200Bi0.010Y0.790NbO4有很強的1 820.0 nm的紅外發(fā)光峰,容易指認出它為Tm3+的3F4—3H6的發(fā)光躍遷。而且隨著Bi3+濃度從0提高1%,該發(fā)光峰的發(fā)光強度從很小增強到極大,從圖8可以計算出302.0 nm光激發(fā)導致的aTm0.058Bi0.010Y0.932NbO4相對cTm0.005Y0.995NbO4磷光粉樣品的1 820.0 nm紅外發(fā)光的增強為175.5倍; 它證實了能量迅速從Bi3+傳遞給了Tm3+,從而實現(xiàn)很強的Bi3+對Tm3+的敏化近紅外量子剪裁發(fā)光。但是隨著Tm3+濃度從5.8%提高到20.0%,該發(fā)光峰的發(fā)光強度卻減小了,證實出現(xiàn)了濃度猝滅現(xiàn)象。
圖6 461.5 nm光激發(fā)Tm3+的3H6—1G4躍遷時,磷光粉在510~850 nm波段的發(fā)光光譜
Fig.6 The luminescence spectra ofaandcphosphorus powder in the wavelength range of 510~850 nm, when the 461.5 nm3H6—1G4excitation peak of Tm3+ion is selected as the excitation wavelength
圖7 682.0 nm光激發(fā)Tm3+的3H6—3F3躍遷時,磷光粉在700~1 020 nm波段的發(fā)光光譜
Fig.7 The luminescence spectra ofaTm0.058Bi0.010Y0.932NbO4,bTm0.200Bi0.010Y0.790NbO4, andcTm0.005Y0.995NbO4powder phosphor of 700~1 020 nm wavelength ranges, when the 682.0 nm3H6—3F3excitation peak of Tm3+ion is selected as the excitation wavelength
圖8 302.nm光激發(fā)Bi3+的1S0—3P1躍遷時,磷光粉在1 200~2 800 nm波段的紅外光光譜
Fig.8 The infrared luminescence spectra ofa,bandcphosphorus powder in the wavelength range of 1 200~2 800 nm, when the 302.0 nm1S0—3P1excitation peak of Bi3+ion is selected as the excitation wavelength
同樣的,Tm3+的362.0 nm的3H6—1D2,468.0 nm3H6—1G4與682.0 nm3H6—3F3吸收躍遷波長被選來作為激發(fā)波長,也測量了1 200~2 800 nm的發(fā)光光譜,結果如圖9、圖10與圖11所示,可以看出aTm0.058Bi0.010Y0.932NbO4,bTm0.200Bi0.010Y0.790NbO4和cTm0.005Y0.995NbO4磷光粉樣品依次分別有較大、中等與較小的1 820.0 nm的紅外發(fā)光峰,容易指認出它都為Tm3+的3F4—3H6的發(fā)光躍遷[16]。而且隨著Tm3+濃度從0.5%提高5.8%,該發(fā)光峰的發(fā)光強度從較小增強到較大,證實了能量迅速從Tm3+的高激發(fā)態(tài)交叉能量傳遞到第一激發(fā)態(tài)3F4能級從而導致較強的3F4—3H6的1 820.0 nm的紅外發(fā)光躍遷,因此它是一種近紅外量子剪裁發(fā)光。但是隨著Tm3+濃度從5.8%提高到20.0%,該發(fā)光峰的發(fā)光強度卻減小了,證實出現(xiàn)了濃度猝滅現(xiàn)象。從圖9、圖10與圖11可以計算出362.0,468.0與682.0 nm光激發(fā)導致的aTm0.058Bi0.010Y0.932NbO4相對cTm0.005Y0.995NbO4磷光粉樣品的1 820.0 nm紅外發(fā)光的增強
圖9 362.0 nm光激發(fā)Tm3+的3H6—1D2躍遷時,磷光粉在1 200~2 800 nm波段的紅外發(fā)光光譜
Fig.9 The infrared luminescence spectra ofa,bandcphosphorus powder in the wavelength range of 1 200~2 800 nm, when the 362.0 nm3H6—1D2excitation peak of Tm3+ion is selected as the excitation wavelength
圖10 468.0 nm光激發(fā)Tm3+的3H6—1G4躍遷時,磷光粉在1 200~2 800 nm波段的紅外發(fā)光光譜
Fig.10 The infrared luminescence spectra ofa,bandcphosphorus powder in the wavelength range of 1 200~2 800 nm, when the 468.0 nm3H6—1G4excitation peak of Tm3+ion is selected as the excitation wavelength
圖11 682.0 nm光激發(fā)Tm3+的3H6—3F3躍遷時,磷光粉在1 200~2 800 nm波段的紅外發(fā)光光譜
Fig.11 The infrared luminescence spectra ofa,bandcphosphorus powder in the wavelength range of 1 200~2 800 nm, when the 682.0 nm3H6—3F3excitation peak of Tm3+ion is selected as the excitation wavelength
圖12 Tm3+Bi3+∶YNbO4磷光粉的
Fig.12 The schematic diagram of energy level structure and quantum cutting process of Tm3+Bi3+∶YNbO4powder phosphor
分別為7.551倍、7.433倍與3.297倍,越高能級的光激發(fā)導致的1 820.0 nm紅外發(fā)光的增強越強,因此它是一種多光子近紅外量子剪裁發(fā)光現(xiàn)象。圖12給出了Tm3+Bi3+∶YNbO4磷光粉樣品材料的能級結構與量子剪裁過程示意圖,圖中ABi代表Bi3+的1S0—3P1的吸收,A04,A06與A07依次分別代表Tm3+的3H6—3F3,3H6—1G4與3H6—1D2的吸收,ETr31—ETa01代表{3H4—3F4,3H6—3F4}交叉能量傳遞過程,ETr63-ETa02代表{1G4—3H4,3H6—3H5}交叉能量傳遞過程,ETr62—ETa03代表{1G4—3H5,3H6—3H4}交叉能量傳遞過程,ETr73—ETa04代表{1D2—3H4,3H6—3F3}交叉能量傳遞過程,ETr75—ETa03代表{1D2—3F2,3H6—3H4}交叉能量傳遞過程,ETr76—ETa01代表{1D2—1G4,3H6—3F4}交叉能量傳遞過程,它們?yōu)閹讉€主要的近紅外量子剪裁通道。該結果對探索多光子近紅外量子剪裁鍺太陽能電池比較有意義。
從測量的激發(fā)譜與發(fā)光譜發(fā)現(xiàn)Tm0.058Bi0.010Y0.932NbO4有很強的1 820.0 nm近紅外量子剪裁發(fā)光; 還創(chuàng)新的發(fā)現(xiàn)了302.0 nm光激發(fā)導致的Tm0.058Bi0.010Y0.932NbO4相對Tm0.005Y0.995NbO4的1 820.0 nm近紅外量子剪裁發(fā)光的增強達到175.5倍,敏化效果很好的。
[1] Vergeer P, Vlugt T J H, Kox M H F, et al. Phys. Rev. B, 2005, 71(1): 014119.
[2] TANG Jin-fa, ZHOU Bing-kun, LI Guang-lin, et al(唐晉發(fā),周炳琨,李光臨,等). Optics and Opto-Electronics (光學與光電子學),Beijing: Science Press(北京: 科學出版社), 1991.
[3] Wegh R T, Donker H, Oskam K D, et al. Science, 1999, 283(54 02): 663.
[4] Richards B S. Sol. Energy Mater. Sol. Cells, 2006, 90(9): 1189.
[5] Zhu W J, Chen D Q, Lei L, et al. Nanoscale, 2014, 6(18): 10500.
[6] Chen D Q, Wang Y S, Hong M C. Nano Energy, 2012, 1(1): 73.
[7] Zhou J J, Teng Y, Liu X F, et al. Phys. Chem. Chem. Phys., 2010, 12(41): 13759.
[8] Chen X B, Salamo G J, Yang G J, et al. Opt. Express, 2013, 21(18): A829.
[9] YAO Wen-ting, CHEN Xiao-bo, CHENG Huan-li, et al(姚文婷,陳曉波,程歡利,等). Spectroscopy and Spectral Analysis(光譜學與光譜分析), 2015, 35(2): 325.
[10] Trupke T, Green M A, Wurfel P. J. Appl. Phys., 2002, 92(3): 1668.
[11] Zhou J J, Teng Y, Zhou S F, et al. International Journal of Applied Glass Science, 2012, 3(4): 299.
[12] Zhou J J, Teng Y, Liu X F, et al. Opt. Express, 2010, 18(21): 21663.
[13] Reisfeld R. Lasers and Excited States of Rare-Earth (Springer-Verlag), 1977.
[14] Wang Y Z, Yu D C, Lin H H, et al. J. Appl. Phys., 2013, 114(20): 203510.
[15] van der Ende B M, Aarts L, Meijerink A. Phys. Chem. Chem. Phys., 2009, 11(47): 11081.
[16] SONG Zeng-fu(宋增福). Principle and Application of Atomic Spectroscopy and Crystal Spectroscopy(原子光譜及晶體光譜原理與應用). Beijing: Science Press(北京: 科學出版社), 1987.
(Received May 5, 2015; accepted Sep. 2, 2015)
The Concentration Effect of Near-Infrared Quantum Cutting Luminescence of Tm3+Ion Sensitized with Bi3+Ion in YNbO4Phosphor
CHEN Xiao-bo1, LI Song1, CHEN Xiao-duan1, WANG Jie-liang1, HE Li-zhu2, WANG Shui-feng1, DENG Zhi-wei1,CHENG Huan-li1, GAO Yan3, LIU Quan-lin2
1. Applied Optics Beijing Area Major Laboratory and Department of Physics, Beijing Normal University, Beijing 100875, China
2. School of Materials Science and Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
3. Laboratory of Nanomaterials, National Center for Nanoscience and Technology of China, Beijing 100190, China
Searching for new energy source is one of the most important projects faced by the global, while the most ideal new energy source is solar cell. Near infrared quantum cutting luminescence method can doubly transfer large energy photon which is not sensitive to Si or Ge solar cell to small energy photon which is sensitive to Si or Ge solar cell. It can resolve the spectral mismatch problem and largely enhance solar cell efficiency. Therefore, it is significant. The concentration effect of near-infrared quantum cutting luminescence of Tm3+Bi3+∶YNbO4phosphor is reported in present manuscript. Through the measurement of excitation and emission spectra, it is found that the Tm0.058Bi0.010Y0.932NbO4powder phosphor has intense 1 820.0 nm near-infrared quantum cutting luminescence. Further analysis finds they are multi-photon quantum cutting luminescence induced by the cross-energy transfer process. The population of1G4energy level may be directly transferred to lower energy level mainly through {1G4—3H4,3H6—3H5} and {1G4—3H5,3H6—3H4} cross-energy transfer processes, i. e. one population of the1G4energy level may effectively lead to two populations, which are positioned at the3H4and3H5energy levels, respectively, mainly through {1G4—3H4,3H6—3H5} and {1G4—3H5,3H6—3H4} cross-energy transfer processes. This may also effectively lead to three populations of the3F4energy level through {3H4—3F4,3H6—3F4} cross-energy transfer process from the3H4level and multi-phonon non-radiative relaxation from the3H5level, respectively. This results in the effective three-photon near-infrared quantum cutting of the3F4—3H6fluorescence of Tm3+ion. It’s also found that the sensitization action of Bi3+ion to Tm3+ion is very strong. The enhancement of the 1 820.0 nm near-infrared quantum cutting luminescence, of Tm0.058Bi0.010Y0.932NbO4relative to Tm0.005Y0.995NbO4, is about 175.5 times, when excited by the 302.0 nm light. The present results are significant for the exploration of the next-generation multi-photon near-infrared quantum cutting germanium solar cell.
Near infrared quantum cutting luminescence; Tm3+ion; Bi3+ion; YNbO4; Solar cell
2015-05-05,
2015-09-02
國家自然科學基金課題項目(51472028)與中央高?;究蒲袠I(yè)務費專項資金重大項目(212-105560GK)資助
陳曉波, 1963年生, 北京師范大學應用光學北京重點實驗室教授 e-mail: chen78xb@sina.com
P482.3
A
10.3964/j.issn.1000-0593(2016)07-2042-06