• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inertia Tensor for MORVEL Tectonic Plates

    2016-07-11 01:35:50LiChunxiao
    天文研究與技術(shù) 2016年1期

    Li Chunxiao

    (1. Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011, China, Email: lcx@ynao.ac.cn;2. University of Chinese Academy of Scinces, Beijing 100049, China)

    ?

    Inertia Tensor for MORVEL Tectonic Plates

    Li Chunxiao1,2

    (1. Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011, China, Email: lcx@ynao.ac.cn;2. University of Chinese Academy of Scinces, Beijing 100049, China)

    Abstract:The NNR (No-Net-Rotation)-MORVEL (Mid-Ocean Ridge VELocity) 56 is a set of angular velocities describing the motions of 56 plates relative to a No-Net-Rotation reference frame. These plates can be adjusted in terms of non-overlapping polygonal regions, separated by plate boundaries on a unit sphere. During the calculation on the kinematic parameters for these 56 plates in a NNR reference frame using the International Terrestrial Reference Frame (ITRF) velocity field, the geometric parameters of tectonic plates play a significant role in establishing an absolute plate motion model based on space geodesy results. The computational method for these geometric parameters implemented as a FORTRAN90 program is described in this paper, allowing an evaluation of the area and the inertia tensor of a polygonal region on a unit sphere. This program is mainly built on a triangulation algorithm and the adaptive Simpson’s double integral method for spherical polygons, which produces highly reliable results for all 56 modern plates.

    Key words:Tectonic plate; Spherical polygon; Inertia tensor; NNR-MORVEL56

    1Introduction

    Most of Earth’s major features can be understood from the interactions between tectonic plates, which move independently, separating from, colliding with, and sliding against one another. Until the middle 1960s an unifying theory was developed to explain Earth’s dynamics[1]. Several decades after the inception of the theory on plate tectonics, the plate dynamic models constructed using the geological and geophysical data have been dominant, until long time-span geodetic observations were gathered to estimate contemporary plate kinematic parameters[2-5]. As one of the most representative geological plate motion models, NUVEL-1A is one of the mainstream models regarding the plate dynamics and kinematics. With the setting up of the enhanced amount and quality of the geologic or geodetic data during the last few years, the MORVEL refined the precision and accuracy of the geometric and kinematic parameters for 56 plates that are partly taken from an updated digital model of pate boundaries by Bird[6]. Relative to the NUVEL-1A, the MORVEL incorporates more than twice as many plates and covers more of Earth’s surface, and nearly all the NUVEL-1A angular velocities differ significantly from its MORVEL counterparts[7].

    To derive an absolute motion model in a NNR reference frame, however, the inertia tensors are always considered as indispensable attribute of all these plates. Despite various established methods for calculating plate inertia tensors corresponding to the NUVEL-1A model presented in many papers[8-9], however it is necessary to recalculate a new set for the NNR-MORVEL56 model[10], given the considerable discrepancy between the NUVEL-1A and the MORVEL.

    When a polygon on the unit sphere is employed for the representation of a tectonic plate, a simplified analysis of the plate inertia tensor can be performed through a numerical method, which is carried out over all 56 plates. The method for calculating all 9 components of the inertia tensor is illustrated in this paper and this method requires the precise knowledge of the plate boundaries. The boundary file contains a 2-column sequence of the latitude-longitude plate boundary coordinates that fully enclose the plate in the counterclockwise direction.

    In the first section, we introduce some concepts regarding the no-net-rotation conditions and indicate the calculation of the Euler vector in an absolute motion model. The following section describes the detailed mathematical models to estimate the area and the inertia tensor of the spherical polygons. The last section of this paper is dedicated to manifest the results for 56 modern plates and the appendix gives the original FORTRAN90 program for obtaining the aforementioned results.

    2Net Lithosphere Rotation

    A no-net-rotation model for the lithosphere assumes that the integral ofv×rover the Earth’s surface equals zero[11], i.e.

    (1)

    where,ris the radial vector of the surface element on a unit sphere, andvcorresponds to the horizontal velocity at that position. The angular velocity of net rotationωnetwas computed as the total angular momentum of all plates divided by the moment of inertia of the entire lithosphere, using the equation[12-13]

    (2)

    Then it is convenient to convert the Eq.(2) into the following form[8]:

    (3)

    whereωiis the Euler vector describing the motion of plateirelative to an inertial reference frame, such as ITRF2008, andQiis the inertia tensor of platei, whereigoes from 1 ton. The angular velocities of the plates relative to the NNR reference frame were then found by vector subtraction, namely,

    (4)

    For those tectonic plates where angular velocities are not available in the geodetic model such as the ITRF2000-PMM, due to a lack of sufficient data, Altamimi[14]tested four cases to perfect the incomplete geodetic model. The fourth case described a method for estimating the missing angular velocity. Here we employ it in this paper by using a simple equation written as:

    (5)

    3Area and inertia tensor of plates

    3.1Evaluation of the plate area

    The spherical polygons are defined by great circle arcs connecting points on the sphere, the positions of which are given by latitudes and longitudes. In fact, an algorithm for determining the area of a spherical polygon of arbitrary shape has been presented by Bevis and Cambareri[15], where the kernel idea is to compute the interior angle at each vertex of the spherical polygon. In this paper, however, we employ a somewhat similar method to that of Miller[16], trying to determine the area of spherical polygon by summing the signed areas of component triangles.

    For a spherical polygon ofnsides, the spherical excessEis generalized as

    (6)

    whereαi(i=1…n) are the interior angles of the polygon. Considering a spherical polygon ABCD as shown in Fig.1(a), the north-pole combined with any two adjacent vertices of the polygon can constitute a spherical triangle, such as NAB. The two sides of the triangle are known from the latitudes of their vertices, i.e.an=π/2-latitude(A) andbn=π/2-latitude(B). Taking the previously obtained two sides and the included angle specified by the difference between longitudes ofAandB, the opposite sideabcan be calculated via the formula:

    (7)

    where the haversine function is defined ashavx=(1-cosx)/2 withxin radians. Having obtained all three sides of the spherical polygon, we can use the formula to obtain its excess:

    (8)

    To find the area of a spherical polygon, first, one may use the successive vertices in pair to form a spherical triangle. Each spherical triangle employs the north pole as a common vertex to make the calculations convenient. When calculating the areas of the individual triangles, we adopt a convention that the sign of the triangle area(which has a same value as the spherical excess for a polygon on a unit sphere) is identical to the sign of the difference between the longitudes of a pair of adjacent vertices. If the longitude of the first vertex is less than the second one, then the sign of this triangle area is defined as a positive value for a set of points arranged in the anticlockwise way and vice versa. Therefore the area of the spherical polygon isregarded as the absolute value of the sum of the signed spherical excesses for each of the spherical triangles. Taking the facility of the calculation for the upcoming inertia tensor, a provision is crucial that the vertex point traversing the polygon prefersto be enumerated in the counterclockwise direction.

    Fig.1Spherical polygon and triangles illustrating calculation method for area and inertia tensor discussed in text.

    (a) N triangles constructed from counterclockwise spherical polygon of n sides;

    (b) Spherical triangle encompassing Sorth Pole and the sides of polygon traversing the 180th meridian

    3.2Estimation of plate inertia tensor

    The components of the symmetric inertia tensorQcan be calculated for a regionPusing the following formula:

    (9)

    wherexμ(μ=1,2,3) are the Cartesian coordinates,δμν(μ,ν=1,2,3) are the elements of the identity matrix, and the integration is carried out over the surface of a plateP. These inertia tensors are based on the hypothesis that the surface density of the plate is unit one, and entirely describe the plate geometry. For instance, the plate areaAis easily calculated by taking the trace ofQ:

    (10)

    This implies invariance of the trace under coordinate rotations and the sum of the diagonal components is always double the area of the polygon. Generally speaking, non-diagonal components indicate the asymmetry of the polygon with respect to the Cartesian axes, and all of the diagonal components have a positive value, which is useful, together with the Eq.(10), as the verification test for the calculation results.

    In this paper we propose a somewhat different method from Schettino[17]for constructing the spherical triangle. In fact, we will see that the integral at the right-hand side of (Eq.(9)) is easily calculated for spherical triangles. The components of the total tensor are therefore given by:

    (11)

    whereAis the total polygon area, which has been illustrated in the last section. Let a point on the sphere be given in spherical coordinates (θ,λ), whereθis the latitude andλis the longitude, so that its Cartesian coordinates are given by

    (12)

    then the area element dAat this position is equal to cosθdλdθ. The components of the inertia tensor for a triangleNABare therefore written, in spherical coordinates, as:

    (13)

    whereλ1,λ2are the longitudes of verticesA,Band the function f is given by

    (14)

    Next, as a result of the symmetry of the inertia tensor, the 6 independent components of f are expressed in the following way:

    (15)

    (16)

    (17)

    f22(θ,λ)=cos3θsin2λ

    (18)

    (19)

    (20)

    The upper limit of the inner integral about the latitude is always set to π/2, because the North Pole is considered as the common vertex of each of the spherical triangles. In contrast, with the simple upper limit, the lower limit functionθ(λ) can be obtained from a serious of derivations, whose concrete form is formulated as

    (21)

    whereC1,C2,C3represent three constants. Once the integrated triangles are determined by one side of the polygon, such asAB, we can write their expression in the following form:

    (22)

    where (θ1,λ1), (θ2,λ2) are the latitude and the longitude of verticesAandB, respectively.

    4Results and analysis

    The NNR-NUVEL56 model contains 56 tectonic plates around the earth, and the software OSXStereonet developed by Cardozo and Allmendinger[18]was applied to plot the global plate distribution map, as illustrated in Fig.2. Utilizing the Fortran program, we estimated geometry parameters of all 56 modern plates with the accuracy the inertia tensor better than 10-6. Table 1 lists the area and the inertia tensor of all MORVEL plates, which provide essential material for calculating plate kinematic parameters in the NNR reference frame. The sum of the area of all plates equals 12.566340 steradian, which is slightly less than the surface area of the whole unit sphere, namely 4π(12.566371) with the relative errorη=0.00023%. Our results indicate that the relative errors for the six components of the total tensor are 0.00017%, 0.00029%, 0.00026%, 0.0010%, 0.00016%, and 0.00010% respectively, It is shown that the inertia tensor of the entire spherical surface is 8π/3E, whereEtakes the identity matrix. The discrepancy probably arises from either the imperfection of plates over the entire sphere or the unavoidable rounding errors in floating point arithmetic.

    5Conclusion

    The method for computing the areas and inertial tensors of tectonic plates has been presented. This method is based upon the triangulation algorithm and the adaptive Simpson’s double integral procedure, which can be applied to the spherical polygons representing such tectonic plates. Results for the NNR-MORVEL56 tectonic plates show that highly reliable data can be produced, as long as starting from the precise definition of the plate boundaries. In addition, a FORTRAN90 program has been attached to the end of thispaper, which is expected to be valuable to the future studies of the kinematics and dynamics associated to the motions of tectonic plates.

    Fig.2Plate boundaries and geometries employed for MORVEL

    Table 1 continued from previous page.

    aPlate name abbreviations are as follows: am, Amur; an, Antarctic; AP, Altiplano; ar, Arabia; AS, Aegean Sea; au, Australia; BH, Birds Head; BR, Balmoral Reef; BS, Banda Sea; BU, Burma; ca, Caribbean; CL, Caroline; cp, Cocos; cp, Capricorn; CR, Caroline; EA, Easter; eu, Eurasia; FT, Futuna; GP, Galapagos; in, India; jf, Juan de Fuca; JZ, Juan Fernandez; KE, Kermadec; lw, Lwandle; MA, Mariana; MN, Manus; MO, Maoke; mq, Macquarie; MS, Molucca Sea; na, North America; NB, North Bismarck; ND, North Andes; NH, New Hebrides; NI, Niuafoou; nb, Nubia; nz, Nazca; OK, Okhotsk; ON, Okinawa; pa, Pacific; PM, Panama; ps, Philippine Sea; ri, Rivera; sa, South America; SB, South Bismarck; sc, Scotia; SL, Shetland; sm, Somalia; sr, Sur; SS, Solomon Sea; su, Sundaland; sw, Sandwich; TI, Timor; TO, Tonga; WL, Woodlark; yz, Yangtze. Plate abbreviations given in lower case are for plates included in the MORVEL. Plate abbreviations given in the upper case are for plates from Bird (2003); b. Plate areas are in steradians for a unit sphere, and the sum of which totals 4π.

    References:

    [1]Hamblin W K, Christiansen E H. Earth′s dynamic systems[M]. 10th ed. State of New Jersey: Prentice Hall, 2003.

    [2]Larson K M, Freymueller J T, Philipsen S. Global plate velocities from the global positioning system[J]. Journal of Geophysical Research Solid Earth, 1997, 102(B5): 9961-9981.

    [3]Sella G F, Dixon T H, Mao A. Revel: a model for recent plate velocities from space geodesy[J]. Journal of Geophysical Research Solid Earth, 2002, 107(B4): ETG 11-1- ETG 11-30.

    [4]Corné K, Holt W E, John H A. An integrated global model of present-day plate motions and plate boundary deformation[J]. Geophysical Journal International, 2003, 154(1):8-34.

    [5]Altamimi Z, Métivier L, Collilieux X. ITRF 2008 plate motion model[J]. Journal of Geophysical Research Solid Earth, 2012, 117(B7): 47-56.

    [6]Peter B. An updated digital model of plate boundaries[J]. Geochemistry Geophysics Geosystems, 2003, 4(3):101-112.

    [7]Demets C, Gordon R G, Argus D F. Geologically current plate motions[J]. Geophysical Journal International, 2010, 181(1): 1-80.

    [8]Argus D F, Gordon R G. No-net-rotation model of current plate velocities incorporating plate motion model nuvel-1[J]. Geophysical Research Letters, 1991, 18(11): 2039-2042.

    [9]Corné K, Holt W E. A no-net-rotation model of present-day surface motions[J]. Geophysical Research Letters, 2001, 28(23): 4407-4410.

    [10]Argus D F, Gordon R G, Demets C. Geologically current motion of 56 plates relative to the no-net-rotation reference frame[J]. Geochemistry Geophysics Geosystems, 2011, 12(11): 75-87.

    [11]Klemann V, Martinec Z, Ivins E R. Glacial isostasy and plate motion[J]. Journal of Geodynamics, 2008, 46(3-5): 95-103.

    [12]Solomon S C, Sleep N H. Some simple physical models for absolute plate motions[J]. Journal of Geophysical Research, 1974, 79(17): 2557-2567.

    [13]Torsvik T H, Steinbergerd B, Gurnise M, et al. Plate tectonics and net lithosphere rotation over the past 150 my[J]. Earth & Planetary Science Letters, 2010, 291(1): 106-112.

    [14]Zuheir A, Patrick S, Claude B. The impact of a no-net-rotation condition on ITRF2000[J]. Geophysical Research Letters, 2003, 30(2): 36-1-36-4.

    [15]Bevis M, Cambareri G. Computing the area of a spherical polygon of arbitrary shape[J]. Mathematical Geology, 1987, 19(4): 335-346.

    [16]Heckbert P S. Graphics Gems IV[M]. Boston: Academic Press Professional, 1994: 132-137.

    [17]Schettino A. Computational methods for calculating geometric parameters of tectonic plates[J]. Computers & Geosciences, 1999, 25(8): 897-907.

    [18]Cardozo N, Allmendinger R W. Spherical projections with OSXStereonet[J]. Computers & Geosciences, 2013, 51: 193-205.

    CN 53-1189/PISSN 1672-7673

    MORVEL構(gòu)造板塊的轉(zhuǎn)動張量

    李春曉1,2

    (1. 中國科學(xué)院云南天文臺,云南 昆明650011;2. 中國科學(xué)院大學(xué),北京100049)

    關(guān)鍵詞:構(gòu)造板塊;球面多邊形;轉(zhuǎn)動慣量張量;NNR-MORVEL56

    摘要:NNR-MORVEL56板塊運動模型描述了全球56個構(gòu)造板塊在無整體旋轉(zhuǎn)參考架下的角速度運動參數(shù)。這些板塊可以近似描述為單位球上的無重疊球面多邊形區(qū)域。用ITRF速度場計算這56個板塊相對于無整體旋轉(zhuǎn)參考架下的絕對運動時,板塊的幾何參數(shù)起著至關(guān)重要的作用。詳細給出了計算板塊幾何參數(shù)的方法并且編寫了FORTRAN90程序以供參考,使得計算單位球上板塊的面積和轉(zhuǎn)動慣性張量得以實現(xiàn)。文中的計算方法和程序主要采用球面三角算法和自適應(yīng)辛普森雙積分算法,并對全球56個板塊的幾何參數(shù)進行了計算,得到了較為可靠的計算結(jié)果。

    基金項目:中國科學(xué)院精密導(dǎo)航定位與定時技術(shù)重點實驗室青年基金 (2014PNTT09) 資助.

    收稿日期:2015-03-26;修定日期:2015-04-22

    作者簡介:李春曉,男,碩士. 研究方向:地球動力學(xué). Email: lcx@ynao.ac.cn

    中圖分類號:P183.2

    文獻標識碼:A

    文章編號:1672-7673(2016)01-0058-12

    国产精品1区2区在线观看. | 亚洲精品日韩在线中文字幕| 男女床上黄色一级片免费看| 精品亚洲成国产av| 韩国高清视频一区二区三区| 老司机影院成人| 午夜久久久在线观看| 国产精品偷伦视频观看了| 亚洲视频免费观看视频| 可以免费在线观看a视频的电影网站| 久热这里只有精品99| 国产免费视频播放在线视频| 免费久久久久久久精品成人欧美视频| 久久这里只有精品19| 99国产精品一区二区蜜桃av | 久久久久精品人妻al黑| 新久久久久国产一级毛片| 亚洲三区欧美一区| 夜夜骑夜夜射夜夜干| 国产免费一区二区三区四区乱码| 熟女少妇亚洲综合色aaa.| 又大又爽又粗| 亚洲男人天堂网一区| 亚洲专区中文字幕在线| 免费日韩欧美在线观看| av一本久久久久| 精品国产一区二区久久| 国产成人精品无人区| 久久亚洲国产成人精品v| 日本欧美视频一区| 欧美日韩亚洲高清精品| 欧美乱码精品一区二区三区| 色视频在线一区二区三区| 国产亚洲欧美精品永久| 香蕉国产在线看| 久久精品国产亚洲av高清一级| 亚洲中文av在线| 欧美午夜高清在线| 91成人精品电影| 中文字幕制服av| 日韩中文字幕欧美一区二区| 亚洲精品一卡2卡三卡4卡5卡 | 国产一区二区在线观看av| 久久天躁狠狠躁夜夜2o2o| 久久久国产精品麻豆| 18禁国产床啪视频网站| 伊人久久大香线蕉亚洲五| 亚洲精品第二区| 91九色精品人成在线观看| 波多野结衣一区麻豆| 亚洲av美国av| 另类精品久久| 亚洲精品中文字幕在线视频| 黄网站色视频无遮挡免费观看| 亚洲专区国产一区二区| 又黄又粗又硬又大视频| 成年人黄色毛片网站| 成在线人永久免费视频| 久久毛片免费看一区二区三区| 丝瓜视频免费看黄片| 成人av一区二区三区在线看 | 久久久水蜜桃国产精品网| 亚洲国产日韩一区二区| 久热这里只有精品99| 99国产极品粉嫩在线观看| 国产日韩欧美视频二区| 国产精品久久久久成人av| 亚洲激情五月婷婷啪啪| 永久免费av网站大全| 男女免费视频国产| 免费观看人在逋| 国产亚洲精品久久久久5区| 美女脱内裤让男人舔精品视频| 欧美激情高清一区二区三区| 肉色欧美久久久久久久蜜桃| 国内毛片毛片毛片毛片毛片| 天天添夜夜摸| 亚洲国产日韩一区二区| 国产精品九九99| 99国产精品免费福利视频| 国产av一区二区精品久久| 少妇粗大呻吟视频| 黄色 视频免费看| 国产精品一二三区在线看| 九色亚洲精品在线播放| 国产精品免费视频内射| 久久精品亚洲熟妇少妇任你| 亚洲专区字幕在线| 欧美国产精品va在线观看不卡| 午夜91福利影院| 99国产精品99久久久久| 久久99热这里只频精品6学生| 欧美大码av| 国产一区二区 视频在线| 欧美精品av麻豆av| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美成人综合另类久久久| 日韩制服骚丝袜av| 日本猛色少妇xxxxx猛交久久| 淫妇啪啪啪对白视频 | 欧美大码av| 正在播放国产对白刺激| 丰满人妻熟妇乱又伦精品不卡| 老司机福利观看| 国产男人的电影天堂91| 欧美黄色淫秽网站| 性少妇av在线| 日本撒尿小便嘘嘘汇集6| 国产极品粉嫩免费观看在线| 久久性视频一级片| 这个男人来自地球电影免费观看| 母亲3免费完整高清在线观看| 国产成人精品久久二区二区91| 免费观看人在逋| 国产有黄有色有爽视频| 色94色欧美一区二区| 美女高潮到喷水免费观看| 十八禁网站网址无遮挡| 亚洲久久久国产精品| 亚洲精品美女久久av网站| 捣出白浆h1v1| 99re6热这里在线精品视频| 久久中文看片网| 黄片小视频在线播放| 亚洲久久久国产精品| 国产一区二区三区综合在线观看| 国产免费现黄频在线看| 人人妻人人澡人人爽人人夜夜| 欧美激情高清一区二区三区| 成年人黄色毛片网站| 99久久国产精品久久久| 黄色片一级片一级黄色片| 精品久久蜜臀av无| 亚洲欧洲日产国产| 9色porny在线观看| 亚洲成人手机| 色老头精品视频在线观看| 又紧又爽又黄一区二区| 国产欧美日韩一区二区三区在线| 嫩草影视91久久| 精品人妻在线不人妻| 国产欧美亚洲国产| 免费女性裸体啪啪无遮挡网站| 亚洲av欧美aⅴ国产| 久久久久国内视频| 精品国产乱码久久久久久小说| 亚洲伊人久久精品综合| 中文精品一卡2卡3卡4更新| 日本猛色少妇xxxxx猛交久久| 中国国产av一级| 丰满迷人的少妇在线观看| 成人av一区二区三区在线看 | 免费女性裸体啪啪无遮挡网站| 国产黄频视频在线观看| 成人黄色视频免费在线看| √禁漫天堂资源中文www| 久久久久久久精品精品| 午夜福利视频精品| 久久久久网色| 午夜激情av网站| 激情视频va一区二区三区| 中文字幕制服av| 国产淫语在线视频| 精品人妻熟女毛片av久久网站| 国产精品二区激情视频| 国产精品二区激情视频| 亚洲精品国产精品久久久不卡| 国产精品一区二区在线观看99| 欧美在线一区亚洲| 极品人妻少妇av视频| 2018国产大陆天天弄谢| 91老司机精品| 午夜福利影视在线免费观看| 国产日韩欧美视频二区| 妹子高潮喷水视频| 国产在线一区二区三区精| 国产在线观看jvid| 人人妻人人澡人人爽人人夜夜| 成人亚洲精品一区在线观看| 满18在线观看网站| 热99re8久久精品国产| 男女高潮啪啪啪动态图| 黄色a级毛片大全视频| 9191精品国产免费久久| av不卡在线播放| 日韩中文字幕欧美一区二区| av天堂在线播放| 欧美变态另类bdsm刘玥| 视频区欧美日本亚洲| 亚洲精品久久久久久婷婷小说| 日韩有码中文字幕| 动漫黄色视频在线观看| 亚洲专区字幕在线| 亚洲欧美精品综合一区二区三区| 在线观看www视频免费| 中文字幕制服av| av在线老鸭窝| 久久久水蜜桃国产精品网| 十八禁人妻一区二区| 十分钟在线观看高清视频www| 一级片'在线观看视频| 国产一区二区 视频在线| 日日夜夜操网爽| 国产精品久久久久成人av| 久久久久国产精品人妻一区二区| 久久国产精品影院| 女人被躁到高潮嗷嗷叫费观| 波多野结衣av一区二区av| 久久亚洲精品不卡| 国产精品二区激情视频| 久久女婷五月综合色啪小说| 亚洲黑人精品在线| 国产黄频视频在线观看| 亚洲欧美成人综合另类久久久| 91麻豆av在线| 久久国产精品人妻蜜桃| 少妇猛男粗大的猛烈进出视频| 我要看黄色一级片免费的| 亚洲专区国产一区二区| 悠悠久久av| 亚洲成人免费av在线播放| 午夜福利一区二区在线看| 日韩三级视频一区二区三区| 国内毛片毛片毛片毛片毛片| 欧美亚洲 丝袜 人妻 在线| 三级毛片av免费| 国产成人啪精品午夜网站| 日日爽夜夜爽网站| 欧美日韩精品网址| 丝袜在线中文字幕| 啦啦啦免费观看视频1| 欧美黑人欧美精品刺激| 国产男女超爽视频在线观看| 视频在线观看一区二区三区| 99久久精品国产亚洲精品| 黑人猛操日本美女一级片| 久久国产亚洲av麻豆专区| 欧美国产精品va在线观看不卡| 久久久精品区二区三区| 国产成人系列免费观看| www.999成人在线观看| 国产成人精品无人区| 日韩制服骚丝袜av| 两个人看的免费小视频| 9热在线视频观看99| 国产亚洲av片在线观看秒播厂| 亚洲精品美女久久久久99蜜臀| 丝袜人妻中文字幕| √禁漫天堂资源中文www| 欧美 亚洲 国产 日韩一| 国产精品影院久久| 最近中文字幕2019免费版| 欧美日韩福利视频一区二区| 人人澡人人妻人| 黑人巨大精品欧美一区二区mp4| 国产精品麻豆人妻色哟哟久久| 久久女婷五月综合色啪小说| 国产一区二区三区av在线| 真人做人爱边吃奶动态| 一二三四在线观看免费中文在| 巨乳人妻的诱惑在线观看| 日韩视频一区二区在线观看| 欧美成狂野欧美在线观看| 亚洲avbb在线观看| 美国免费a级毛片| 亚洲精品国产av蜜桃| 日韩视频在线欧美| 最近中文字幕2019免费版| 欧美日韩视频精品一区| 免费久久久久久久精品成人欧美视频| 丁香六月欧美| 亚洲国产欧美日韩在线播放| 午夜福利乱码中文字幕| 天天添夜夜摸| 国产av又大| 国产精品欧美亚洲77777| 高清欧美精品videossex| 少妇粗大呻吟视频| kizo精华| 亚洲一区二区三区欧美精品| 亚洲第一欧美日韩一区二区三区 | 亚洲欧美一区二区三区黑人| 菩萨蛮人人尽说江南好唐韦庄| 黄片播放在线免费| av免费在线观看网站| 天天影视国产精品| 日韩欧美免费精品| 久久这里只有精品19| 一区二区三区四区激情视频| 国产日韩欧美视频二区| 一区二区日韩欧美中文字幕| 日本a在线网址| 女警被强在线播放| 亚洲国产精品一区三区| 精品福利观看| 国产精品香港三级国产av潘金莲| 成在线人永久免费视频| 超色免费av| 国产亚洲欧美精品永久| 欧美人与性动交α欧美软件| 国产深夜福利视频在线观看| 欧美日本中文国产一区发布| 丝袜人妻中文字幕| 777米奇影视久久| 人妻人人澡人人爽人人| 亚洲 国产 在线| 成年人免费黄色播放视频| 国产精品偷伦视频观看了| 国产成人a∨麻豆精品| 建设人人有责人人尽责人人享有的| 国产真人三级小视频在线观看| 亚洲久久久国产精品| 51午夜福利影视在线观看| 中文字幕人妻熟女乱码| 青青草视频在线视频观看| 婷婷成人精品国产| www.av在线官网国产| 免费女性裸体啪啪无遮挡网站| 国产欧美日韩一区二区精品| 久久综合国产亚洲精品| av免费在线观看网站| 国产欧美日韩一区二区三 | 丝袜人妻中文字幕| 欧美少妇被猛烈插入视频| 黄色视频在线播放观看不卡| 亚洲精品久久成人aⅴ小说| 亚洲一区二区三区欧美精品| 人人妻人人添人人爽欧美一区卜| 黄网站色视频无遮挡免费观看| 久久亚洲国产成人精品v| 这个男人来自地球电影免费观看| 丰满人妻熟妇乱又伦精品不卡| 美女国产高潮福利片在线看| 午夜福利视频在线观看免费| 女人久久www免费人成看片| 亚洲熟女精品中文字幕| 欧美久久黑人一区二区| 少妇 在线观看| 精品人妻在线不人妻| av网站免费在线观看视频| av又黄又爽大尺度在线免费看| 国产在视频线精品| 久久精品国产a三级三级三级| av有码第一页| 国产熟女午夜一区二区三区| 黄色a级毛片大全视频| 天堂俺去俺来也www色官网| 另类亚洲欧美激情| 人成视频在线观看免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕精品免费在线观看视频| 国产日韩欧美亚洲二区| 国产欧美亚洲国产| 久9热在线精品视频| 少妇猛男粗大的猛烈进出视频| 97在线人人人人妻| 啪啪无遮挡十八禁网站| 国产精品一区二区在线不卡| 蜜桃国产av成人99| 19禁男女啪啪无遮挡网站| 国产极品粉嫩免费观看在线| 亚洲国产欧美网| 亚洲欧美色中文字幕在线| 男女之事视频高清在线观看| 精品欧美一区二区三区在线| 曰老女人黄片| 91麻豆精品激情在线观看国产 | 男女之事视频高清在线观看| 男女高潮啪啪啪动态图| 亚洲五月色婷婷综合| 亚洲专区中文字幕在线| 成人亚洲精品一区在线观看| 纵有疾风起免费观看全集完整版| 精品一区二区三区四区五区乱码| 99久久99久久久精品蜜桃| 丝袜喷水一区| 日韩人妻精品一区2区三区| 多毛熟女@视频| 一区二区三区激情视频| 国产欧美日韩精品亚洲av| 欧美另类一区| 9热在线视频观看99| 亚洲精品一二三| 欧美日韩福利视频一区二区| 国产免费一区二区三区四区乱码| 国产精品久久久av美女十八| 亚洲人成电影观看| 人人澡人人妻人| 国产深夜福利视频在线观看| 在线看a的网站| 高清在线国产一区| 悠悠久久av| 老司机影院毛片| 亚洲欧洲日产国产| 999久久久国产精品视频| 国产伦人伦偷精品视频| 夫妻午夜视频| 黄色 视频免费看| 成人亚洲精品一区在线观看| 亚洲成国产人片在线观看| 五月天丁香电影| 国产免费av片在线观看野外av| 欧美日韩成人在线一区二区| 人人妻人人添人人爽欧美一区卜| 国产在线一区二区三区精| 中文字幕人妻丝袜制服| 亚洲avbb在线观看| 在线观看www视频免费| 啦啦啦 在线观看视频| 亚洲国产av新网站| 超碰成人久久| 青春草视频在线免费观看| 亚洲色图 男人天堂 中文字幕| 精品卡一卡二卡四卡免费| 久久精品熟女亚洲av麻豆精品| 国产色视频综合| 午夜91福利影院| 久久精品aⅴ一区二区三区四区| 制服诱惑二区| 午夜福利影视在线免费观看| 人妻 亚洲 视频| 久久久国产成人免费| 女人爽到高潮嗷嗷叫在线视频| 久久精品熟女亚洲av麻豆精品| 久久香蕉激情| 免费在线观看视频国产中文字幕亚洲 | 免费一级毛片在线播放高清视频 | 一级毛片电影观看| 国产精品一区二区精品视频观看| 80岁老熟妇乱子伦牲交| 中文字幕人妻熟女乱码| 99国产精品一区二区三区| 亚洲视频免费观看视频| 人人妻人人澡人人看| 亚洲一区中文字幕在线| 日本精品一区二区三区蜜桃| 日韩中文字幕视频在线看片| 国产精品国产三级国产专区5o| 亚洲精品粉嫩美女一区| 欧美日韩亚洲国产一区二区在线观看 | 午夜福利在线免费观看网站| 午夜激情av网站| 黄色视频,在线免费观看| 人人澡人人妻人| 另类亚洲欧美激情| 久久久国产一区二区| 无遮挡黄片免费观看| 国产一区二区在线观看av| 亚洲精品国产av蜜桃| 如日韩欧美国产精品一区二区三区| 97精品久久久久久久久久精品| 天天操日日干夜夜撸| 又黄又粗又硬又大视频| 亚洲人成77777在线视频| av在线播放精品| 亚洲av美国av| 搡老乐熟女国产| 两个人免费观看高清视频| 亚洲第一欧美日韩一区二区三区 | 亚洲中文日韩欧美视频| 高清视频免费观看一区二区| 精品一区在线观看国产| 成年动漫av网址| 精品久久蜜臀av无| 日本五十路高清| 日韩制服骚丝袜av| www.自偷自拍.com| 在线观看免费午夜福利视频| 欧美 日韩 精品 国产| 欧美成狂野欧美在线观看| 日韩一区二区三区影片| 大型av网站在线播放| 老司机影院成人| 天堂中文最新版在线下载| 成年人午夜在线观看视频| a在线观看视频网站| 999久久久国产精品视频| 老司机午夜福利在线观看视频 | 午夜福利免费观看在线| 美女国产高潮福利片在线看| 亚洲熟女精品中文字幕| 亚洲国产毛片av蜜桃av| 国产日韩一区二区三区精品不卡| 成人免费观看视频高清| 亚洲一区中文字幕在线| 亚洲天堂av无毛| 波多野结衣av一区二区av| 欧美精品av麻豆av| 国产成人精品在线电影| 一二三四在线观看免费中文在| 国产熟女午夜一区二区三区| 搡老岳熟女国产| 国产一区二区 视频在线| 国产男女超爽视频在线观看| 97精品久久久久久久久久精品| 欧美日韩福利视频一区二区| 日韩 欧美 亚洲 中文字幕| 黄片播放在线免费| 香蕉丝袜av| 欧美成人午夜精品| 日本撒尿小便嘘嘘汇集6| 久久精品aⅴ一区二区三区四区| 久久青草综合色| 性色av乱码一区二区三区2| 亚洲五月色婷婷综合| 视频区图区小说| 精品一品国产午夜福利视频| 国产av国产精品国产| 男女免费视频国产| 悠悠久久av| 欧美一级毛片孕妇| 中文字幕人妻丝袜一区二区| av不卡在线播放| 国产精品成人在线| 天天躁狠狠躁夜夜躁狠狠躁| 91老司机精品| 欧美xxⅹ黑人| 老汉色∧v一级毛片| 少妇人妻久久综合中文| 1024香蕉在线观看| 丰满少妇做爰视频| a在线观看视频网站| 精品人妻一区二区三区麻豆| 搡老乐熟女国产| 成在线人永久免费视频| 日韩一区二区三区影片| 成人国产av品久久久| 国产精品九九99| 黄色毛片三级朝国网站| 亚洲性夜色夜夜综合| 亚洲av日韩在线播放| 久久久精品区二区三区| 中文字幕色久视频| 精品人妻熟女毛片av久久网站| 中文字幕精品免费在线观看视频| 成年人黄色毛片网站| 亚洲欧美色中文字幕在线| 黄片播放在线免费| 国产免费福利视频在线观看| 亚洲精品国产区一区二| 亚洲国产欧美在线一区| 黄色视频不卡| 国产精品1区2区在线观看. | 大陆偷拍与自拍| 又紧又爽又黄一区二区| 国产成人免费观看mmmm| 亚洲男人天堂网一区| 超碰成人久久| 久久香蕉激情| 一区二区日韩欧美中文字幕| 亚洲国产欧美网| 国产成人影院久久av| videos熟女内射| 天堂8中文在线网| 成年美女黄网站色视频大全免费| 黄色 视频免费看| 免费久久久久久久精品成人欧美视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人a∨麻豆精品| 亚洲激情五月婷婷啪啪| videos熟女内射| 久久人人爽av亚洲精品天堂| 高清黄色对白视频在线免费看| 午夜精品国产一区二区电影| 久久久久精品国产欧美久久久 | 亚洲精品av麻豆狂野| 亚洲国产欧美一区二区综合| 日本五十路高清| 国产日韩一区二区三区精品不卡| 免费观看av网站的网址| 999久久久精品免费观看国产| 精品久久蜜臀av无| 五月开心婷婷网| 精品少妇一区二区三区视频日本电影| 女人精品久久久久毛片| 99国产精品免费福利视频| 成年人午夜在线观看视频| 热99re8久久精品国产| 宅男免费午夜| 欧美精品啪啪一区二区三区 | 不卡一级毛片| 日本猛色少妇xxxxx猛交久久| 国产三级黄色录像| 久热爱精品视频在线9| 久久久久久亚洲精品国产蜜桃av| 十八禁网站免费在线| 男人爽女人下面视频在线观看| 精品国产一区二区久久| 亚洲男人天堂网一区| 色老头精品视频在线观看| 精品国产一区二区久久| 亚洲男人天堂网一区| 亚洲午夜精品一区,二区,三区| 精品一区二区三区四区五区乱码| 亚洲,欧美精品.| 在线十欧美十亚洲十日本专区| 99香蕉大伊视频| 少妇精品久久久久久久| 久久久久久久精品精品| 最近最新免费中文字幕在线| videos熟女内射| 啦啦啦在线免费观看视频4| 1024视频免费在线观看| 国产成人系列免费观看| 淫妇啪啪啪对白视频 | 日日爽夜夜爽网站| 18在线观看网站| 欧美97在线视频| 久久精品国产综合久久久| 一区在线观看完整版| av视频免费观看在线观看| 亚洲自偷自拍图片 自拍| 视频区图区小说| 日本精品一区二区三区蜜桃| 国产精品一区二区精品视频观看|