冷 利, 陳立佳, 車(chē) 欣
(沈陽(yáng)工業(yè)大學(xué) 材料科學(xué)與工程學(xué)院, 沈陽(yáng) 110870)
時(shí)效態(tài)Al-Zn-Mg-Cu-Zr-Sc合金的組織與疲勞性能*
冷利, 陳立佳, 車(chē)欣
(沈陽(yáng)工業(yè)大學(xué) 材料科學(xué)與工程學(xué)院, 沈陽(yáng) 110870)
為了研究時(shí)效處理對(duì)Al-7.2Zn-2.5Mg-1.5Cu-0.08Zr-0.12Sc合金的組織與疲勞性能的影響,利用透射電子顯微鏡對(duì)合金的顯微組織進(jìn)行了觀察分析,并針對(duì)不同時(shí)效狀態(tài)的合金進(jìn)行了低周疲勞實(shí)驗(yàn).結(jié)果表明,經(jīng)過(guò)150 ℃×6 h時(shí)效處理后,合金晶內(nèi)析出相較少,晶界無(wú)析出相;經(jīng)過(guò)150 ℃×36 h時(shí)效處理后,合金晶內(nèi)析出相較為細(xì)小,并呈彌散分布,同時(shí)晶界析出斷續(xù)分布的平衡相,并存在晶界無(wú)析出帶;經(jīng)過(guò)150 ℃×48 h時(shí)效處理后,合金的析出相均已長(zhǎng)大,且晶界無(wú)析出帶發(fā)生寬化.經(jīng)過(guò)150 ℃×36 h時(shí)效處理后的合金,表現(xiàn)出了較高的循環(huán)變形抗力與較長(zhǎng)的低周疲勞壽命;不同時(shí)效狀態(tài)合金的塑性應(yīng)變幅、彈性應(yīng)變幅與載荷反向周次之間,以及循環(huán)應(yīng)力幅與塑性應(yīng)變幅之間均呈線性關(guān)系.
Al-Zn-Mg-Cu系合金具有強(qiáng)度高、韌性好、耐腐蝕性能較好等優(yōu)點(diǎn),被廣泛應(yīng)用于航空航天、交通運(yùn)輸?shù)阮I(lǐng)域[1].Al-Zn-Mg-Cu系合金在過(guò)飽和固溶體中的時(shí)效析出順序[2]為:過(guò)飽和固溶體GP區(qū)、亞穩(wěn)η′相與平衡η相(MgZn2).Al-Zn-Mg-Cu系合金會(huì)在時(shí)效初期析出大量GP區(qū),GP區(qū)為亞穩(wěn)η′相異質(zhì)形核的核心,且經(jīng)過(guò)較長(zhǎng)時(shí)間或較高溫度下的時(shí)效處理后,可以轉(zhuǎn)變?yōu)棣恰湎郲3-4].亞穩(wěn)η′相呈圓片狀,為六方結(jié)構(gòu),其晶格常數(shù)a為0.496 nm,c為1.402 nm,與基體呈半共格關(guān)系,且具有良好的晶體取向關(guān)系[5].η′相的尺寸大小取決于熱處理溫度與時(shí)間,且為Al-Zn-Mg-Cu系合金的主要強(qiáng)化相.此外,η′相的強(qiáng)度和時(shí)效硬化效果與η′相的彌散分布程度密切相關(guān).在過(guò)時(shí)效階段,主要的第二相粒子為η相.實(shí)際上,η相為具有六方結(jié)構(gòu)的MgZn2相,其晶格常數(shù)a為0.522 1 nm,c為0.856 7 nm.在固溶處理過(guò)程中,含有Zr和Sc元素的Al-Zn-Mg-Cu系合金可以生成大量Al3(Zr,Sc)粒子,該粒子可與基體保持共格關(guān)系,且在后期熱處理過(guò)程中并無(wú)長(zhǎng)大傾向.同時(shí),Al3(Zr,Sc)粒子可以強(qiáng)烈釘扎位錯(cuò),阻礙位錯(cuò)運(yùn)動(dòng),從而抑制再結(jié)晶過(guò)程,阻止再結(jié)晶晶粒的長(zhǎng)大[6-10].
選用純度為99.8%的工業(yè)純鋁、純度為99.995%的純鋅、純度為99.91%的純鎂、純度為99.98%的純銅,以及Al-2%Sc和Al-5%Zr中間合金作為主要原料.熔煉澆鑄得到直徑為130 mm的Al-7.2Zn-2.5Mg-1.5Cu-0.08Zr-0.12Sc合金鑄錠.利用高溫馬弗爐進(jìn)行400 ℃×6 h+468 ℃×18 h的雙級(jí)均勻化處理.利用國(guó)產(chǎn)1 250 t臥式擠壓機(jī)將鑄錠擠壓成尺寸為88 mm×28 mm的板材.沿著板材的擠壓方向選取疲勞試樣,其標(biāo)距部分尺寸為10 mm×6 mm×5 mm.
2.1合金的顯微組織
圖1為Al-7.2Zn-2.5Mg-1.5Cu-0.08Zr-0.12Sc合金在150 ℃時(shí)效處理狀態(tài)下的TEM圖像.如圖1a所示,經(jīng)過(guò)150 ℃×6 h時(shí)效處理后,合金晶內(nèi)除Al3(Zr,Sc)相外,其他析出相較少,晶界處無(wú)析出相,此時(shí)合金處于欠時(shí)效狀態(tài).如圖1b所示,經(jīng)過(guò)150 ℃×36 h時(shí)效處理后,合金晶內(nèi)析出大量細(xì)小彌散分布的GP區(qū)和η′相,在晶界處析出斷續(xù)分布的長(zhǎng)條狀平衡相η相,并伴隨著晶間無(wú)析出帶(PFZ)的出現(xiàn),其寬度約為18 nm,此時(shí)合金接近峰時(shí)效狀態(tài).如圖1c所示,經(jīng)過(guò)150 ℃×48 h時(shí)效處理后,合金晶內(nèi)析出相開(kāi)始長(zhǎng)大,GP區(qū)轉(zhuǎn)變?yōu)棣恰湎?,且部分η′相轉(zhuǎn)變?yōu)棣窍啵辖鹈芏冉档?,晶界處η相發(fā)生粗化,晶間無(wú)析出帶變寬,此時(shí)合金處于過(guò)時(shí)效狀態(tài).
2.2合金的循環(huán)應(yīng)力響應(yīng)行為
圖2為不同時(shí)效處理狀態(tài)下Al-7.2Zn-2.5Mg-1.5Cu-0.08Zr-0.12Sc合金在不同外加總應(yīng)變幅下的循環(huán)應(yīng)力響應(yīng)曲線.由圖2可見(jiàn),當(dāng)外加總應(yīng)變幅Δεt為0.4%時(shí),經(jīng)過(guò)150 ℃×36 h時(shí)效處理后,合金的循環(huán)應(yīng)力幅高于經(jīng)過(guò)150 ℃×6 h和150 ℃×48 h時(shí)效處理后的合金,且經(jīng)過(guò)150 ℃×48 h時(shí)效處理后,合金的循環(huán)應(yīng)力幅最低(見(jiàn)圖2a).當(dāng)外加總應(yīng)變幅為0.5%~0.7%時(shí),經(jīng)過(guò)150 ℃×36 h時(shí)效處理后,合金的循環(huán)應(yīng)力幅均最高;經(jīng)過(guò)150 ℃×6 h時(shí)效處理后,合金的循環(huán)應(yīng)力幅均最低(見(jiàn)圖2b~d).當(dāng)外加總應(yīng)變幅為0.8%時(shí),經(jīng)過(guò)150 ℃×48 h時(shí)效處理后,合金的循環(huán)應(yīng)力幅最高;經(jīng)過(guò)150 ℃×6 h時(shí)效處理后,合金的循環(huán)應(yīng)力幅仍最低.綜上所述,當(dāng)外加總應(yīng)變幅為0.4%~0.7%時(shí),時(shí)效態(tài)Al-7.2Zn-2.5Mg-1.5Cu-
圖1 合金在150 ℃時(shí)效處理下的TEM照片
0.08Zr-0.12Sc合金的循環(huán)變形抗力隨著時(shí)效時(shí)間的延長(zhǎng)先增加后降低;當(dāng)外加總應(yīng)變幅為0.8%時(shí),時(shí)效態(tài)Al-7.2Zn-2.5Mg-1.5Cu-0.08Zr-0.12Sc合金的循環(huán)變形抗力則隨著時(shí)效時(shí)間的延長(zhǎng)而單調(diào)增加.
2.3合金的疲勞壽命行為
圖3為不同時(shí)效處理狀態(tài)下Al-7.2Zn-2.5Mg-1.5Cu-0.08Zr-0.12Sc合金的應(yīng)變疲勞壽命與外加總應(yīng)變幅之間的關(guān)系曲線.由圖3可見(jiàn),當(dāng)外加總應(yīng)變幅為0.4%時(shí),經(jīng)過(guò)150 ℃×36 h時(shí)效處理后,合金的疲勞壽命高于經(jīng)過(guò)150 ℃×6 h時(shí)效處理后的合金,而低于經(jīng)過(guò)150 ℃×48 h時(shí)效處理后的合金.當(dāng)外加總應(yīng)變幅為0.4%~0.7%時(shí),經(jīng)過(guò)150 ℃×36 h時(shí)效處理后,合金的疲勞壽命均高于經(jīng)過(guò)150 ℃×6 h和150 ℃×48 h時(shí)效處理后的合金,且經(jīng)過(guò)150 ℃×6 h時(shí)效處理后,合金的疲勞壽命最低.當(dāng)外加總應(yīng)變幅為0.8%時(shí),經(jīng)過(guò)150 ℃×36 h時(shí)效處理后,合金的疲勞壽命仍最高,而經(jīng)過(guò)150 ℃×48 h時(shí)效處理后,合金的疲勞壽命最低.顯而易見(jiàn),在較低的外加總應(yīng)變幅下(Δεt/2=0.4%),時(shí)效態(tài)Al-7.2Zn-2.5Mg-1.5Cu-0.08Zr-0.12Sc合金的疲勞壽命隨著時(shí)效時(shí)間的延長(zhǎng)而增加;當(dāng)外加總應(yīng)變幅為0.5%~0.8%時(shí),時(shí)效態(tài)合金的疲勞壽命則隨著時(shí)效時(shí)間的延長(zhǎng)呈現(xiàn)先增加后降低的趨勢(shì).
圖2 合金的循環(huán)應(yīng)力響應(yīng)行為
圖3 合金的總應(yīng)變幅與疲勞壽命關(guān)系
圖4為不同時(shí)效處理狀態(tài)下Al-7.2Zn-2.5Mg-1.5Cu-0.08Zr-0.12Sc合金的塑性應(yīng)變幅(Δεp/2)和彈性應(yīng)變幅(Δεe/2)與斷裂時(shí)的載荷反向周次(2Nf)之間的關(guān)系曲線.由圖4可見(jiàn),合金的塑性應(yīng)變幅和彈性應(yīng)變幅與斷裂時(shí)的載荷反向周次之間均呈直線關(guān)系.
Al-7.2Zn-2.5Mg-1.5Cu-0.08Zr-0.12Sc合金的塑性應(yīng)變幅與斷裂時(shí)的載荷反向周次之間的關(guān)系可以采用Coffin-Manson公式進(jìn)行描述,其表達(dá)式為
(1)
Al-7.2Zn-2.5Mg-1.5Cu-0.08Zr-0.12Sc合金的彈性應(yīng)變幅與斷裂時(shí)的載荷反向周次之間的關(guān)系則可以引入Basquin公式來(lái)描述,其表達(dá)式為
圖4 合金的應(yīng)變幅載荷反向周次曲線
(2)
表1 合金的應(yīng)變疲勞參數(shù)
Δσ/2=K′(Δεp/2)n′
(3)
式中:K′為循環(huán)強(qiáng)度系數(shù);n′為循環(huán)應(yīng)變硬化指數(shù).
對(duì)圖5中的數(shù)據(jù)進(jìn)行線性回歸分析,即可得到不同時(shí)效處理狀態(tài)下合金的應(yīng)變疲勞參數(shù)K′和n′的具體數(shù)值,結(jié)果如表1所示.由表1可見(jiàn),時(shí)效態(tài)Al-7.2Zn-2.5Mg-1.5Cu-0.08Zr-0.12Sc合金的循環(huán)強(qiáng)度系數(shù)K′和循環(huán)應(yīng)變硬化指數(shù)n′均隨著時(shí)效時(shí)間的延長(zhǎng)先減小后增大.
圖5 合金的循環(huán)應(yīng)力應(yīng)變曲線
Al-7.2Zn-2.5Mg-1.5Cu-0.08Zr-0.12Sc合金在固溶處理后,存在穩(wěn)定的Al3(Zr,Sc)相,該相可與基體保持共格關(guān)系,且其形狀、尺寸不受時(shí)效處理狀態(tài)的影響.經(jīng)過(guò)150 ℃×6 h時(shí)效處理后,合金晶內(nèi)主要存在的析出相為Al3(Zr,Sc)相和GP區(qū).在疲勞變形過(guò)程中,運(yùn)動(dòng)位錯(cuò)將切過(guò)GP區(qū),少量的GP區(qū)對(duì)運(yùn)動(dòng)位錯(cuò)的阻礙作用很小,因而位錯(cuò)切過(guò)GP區(qū)后,就可以連續(xù)地在被激活的滑移面上進(jìn)行運(yùn)動(dòng),表現(xiàn)為合金的循環(huán)變形抗力較低.隨著時(shí)效時(shí)間的增加,GP區(qū)和η′相體積分?jǐn)?shù)隨之增加.當(dāng)運(yùn)動(dòng)位錯(cuò)切過(guò)大量GP區(qū)和η′相時(shí),需要額外的驅(qū)動(dòng)力,位錯(cuò)運(yùn)動(dòng)受到的阻力增大,致使合金的循環(huán)變形抗力顯著提高.隨著時(shí)效時(shí)間的繼續(xù)延長(zhǎng),部分η′相轉(zhuǎn)變成η相,η相為六方結(jié)構(gòu),與基體呈非共格關(guān)系.由于η相粗大且體積分?jǐn)?shù)較小,η相對(duì)運(yùn)動(dòng)位錯(cuò)的阻礙作用相對(duì)較小,表現(xiàn)為合金的循環(huán)變形抗力降低.另外,晶界析出相和晶界無(wú)析出帶對(duì)合金的疲勞性能也具有較大的影響.在時(shí)效過(guò)程中,晶界處析出的脫溶相將會(huì)吸收附近的溶質(zhì)原子,使得周?chē)w的溶質(zhì)較為貧乏,從而形成了晶界無(wú)析出帶(PFZ).由于PFZ強(qiáng)度低于基體,在疲勞變形過(guò)程中,應(yīng)力可以在較軟的PFZ中弛豫,PFZ越寬,應(yīng)力松弛越完全,裂紋越難產(chǎn)生和發(fā)展,這對(duì)塑性而言是有利的[17],表現(xiàn)為合金具有較高的疲勞壽命.隨著時(shí)效時(shí)間的延長(zhǎng),晶界析出相明顯長(zhǎng)大,而粗大的晶界析出相在疲勞變形過(guò)程中容易導(dǎo)致應(yīng)力集中,成為疲勞裂紋源,表現(xiàn)為疲勞壽命降低.綜上所述,通過(guò)控制時(shí)效處理工藝,使得晶內(nèi)析出相、晶界析出相與晶界無(wú)析出帶之間達(dá)到良好的配合,才能使合金獲得優(yōu)異的性能.
通過(guò)以上實(shí)驗(yàn)分析,可以得到如下結(jié)論:
1) 經(jīng)過(guò)150 ℃×6 h時(shí)效處理后,合金晶內(nèi)析出相較少,晶界無(wú)析出相;經(jīng)過(guò)150 ℃×36 h時(shí)效處理后,合金晶內(nèi)析出相細(xì)小,呈彌散分布,晶界析出斷續(xù)分布的平衡相,并存在晶界無(wú)析出帶;經(jīng)過(guò)150 ℃×48 h時(shí)效處理后,合金晶內(nèi)晶界析出相均長(zhǎng)大,晶界無(wú)析出帶寬化.
2) 經(jīng)過(guò)150 ℃×36 h時(shí)效處理后,合金表現(xiàn)出了較高的循環(huán)變形抗力與較長(zhǎng)的低周疲勞壽命.
3) 不同時(shí)效狀態(tài)下合金的塑性應(yīng)變幅和彈性應(yīng)變幅與載荷反向周次呈線性關(guān)系,可以分別采用Coffin-Manson和Basquin公式來(lái)描述.
4) 在時(shí)效過(guò)程中,細(xì)小彌散分布的η′相的存在是提高合金循環(huán)變形抗力的主要因素;而晶界處η相的大小、形狀和晶界無(wú)析出帶的寬窄將直接影響合金的低周疲勞壽命.
[1]Gonzalo B,Jorge R G,José M.Texture distribution and plane strain mechanical behavior of AA7xxx plates of different thicknesses [J].Journal of Materials Engineering and Performance,2009,18:1144-1150.
[2]Marlaud T,Deschamps A,Bley F,et al.Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys [J].Acta Materialia,2010,58(1):248-260.
[3]Jia Y D,Cao F Y,Ning Z L,et al.Influence of second phases on mechanical properties of spray-deposited Al-Zn-Mg-Cu alloy [J].Materials and Design,2012,40:536-540.
[4]Berg L K,Gj?nnes J,Hansen V,et al.GP-zones in Al-Zn-Mg alloys and their role in artificial aging [J].Acta Materialia,2001,49(1):3443-3451.
[5]Yang W C,Ji S X,Zhang Q,et al.Investigation of mechanical and corrosion properties of an Al-Zn-Mg-Cu alloy under various ageing conditions and interface analysis of η′ precipitates [J].Materials and Design,2015,85:752-761.
[6]Fang H C,Chen K H,Chen X,et al.Effect of Zr,Cr and Pr additions on microstructures and properties of ultra-high strength Al-Zn-Mg-Cu alloys [J].Materials Science and Engineering A,2011,528:7606-7615.
[7]Duan Y L,Xu G F,Peng X Y,et al.Effect of Sc and Zr additions on grain stability and superplasticity of the simple thermal-mechanical processed Al-Zn-Mg alloy sheet [J].Materials Science and Engineering A,2015,648:80-91.
[8]Li G,Zhao N Q,Liu T,et al.Effect of Sc/Zr ratio on the microstructure and mechanical properties of new type of Al-Zn-Mg-Sc-Zr alloys [J].Materials Science and Engineering A,2014,617:219-227.
[9]Zhang W,Xing Y,Jia Z H,et al.Effect of minor Sc and Zr addition on microstructure and properties of ultra-high strength aluminum alloy [J].Transactions of Nonferrous Metals Society of China,2014,24(12):3866-3871.
[10]Mukhopadhyay A K,Kumar A,Prasad K S,et al.Key microstructural changes during high strain rate supere-lastic deformation of an Al-Zn-Mg-Cu-Zr alloy containing Sc [J].Materials Science Forum,2011,702/703:366-369.
[11]陳立佳,張冬雪,車(chē)欣,等.熱擠壓Al-6.0%Zn-2.0%Mg-1.5%Cu-xY 合金的顯微組織及力學(xué)性能 [J].沈陽(yáng)工業(yè)大學(xué)學(xué)報(bào),2014,36(4):373-378.
(CHEN Li-jia,ZHANG Dong-xue,CHE Xin,et al.Microstructures and mechanical properties of hot-extruded Al-6.0%Zn-2.0%Mg-1.5%Cu-xY alloys [J].Journal of Shenyang University of Technology,2014,36(4):373-378.)
[12]Han S W,Katsumata K,Kumai S,et al.Effects of solidification structure and aging condition on cyclic stress-strain response in Al-7%Si-0.4%Mg cast alloys [J].Materials Science and Engineering A,2002,337:170-178.
[13]Jiang J T,Xiao W Q,Yang L,et al.Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al-Zn-Mg-Cu alloy [J].Materials Science and Engineering A,2014,605:167-175.
[14]Michael D S,Hans J M,Huseyin S.A physically based fatigue model for predicition of crack initiation from persistent slip bands in polycrystals [J].Acta Materialia,2011,59:328-341.
[15]Miao J,Pollock T M,Jones J W.Microstructural extremes and the transition from fatigue crack initiation to small crack growth in a polycrystalline nickel-base superalloy [J].Acta Materialia,2012,60:2840-2854.
[16]Anthony G S,Diana A L.Integrated experimental,analytical and computational design for fatigue crack growth resistance in cast aluminum alloys [J].Procedia Engineering,2015,133:399-409.
[17]Liu S D,Li C B,Deng Y L,et al.Influence of grain struture on quench sensitivity relative to localized corro-sion of high strength aluminum alloy [J].Materials Chemistry and Physics,2015,167:320-329.
(責(zé)任編輯:尹淑英英文審校:尹淑英)
Microstructures and fatigue properties of aged Al-Zn-Mg-Cu-Zr-Sc alloy
LENG Li, CHEN Li-jia, CHE Xin
(School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China)
In order to clarify the effect of aging treatment on both microstructures and fatigue properties of Al-7.2Zn-2.5Mg-1.5Cu-0.08Zr-0.12Sc alloy, the microstructural observation was performed with transmission electron microscope (TEM), and the low-cycle fatigue experiments were conducted for the alloys with different aging treatment states. The results show that after 150 ℃×6 h aging treatment, the precipitates inside the grains of the alloy are less, and there is no precipitates at the grain boundaries. After 150 ℃×36 h aging treatment, the precipitates inside the grains of the alloy are fine and dispersive. Meanwhile, the discontinuous equilibrium phase precipitates at the grain boundaries, and the precipitate free zones exist near the grain boundaries. After 150 ℃×48 h aging treatment, the precipitates in the alloy have already grown up, and the precipitate free zones near the grain boundaries widen. In addition, the alloy subjected to 150 ℃×36 h aging treatment has higher cyclic deformation resistance and longer low-cycle fatigue lives. The relationship between the plastic strain amplitude, elastic strain amplitude and reversals to failure as well as the relationship between the cyclic stress amplitude and plastic strain amplitude of the alloy with different aging treatment states are linear.
Al-Zn-Mg-Cu-Zr-Sc alloy; aging treatment; precipitate; precipitate free zone(PFZ); cyclic stress response behavior; low-cycle fatigue life; cyclic stress-strain behavior; strain amplitude
2016-01-04.
遼寧省博士科研啟動(dòng)基金資助項(xiàng)目(20141068).
冷利(1986-),男,遼寧大連人,博士,主要從事金屬疲勞等方面的研究.
10.7688/j.issn.1000-1646.2016.03.08
TG 146.2
A
1000-1646(2016)03-0280-06
*本文已于2016-04-22 15∶41在中國(guó)知網(wǎng)優(yōu)先數(shù)字出版. 網(wǎng)絡(luò)出版地址: http:∥www.cnki.net/kcms/detail/21.1189.T.20160422.1541.008.html