• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anti-inflammatory role of microRNA let-7c in LPS treated alveolar macrophages by targeting STAT3

    2016-07-07 09:02:47JiHuiYuLiLongZhiXiaoLuoLinManLiJieRuYouDepartmentofHealthyFirstAffiliatedHospitalofChongqingMedicalUniversityChongqingChina

    Ji-Hui Yu, Li Long, Zhi-Xiao Luo, Lin-Man Li, Jie-Ru YouDepartment of Healthy, First Affiliated Hospital of Chongqing Medical University, Chongqing, China

    ?

    Anti-inflammatory role of microRNA let-7c in LPS treated alveolar macrophages by targeting STAT3

    Ji-Hui Yu*, Li Long, Zhi-Xiao Luo, Lin-Man Li, Jie-Ru You
    Department of Healthy, First Affiliated Hospital of Chongqing Medical University, Chongqing, China

    ABSTRACT

    Objective: To explore the expression of microRNA (miRNA) let-7c and its function in chronic obstructive pulmonary disease (COPD) and alveolar macrophage cells. Methods: Real time PCR was performed to detect the expression of miRNA let-7c in the lung tissue of COPD patients and COPD model in mice. MiRNA let-7c was overexpressed in alveolar macrophages isolated from mice and its effect was measured by the production of pro-inflammation cytokines and the protein level of signal transducer and activator of transcription 3 (STAT3) as well as phosphorylation level of STAT3 after LPS stimulation. Luciferase assay was used to detect the binding of miRNA let-7c and 3'UTR of STAT3. Results: MiRNA let-7c expression was significantly lower in patients with COPD compared with control group, and the similar result was found in COPD mice and LPS stimulated alveolar macrophages. Overexpression of miRNA let-7c in alveolar macrophages inhibited LPS-induced increasing of tumor necrosis factor alpha, interleukin-6 and interleukin-1β. Luciferase assay showed STAT3 was a targeting of miRNA let-7c in alveolar macrophages. Conclusions: MiRNA let-7c low expression in COPD can regulate inflammatory responses by targeting STAT3 in alveolar macrophage, which may provide a new target for COPD treatment strategies.

    ARTICLE INFO

    Article history:

    Received 15 October 2015

    Received in revised form 20 November 2015

    Accepted 15 December 2015

    Available online 20 January 2016

    Keywords:

    Chronic obstructive pulmonary disease

    Macrophage

    STAT3

    Let-7c

    Inflammation

    Tel: 13627697168

    E-mail: asafdgd111@126.com

    Foundation project: This work was founded by the Medical Scientific Research Projects of Health Family Planning Commission of Chongqing (20142019).

    1. Introduction

    Chronic obstructive pulmonary disease (COPD), a high morbidity and mortality pulmonary disease characterized by chronic airway inflammation and emphysematous alveolar destruction, may develop into pulmonary heart disease, respiratory failure and even cancer[1]. Due to the high morbidity and mortality, COPD has become one of the world's three major lethal factors, which brings a heavy burden to the society and a serious threat to the quality of human life[2,3]. Although smoking has been considered an important COPD risk factor, only a small portion of smokers (10%-20%) eventually develop into COPD[4]; its pathogenesis remains to be further studied. The development of COPD must be affected by other factors, such as genetic factors.

    Abundant evidences show that the development of COPD is associated with systemic inflammation and chronic inflammatory in the bronchial walls of the small airways. Inflammation is considered to be a markedly increased risk of cardiovascular disease and lung cancer in patients with COPD[5]. Both innate and adaptive immunity is involved in COPD. Plenty of inhibitors of inflammation show potential beneficial effects in COPD. A large number of studies show that participation in the pathogenesis of COPD is associated with a variety of inflammatory cells[6-10], of which the most important are the macrophages, the neutrophils and the lymphocytes. Alveolar macrophages and the release of cytokines play an important role in the pathogenesis of COPD[10]. The present study was designed to investigate the expression of microRNA (miRNA) let-7c in COPD and its role in alveolar macrophage and inflammatory response.

    2. Materials and methods

    2.1. COPD patients

    In total, 30 samples of lung (15 patients with COPD and 15 patients without COPD as control) were collected in the present study. Subjects were enrolled in the COPD group if they had a post bronchodilator FEV1/FVC ratio of less than 0.70. Patients with asthma, bronchiectasis, lung cancer, or respiratory tract infection were excluded. All patients gave informed consent.

    2.2. Animal model

    In this study, 40 clean male BALB / C mice were used to build COPD model, 6-8 wk old, weighing 18-20 g. Mice were purchased from Experimental Animal Center of Chongqing Medical University. The animals were randomly divided into control group and COPD model group. Model group were exposed to cigarette smoke, 10 cigarettes per day for 1 h, lasting for six months.

    2.3. Cell culture

    COPD and normal mice were sacrificed by cervical dislocation and bronchial alveolar lavage fluid was collected, followed by centrifugation at 2 000 rpm for 10 min. Supernatant was discarded and cells was suspended by RPMI 1 640 medium containing 10% fetal calf serum, incubated in 37 ℃, 5% CO2incubator for 3 h. After that medium was changed to remove the non-adherent cells, and the adherent alveolar macrophages were re-digested and counted; the purified alveolar macrophages were ready to be used.

    2.4. Plasmids construction and luciferase assays

    Signal transducer and activator of transcription 3 (STAT3) 3’-UTR containing let-7c binding site was cloned into a modified pGL3 vector (Promega, Madison, WI, USA) containing the luciferase gene. Mutations in the 3'-UTR of STAT3 gene with lect-7c target sites deleted was generated with the QuickChange Site-Directed Mutagenesis kit (Stratagene, CA, USA). About 1×105alveolar macrophages per well were seeded into 24-well plates and co-transfected with 50 ng pGL3 firefly luciferase reporter, 10 ng pRL-TK luciferase reporter and 50 nM let-7c mimics or scramble mimics using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). Cell lysates were prepared using Passive Lysis Buffer (Promega, Madison, WI, USA) 48 h after transfection, and luciferase activity was measured using the Dual-Luciferase Reporter Assay (Promega, Madison, WI, USA).

    2.5. Real time PCR

    Total RNA was extracted from tissues and cells by Trizol according to the manufacturer’s instructions. Reverse transcription of 1 μg of total RNA was performed using Takara reverse transcription kit. Expression of individual genes was then analyzed by semiquantitative qRT-PCR using SYBR green technology in ABI Prism Sequencher 7500 (Applied Biosystems, Foster City, CA, USA). Let-7c expression was measured by using the TaqMan MiRNA Assay with specific primers for hsa-let-7c. U6 snRNA was used for normalization of the relative abundance of let-7c. Specific probe was designed and synthesized by Lifescience. Primer pairs for tumor necrosis factor alpha (TNF-α) sense: 5’-CAT CTT CTC AAA ATT CGA GTG ACA A-3’, antisense: 5’- CCA GCT GCT CCT CCA CTT G-3’; interleukin (IL)-6 sense: 5’- CAC AGA GGA TAC CAC TCC CAA CA-3’, antisense: 5’- TCC ACG ATT TCC CAG AGA ACA-3’; IL-1βsense: 5’- AAG CCT CGT GCT GTC GGA CC-3’, antisense: 5’- TGA GGC CCA AGG CCA CAG GT-3’; β-actin was amplified using the following primer: sense: 5’- CGT GAA AAG ACC CAG ATC A-3’, antisense: 5’- CAC AGC CTG GAT GGC TAC GT-3’. The mRNA expression of TNFα, IL-1βand IL-6 was normalized versusβ-actin mRNA. The relative expression was quantified with the 2-ΔΔCt method. Experiments were independently repeated at least three times.

    2.6. Western blot analysis

    After the cells were harvested, 1 × RIPA buffer containing protease and phosphatase inhibitors was used to lysate cells. Polyacrylamide gel electrophoresis was performed after addition of SDS loading buffer and boiled for 5 min, and then proteins was transferred to a PVDF membrane (Milipore). After blocked by 5% non-fat milk at room temperature, primary antibody was incubated overnight at 4 ℃ (1: 1 000), followed by incubation with horseradish peroxidasecoupled secondary antibody, and target band was detected by chemiluminescence. Protease inhibitors and phosphatase inhibitors were purchased from Roche Company; rabbit antibody against STAT3 p-STAT3 were purchased from Cell Signaling Technology; mouse antibody against β-actin was purchased from Santa Cruz Biotechnology; chemiluminescence were purchased from Thermo Pierce.

    2.7. Statistical analysis

    All data were shown as the mean ± standard deviation of three or more independent experiments. Results were analyzed using SPSS 18.0 software (SPSS, Chicago, IL, USA) and PRISM 6 (GraphPad Software Inc., San Diego, CA, USA). P<0.05 was regarded as statistically significant.

    3. Results

    3.1. Expression of miRNA let-7c in COPD

    Real-time PCR was used to determine the level of miRNA let-7c in 15 cases of lung tissues in patients with COPD and 15 cases of non-COPD lung tissues. It was found that the expression of miRNA let-7c in COPD was significantly lower than the control group (Figure 1A). To further validate this phenomenon, we built mouse model of COPD, and also found that the expression of miRNA let-7c in COPD mice was significantly decreased comparing with the control group (Figure 1B).

    Figure 1. Expression of miRNA let-7c in COPD.

    3.2. MiRNA let-7c expression in LPS treated alveolar macrophages

    To further explore the potential role of let-7c in COPD, the cells from alveolar macrophages in the bronchial alveolar lavage fluid of mice with COPD were isolated and total RNA was extracted to detect the expression level of miRNA let-7c. Real-time PCR showed that the level of let-7c in alveolar macrophages of mice with COPD was significantly lower than the normal mice (Figure 2A). In addition, alveolar macrophages form normal mice were treated with 100 ng/mL LPS for 6 h, 12 h and 24 h. We also found that inflammatory cytokines TNF-α, IL-1β, and IL-6 expression were significantly up-regulated, while the expression of let-7c was significantly down-regulated (Figure 2B-2E).

    Figure 2. Expression of miRNA let-7c in alveolar macrophages after LPS stimulation.

    3.3. Inhibition of LPS-induced pro-inflammation cytokines production by let-7c

    To further investigate the function of let-7c in alveolar macrophages, let-7c mimics were synthesized and transfected into alveolar macrophages. Real-time PCR results showed that expression of let-7c was greatly boosted after transfected with let-7c mimics but not in non-specific small RNA fragments transfected cells (Figure 3A). After transfection, alveolar macrophages were treated with LPS for 12 h; we found that high expression of TNFα, IL-1βand IL-6 induced by LPS was significantly suppressed by let-7c (Figure 3B-3D). In addition, the phosphorylation level of STAT3, a critical transcription factor in inflammatory signaling pathways that could always be activated, was also inhibited by overexpression of let-7c (Figure 3E, 3F).

    Figure 3. Suppression of LPS-induced inflammation in alveolar macrophages by miRNA let-7c.

    3.4. Suppression of phosphorylation of STAT3 by let-7

    To understand the mechanism of down-regulation of p-STAT3in alveolar macrophages by let-7c, the target gene of let-7c was predicted (http://www.microrna.org). Interestingly, we found that STAT3 was predicted to be a potential target of let-7c (Figure 4A). Therefore, we conducted luciferase reporter assays with STAT3 3’-UTR in let-7c or scramble mimic transfected alveolar macrophages. As shown in Figure 4B, a significant decrease of luciferase activity upon let-7c transfection was observed, suggesting that let-7c suppressed STAT3 directly in alveolar macrophages. In addition, we also found protein and mRNA expression levels of STAT3 were significantly decreased in let-7c transfected cells (Figure 4C-4E).

    Figure 4. STAT3 as a functional target of let-7c in alveolar macrophages.

    4. Discussion

    MiRNAs, a class of short single-stranded RNA molecules (19- to 25-nucleotide) that negatively regulate gene expression at the posttranscriptional level, play an important regulatory role in many biological processes, including inflammation, cellular proliferation, differentiation, and apoptosis. MiRNAs have been implicated in the pathogenesis of asthma, lung fibrosis and lung cancer by targeting transcription factors[11-13]. Here, we reported miRNA let-7c was significantly lower in patients with COPD compared with healthy subjects, especially in alveolar macrophages. Restored expression of miRNA let-7c in alveolar macrophages could partially reversed LPS induced inflammatory reaction by inhibiting the phosphorylation of STAT3.

    Let-7, the first known human miRNA, was originally discovered by Reinhart in 2000[14]. Let-7 comprise one of the largest family of miRNAs in human, including let-7a-1, let-7a-2, let-7a-3, let-7b, let-7c, let-7d, let-7e, let-7f-1, let-7f-2, let-7g, let-7i, miR-98, and miR-202[15]. Let-7 miRNAs have been reported to be critical for promoting differentiation and inhibiting cellular proliferation and its down-regulation has been found in many cancers, including breast cancers, prostate cancer and lung cancer[16-18]. In the present study, we found let-7c was obviously lower in patients with COPD in comparison with healthy subjects, and the similar results was observed in mice model, which was consistent with the results reported by Van Pottelberge[19].

    It is well known that COPD is characterized by chronic airway inflammation and emphysematous alveolar destruction. The inflammation is heterogeneous and involved with macrophages, neutrophils and T cells[5]. Macrophages are believed to play a key role in the pathogenesis of COPD and found markedly increase in numbers with increasingly strong inflammatory response, in both the airways and lung parenchyma[20,21]. Interestingly, we found let-7c was greatly decreased in alveolar macrophages in mice with COPD compared with control group. Down-regulation of let-7c was also found in isolated alveolar macrophages with LPS stimulation. To assess the effect of let-7c, alveolar macrophages were isolated and transfected with let-7c mimic or scramble shRNA. We observed that overexpression of let-7c suppressed increasing of important proinflammation cytokines produced by alveolar macrophages after exposed to LPS, including TNFα, IL-1βand IL-6. These results suggested that let-7c might play an anti-inflammation role in alveolar macrophages.

    STAT3 is an important mediator of the inflammatory response. Once activated, STAT3 migrates to the nucleus, activates transcription of downstream genes in a sequence-specific manner and plays a role in cell proliferation, inhibition of apoptosis and inflammatory response. The phosphorylation of STAT3 was enhanced in alveolar macrophages post LPS stimulation and inhibited by the expression of let-7c. We found the putative binding site of let-7c in STAT3 3’-UTR by the biological prediction program. Luciferase reporter assays showed that overexpression of let-7c caused a huge reduction of luciferase activity by the luciferase expression constructs carrying the target STAT3 3’-UTR fragment but no difference was observed on STAT3 3’-UTR mutated fragment. Also, the protein and mRNA expression of STAT3 were significantly decreased after transfected with let-7c mimic demonstrating that let-7c can directly target STAT3 mRNA in alveolar macrophages.

    In conclusion, let-7c is significantly lower in patients with COPDand might function as a negative regulator of the inflammatory response in alveolar macrophages by inhibiting the expression and phosphorylation of STAT3. This finding not only helps understand the role and mechanism of miRNA in inflammation, but also provides foundation for the development of targeted inhibitors of inflammation in COPD.

    Conflict of interest statement

    We declare that we have no conflict of interest.

    References

    [1]Byrne AL, Marais BJ, Mitnick CD, Lecca L, Marks GB. Risk factors for and origins of COPD. Lancet 2015; 385(9979): 1723-1724.

    [2]Freeman CM, Martinez CH, Todt JC, Martinez FJ, Han MK, Thompson DL, et al. Acute exacerbations of chronic obstructive pulmonary disease are associated with decreased CD4+& CD8+T cells and increased growth & differentiation factor-15 (GDF-15) in peripheral blood. Respir Res 2015; 16(1): 94.

    [3]Higham A, Booth G, Lea S, Southworth T, Plumb J, Singh D. The effects of corticosteroids on COPD lung macrophages: a pooled analysis. Respir Res 2015; 16(1): 98.

    [4]Jolley C, Luo Y, Steier J, Sylvester K, Man W, Rafferty G, et al. Neural respiratory drive and symptoms that limit exercise in chronic obstructive pulmonary disease. Lancet 2015; 385(Suppl 1): S51.

    [5]King PT. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin Transl Med 2015; 4(1): 68.

    [6]Kaur M, Bell T, Salek-Ardakani S, Hussell T. Macrophage adaptation in airway inflammatory resolution. Eur Respir Rev 2015; 24(137): 510-515.

    [7]Lokke A, Lange P, Scharling H, Fabricius P, Vestbo J. Developing COPD: a 25 year follow up study of the general population. Thorax 2006; 61(11): 935-939.

    [8]Rennard SI, Drummond MB. Early chronic obstructive pulmonary disease: definition, assessment, and prevention. Lancet 2015; 385(9979): 1778-1788.

    [9]Seys LJ, Verhamme FM, Schinwald A, Hammad H, Cunoosamy DM, Bantsimba-Malanda C, et al. Role of B cell-activating factor in chronic obstructive pulmonary disease. Am J Respir CritCare Med 2015; 192(6): 706-718.

    [10]Tashkin DP. Dual anti-inflammatory agents prevent COPD exacerbations. Lancet 2015; 385(9971): 832-834.

    [11]Mattes J, Collison, A, Plank, M, Phipps, S, Foster PS. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A 2009; 106(44): 18704-18709.

    [12]Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 2010; 207(8): 1589-1597.

    [13]Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit care Med 2010; 182(2): 220-229.

    [14]Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403(6772): 901-906.

    [15]Roush S, Slack FJ. The let-7 family of microRNAs. Trends Cell Biol 2008; 18(10): 505-516.

    [16]Li XX, Gao SY, Wang PY, Zhou X, Li YJ, Yu, Y, et al. Reduced expression levels of let-7c in human breast cancer patients. Oncol Lett 2015; 9(3): 1207-1212.

    [17]Nadiminty N, Tummala R, Lou W, Zhu Y, Shi XB, Zou JX, et al. MicroRNA let-7c is downregulated in prostate cancer and suppresses prostate cancer growth. PloS One 2012; 7(3): e32832.

    [18]Dou H, Wang Y, Su G, Zhao S. Decreased plasma let-7c and miR-152 as noninvasive biomarker for non-small-cell lung cancer. Int J Clin Exp Med 2015; 8(6): 9291-9298.

    [19]Van Pottelberge GR, Mestdagh P, Bracke KR, Thas O, van Durme YM, Joos GF, et al. MicroRNA expression in induced sputum of smokers and patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2011; 183(7): 898-906.

    [20]Meshi B, Vitalis TZ, Ionescu D, Elliott WM, Liu C, Wang XD, et al. Emphysematous lung destruction by cigarette smoke. The effects of latent adenoviral infection on the lung inflammatory response. Am J Respir cell Mol Biol 2002; 26(1): 52-57.

    [21]Russell RE, Thorley A, Culpitt SV, Dodd S, Donnelly LE, Demattos C, et al. Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. Am J Physiol Lung Cell Mol Physiol 2002; 283(4): L867-L873.

    Contents lists available at ScienceDirect IF: 1.062
    Asian Pacific Journal of Tropical Medicine
    journal homepage:www.elsevier.com/locate/apjtm

    doi:Document heading 10.1016/j.apjtm.2015.12.015

    *Corresponding author:Ji-Hui Yu, Master, Physician, Department of Healthy, First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

    欧美日韩黄片免| 啦啦啦观看免费观看视频高清| 久久狼人影院| 欧美另类亚洲清纯唯美| 99热只有精品国产| 老司机深夜福利视频在线观看| АⅤ资源中文在线天堂| 久久久久免费精品人妻一区二区 | 日韩一卡2卡3卡4卡2021年| 久久久久久久午夜电影| 亚洲精品一区av在线观看| 啦啦啦韩国在线观看视频| tocl精华| 免费搜索国产男女视频| 国产又色又爽无遮挡免费看| 亚洲一区中文字幕在线| 首页视频小说图片口味搜索| 免费观看人在逋| 成人国语在线视频| 国内毛片毛片毛片毛片毛片| 99精品在免费线老司机午夜| 亚洲九九香蕉| 91字幕亚洲| 日韩欧美国产在线观看| 国产91精品成人一区二区三区| 一本大道久久a久久精品| 久久午夜亚洲精品久久| 免费女性裸体啪啪无遮挡网站| 亚洲av成人av| 亚洲av五月六月丁香网| 成年免费大片在线观看| 成在线人永久免费视频| 中文字幕人成人乱码亚洲影| 欧美日韩精品网址| 高清在线国产一区| 亚洲精品中文字幕一二三四区| 村上凉子中文字幕在线| 久久国产亚洲av麻豆专区| 国产麻豆成人av免费视频| 久久久久久久午夜电影| 熟女电影av网| 女警被强在线播放| 国产精品免费一区二区三区在线| 女性被躁到高潮视频| 国产精品亚洲av一区麻豆| 国产成年人精品一区二区| 又紧又爽又黄一区二区| 成人18禁在线播放| 中文字幕另类日韩欧美亚洲嫩草| 一二三四在线观看免费中文在| 久久九九热精品免费| 免费在线观看完整版高清| 一区二区三区国产精品乱码| 国产成人精品久久二区二区91| 国产av在哪里看| 色播在线永久视频| 亚洲第一欧美日韩一区二区三区| 亚洲人成77777在线视频| 2021天堂中文幕一二区在线观 | www.精华液| 久久亚洲真实| 欧美黑人欧美精品刺激| 免费无遮挡裸体视频| 国产av一区在线观看免费| 欧美日韩福利视频一区二区| 久久中文字幕一级| 日韩 欧美 亚洲 中文字幕| 一进一出抽搐gif免费好疼| 在线十欧美十亚洲十日本专区| 怎么达到女性高潮| 在线av久久热| 欧美人与性动交α欧美精品济南到| 嫩草影院精品99| 色综合亚洲欧美另类图片| 久久人人精品亚洲av| 熟妇人妻久久中文字幕3abv| 久久精品国产综合久久久| 国产激情欧美一区二区| 啦啦啦观看免费观看视频高清| 热re99久久国产66热| 国产成人av激情在线播放| 两个人看的免费小视频| 中出人妻视频一区二区| 人人妻人人澡人人看| 色精品久久人妻99蜜桃| 老汉色av国产亚洲站长工具| 亚洲第一青青草原| 午夜免费观看网址| av天堂在线播放| 中文亚洲av片在线观看爽| 不卡av一区二区三区| netflix在线观看网站| 国产激情偷乱视频一区二区| 精品久久久久久久久久免费视频| 国产精品 欧美亚洲| 国产单亲对白刺激| 在线av久久热| 欧美激情高清一区二区三区| 亚洲av电影在线进入| 淫秽高清视频在线观看| 亚洲三区欧美一区| 国产一区二区三区视频了| 老司机在亚洲福利影院| 国语自产精品视频在线第100页| 女同久久另类99精品国产91| 中文字幕精品免费在线观看视频| 国产1区2区3区精品| 中文字幕久久专区| 正在播放国产对白刺激| 精品无人区乱码1区二区| 日本撒尿小便嘘嘘汇集6| 欧美激情高清一区二区三区| 日韩欧美三级三区| 国产不卡一卡二| 久久狼人影院| 亚洲片人在线观看| 日本 av在线| 女人高潮潮喷娇喘18禁视频| 国产午夜福利久久久久久| 黄色 视频免费看| 日本黄色视频三级网站网址| 久久精品国产综合久久久| 我的亚洲天堂| 黄片播放在线免费| 一卡2卡三卡四卡精品乱码亚洲| 久久性视频一级片| av超薄肉色丝袜交足视频| av在线天堂中文字幕| 国产亚洲欧美在线一区二区| 在线天堂中文资源库| a级毛片a级免费在线| 一区二区三区精品91| www.精华液| 韩国av一区二区三区四区| 成人av一区二区三区在线看| 天堂动漫精品| 国产精华一区二区三区| 国产又黄又爽又无遮挡在线| 一区二区三区激情视频| 亚洲成人国产一区在线观看| 99在线人妻在线中文字幕| 51午夜福利影视在线观看| xxxwww97欧美| 成人永久免费在线观看视频| 国产野战对白在线观看| 久久精品国产亚洲av高清一级| 精品一区二区三区四区五区乱码| netflix在线观看网站| 日韩免费av在线播放| 啦啦啦 在线观看视频| 香蕉国产在线看| 久久午夜综合久久蜜桃| 久热爱精品视频在线9| 精品国产一区二区三区四区第35| 国产精品久久久久久人妻精品电影| 性欧美人与动物交配| 亚洲一区二区三区不卡视频| 午夜免费成人在线视频| 99国产综合亚洲精品| 18禁裸乳无遮挡免费网站照片 | 热re99久久国产66热| 少妇粗大呻吟视频| 国产一区二区激情短视频| 十分钟在线观看高清视频www| 久久精品国产综合久久久| 女人高潮潮喷娇喘18禁视频| 国产亚洲欧美在线一区二区| 久久久精品国产亚洲av高清涩受| 91在线观看av| 午夜免费成人在线视频| 亚洲中文av在线| 夜夜爽天天搞| 91大片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国内揄拍国产精品人妻在线 | 久9热在线精品视频| 男女那种视频在线观看| 久久精品91蜜桃| 在线永久观看黄色视频| 一本一本综合久久| 中文字幕高清在线视频| 欧美日本亚洲视频在线播放| 国产成人精品无人区| 亚洲av电影不卡..在线观看| 久久国产精品影院| 欧美激情 高清一区二区三区| 人成视频在线观看免费观看| 国产激情久久老熟女| 变态另类成人亚洲欧美熟女| 欧美黄色片欧美黄色片| 日韩高清综合在线| 国产成人av激情在线播放| 亚洲中文字幕一区二区三区有码在线看 | 叶爱在线成人免费视频播放| 亚洲精品美女久久久久99蜜臀| 亚洲 欧美 日韩 在线 免费| 国产精品香港三级国产av潘金莲| 90打野战视频偷拍视频| 制服诱惑二区| netflix在线观看网站| 精华霜和精华液先用哪个| 亚洲九九香蕉| 成年女人毛片免费观看观看9| 中文字幕精品免费在线观看视频| 婷婷六月久久综合丁香| 午夜精品久久久久久毛片777| 成人一区二区视频在线观看| 午夜免费成人在线视频| 亚洲aⅴ乱码一区二区在线播放 | 国内少妇人妻偷人精品xxx网站 | 亚洲专区国产一区二区| 亚洲国产欧洲综合997久久, | 成年版毛片免费区| 久热这里只有精品99| 一区二区三区精品91| 国产成人av激情在线播放| 老熟妇仑乱视频hdxx| 天堂√8在线中文| 99在线视频只有这里精品首页| 久久国产亚洲av麻豆专区| 久久欧美精品欧美久久欧美| 丝袜美腿诱惑在线| 老司机午夜福利在线观看视频| 久久久久国产精品人妻aⅴ院| 欧美黑人精品巨大| 久久亚洲真实| √禁漫天堂资源中文www| 亚洲五月色婷婷综合| 99热只有精品国产| 亚洲欧美激情综合另类| 国产亚洲av高清不卡| 最好的美女福利视频网| 免费av毛片视频| 亚洲国产欧洲综合997久久, | 青草久久国产| 日本撒尿小便嘘嘘汇集6| 精品日产1卡2卡| 欧美大码av| 怎么达到女性高潮| 亚洲一区二区三区不卡视频| 久久久久久免费高清国产稀缺| 午夜福利欧美成人| 久久久精品欧美日韩精品| 给我免费播放毛片高清在线观看| 国产视频内射| 淫妇啪啪啪对白视频| 又黄又爽又免费观看的视频| 99国产极品粉嫩在线观看| 国产欧美日韩一区二区三| 免费观看人在逋| 香蕉国产在线看| 十八禁人妻一区二区| 亚洲成人久久爱视频| 国产真实乱freesex| 久99久视频精品免费| 三级毛片av免费| 老司机午夜十八禁免费视频| 别揉我奶头~嗯~啊~动态视频| 两人在一起打扑克的视频| 国产片内射在线| 中文字幕人妻熟女乱码| 嫁个100分男人电影在线观看| 大型av网站在线播放| 99riav亚洲国产免费| 黑丝袜美女国产一区| 欧美成人性av电影在线观看| 国产熟女午夜一区二区三区| 国产精品亚洲av一区麻豆| 国产精品 欧美亚洲| 99久久国产精品久久久| 美女 人体艺术 gogo| www国产在线视频色| 成年免费大片在线观看| 午夜成年电影在线免费观看| 我的亚洲天堂| 国产成+人综合+亚洲专区| 国语自产精品视频在线第100页| 国产99白浆流出| 成年版毛片免费区| 亚洲国产精品合色在线| 久久精品91蜜桃| 嫩草影视91久久| 午夜a级毛片| 国产精品av久久久久免费| 国产亚洲av嫩草精品影院| 日韩欧美在线二视频| 看黄色毛片网站| 曰老女人黄片| 在线观看www视频免费| 一区福利在线观看| 少妇被粗大的猛进出69影院| 亚洲精品粉嫩美女一区| 免费看十八禁软件| 99久久精品国产亚洲精品| 高清在线国产一区| 成人永久免费在线观看视频| 伊人久久大香线蕉亚洲五| 日韩欧美一区二区三区在线观看| 久久中文字幕人妻熟女| 两个人视频免费观看高清| av福利片在线| 最新美女视频免费是黄的| 美国免费a级毛片| 亚洲精品中文字幕在线视频| 巨乳人妻的诱惑在线观看| 亚洲狠狠婷婷综合久久图片| 日韩有码中文字幕| 日本一本二区三区精品| 亚洲欧美精品综合一区二区三区| 亚洲电影在线观看av| 国内揄拍国产精品人妻在线 | 久久国产精品影院| 啦啦啦免费观看视频1| 亚洲aⅴ乱码一区二区在线播放 | 禁无遮挡网站| 脱女人内裤的视频| 久久久久久久精品吃奶| or卡值多少钱| 亚洲片人在线观看| 国产精品久久久人人做人人爽| 国产三级在线视频| 一a级毛片在线观看| 午夜影院日韩av| 男女午夜视频在线观看| 日韩成人在线观看一区二区三区| 日本黄色视频三级网站网址| 欧美绝顶高潮抽搐喷水| 精品国产乱码久久久久久男人| 天堂√8在线中文| 91麻豆精品激情在线观看国产| 男女午夜视频在线观看| av电影中文网址| 一级毛片精品| 我的亚洲天堂| 精品国产乱子伦一区二区三区| 久久久国产成人精品二区| 很黄的视频免费| 老司机午夜十八禁免费视频| 麻豆成人午夜福利视频| 国产国语露脸激情在线看| 久久久久久久精品吃奶| 久久久水蜜桃国产精品网| 99在线人妻在线中文字幕| 一进一出好大好爽视频| 久久精品夜夜夜夜夜久久蜜豆 | 人人妻人人看人人澡| 男人操女人黄网站| 久久人人精品亚洲av| 久久精品91蜜桃| 亚洲av五月六月丁香网| 黄色毛片三级朝国网站| 亚洲专区字幕在线| 欧美日韩精品网址| 日韩欧美 国产精品| 欧美日本亚洲视频在线播放| 在线视频色国产色| 搡老岳熟女国产| 久久久久久国产a免费观看| 国产伦人伦偷精品视频| 久久香蕉激情| 一本一本综合久久| 桃红色精品国产亚洲av| 又大又爽又粗| 久久性视频一级片| 99精品久久久久人妻精品| 国产欧美日韩一区二区精品| 人人妻人人澡人人看| 免费在线观看亚洲国产| 国产视频内射| 女人被狂操c到高潮| 大香蕉久久成人网| 一级作爱视频免费观看| 可以在线观看的亚洲视频| 免费在线观看黄色视频的| 亚洲人成伊人成综合网2020| 热99re8久久精品国产| 亚洲成人久久爱视频| 精品无人区乱码1区二区| 国产97色在线日韩免费| 成熟少妇高潮喷水视频| 国产激情久久老熟女| 欧美大码av| 人人澡人人妻人| 窝窝影院91人妻| 日日摸夜夜添夜夜添小说| 可以在线观看毛片的网站| 可以在线观看毛片的网站| 久久 成人 亚洲| 精品国产国语对白av| 无限看片的www在线观看| 757午夜福利合集在线观看| 少妇熟女aⅴ在线视频| 日韩精品中文字幕看吧| av免费在线观看网站| 国产精品亚洲av一区麻豆| 亚洲国产中文字幕在线视频| 正在播放国产对白刺激| 欧美久久黑人一区二区| 色播在线永久视频| 老熟妇乱子伦视频在线观看| 麻豆久久精品国产亚洲av| 亚洲精品一区av在线观看| 亚洲国产精品999在线| www日本黄色视频网| 国产精品久久久人人做人人爽| 精品乱码久久久久久99久播| 岛国视频午夜一区免费看| 哪里可以看免费的av片| 男女床上黄色一级片免费看| 亚洲国产欧洲综合997久久, | 国产三级在线视频| av在线播放免费不卡| 国产91精品成人一区二区三区| 他把我摸到了高潮在线观看| 日韩三级视频一区二区三区| 亚洲国产看品久久| 国产99白浆流出| 日本免费一区二区三区高清不卡| 女人高潮潮喷娇喘18禁视频| 亚洲专区中文字幕在线| 久久人人精品亚洲av| 免费在线观看完整版高清| 成在线人永久免费视频| 久久久久九九精品影院| 久久这里只有精品19| 欧美中文日本在线观看视频| 国内久久婷婷六月综合欲色啪| 看免费av毛片| 黄色成人免费大全| 欧美又色又爽又黄视频| 国内揄拍国产精品人妻在线 | 国产一级毛片七仙女欲春2 | 午夜福利18| 岛国视频午夜一区免费看| 日韩欧美免费精品| 日韩大码丰满熟妇| 国产国语露脸激情在线看| 亚洲第一电影网av| 国产精品电影一区二区三区| 亚洲色图av天堂| 在线观看66精品国产| 欧美日本亚洲视频在线播放| 丰满的人妻完整版| 视频区欧美日本亚洲| 亚洲五月婷婷丁香| 在线av久久热| 国产日本99.免费观看| 成年女人毛片免费观看观看9| 一级毛片女人18水好多| 国产成人一区二区三区免费视频网站| 亚洲五月婷婷丁香| 午夜免费激情av| 女人被狂操c到高潮| 激情在线观看视频在线高清| а√天堂www在线а√下载| 亚洲黑人精品在线| 成人精品一区二区免费| 欧美黑人精品巨大| 亚洲免费av在线视频| 亚洲 国产 在线| 国产色视频综合| 国产黄片美女视频| 久久久久久国产a免费观看| 国产av一区在线观看免费| 2021天堂中文幕一二区在线观 | 国产精品乱码一区二三区的特点| www.999成人在线观看| 久久伊人香网站| 丝袜在线中文字幕| a在线观看视频网站| 曰老女人黄片| 久久人妻福利社区极品人妻图片| 成人欧美大片| 国产精品久久久久久精品电影 | 亚洲天堂国产精品一区在线| avwww免费| 国产亚洲欧美98| 一区二区三区高清视频在线| 在线观看午夜福利视频| 亚洲最大成人中文| 精品久久久久久久毛片微露脸| 脱女人内裤的视频| 免费av毛片视频| 亚洲国产中文字幕在线视频| 村上凉子中文字幕在线| 在线观看免费午夜福利视频| 一区二区三区激情视频| 日韩av在线大香蕉| 超碰成人久久| 91av网站免费观看| 色综合婷婷激情| 国产午夜精品久久久久久| 黄色a级毛片大全视频| 黄片小视频在线播放| 日韩欧美在线二视频| 国产野战对白在线观看| 99久久精品国产亚洲精品| 97碰自拍视频| 免费在线观看黄色视频的| 亚洲 欧美 日韩 在线 免费| 午夜福利在线观看吧| 亚洲午夜精品一区,二区,三区| 叶爱在线成人免费视频播放| 亚洲国产欧美网| 亚洲中文av在线| 怎么达到女性高潮| 欧美激情 高清一区二区三区| 午夜久久久在线观看| 久久国产精品男人的天堂亚洲| 亚洲成国产人片在线观看| av天堂在线播放| 非洲黑人性xxxx精品又粗又长| 12—13女人毛片做爰片一| 最近在线观看免费完整版| 欧美三级亚洲精品| 午夜福利视频1000在线观看| 在线观看免费视频日本深夜| 日本a在线网址| 亚洲自偷自拍图片 自拍| 午夜激情福利司机影院| 亚洲成人免费电影在线观看| 亚洲精品久久国产高清桃花| 久热爱精品视频在线9| 一边摸一边抽搐一进一小说| 亚洲午夜精品一区,二区,三区| av视频在线观看入口| 又黄又粗又硬又大视频| 欧美日韩乱码在线| 国产成+人综合+亚洲专区| 欧美性猛交╳xxx乱大交人| 亚洲av成人一区二区三| 国产一区二区三区在线臀色熟女| netflix在线观看网站| 久久中文字幕人妻熟女| 精品高清国产在线一区| 亚洲中文av在线| 亚洲av中文字字幕乱码综合 | 久久午夜综合久久蜜桃| 91麻豆精品激情在线观看国产| 一本精品99久久精品77| 亚洲激情在线av| 欧美久久黑人一区二区| 亚洲,欧美精品.| 国产成人av激情在线播放| 国产精品,欧美在线| 免费看日本二区| 美女免费视频网站| 狂野欧美激情性xxxx| 丁香欧美五月| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产精品999在线| 亚洲欧美精品综合久久99| 啦啦啦免费观看视频1| 国产97色在线日韩免费| 波多野结衣av一区二区av| 亚洲免费av在线视频| 欧美av亚洲av综合av国产av| 成人国语在线视频| 午夜福利欧美成人| 亚洲精品国产一区二区精华液| 最好的美女福利视频网| 国产区一区二久久| 国产精品久久久久久亚洲av鲁大| 热99re8久久精品国产| 婷婷精品国产亚洲av在线| 99久久国产精品久久久| 亚洲 国产 在线| 免费在线观看亚洲国产| 亚洲真实伦在线观看| www国产在线视频色| 久久狼人影院| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久人人做人人爽| 国产av一区在线观看免费| 国产私拍福利视频在线观看| 最新美女视频免费是黄的| 天堂动漫精品| 久久 成人 亚洲| 黄色视频,在线免费观看| 国产精品亚洲美女久久久| 51午夜福利影视在线观看| 成年版毛片免费区| 亚洲精华国产精华精| 亚洲国产高清在线一区二区三 | 国内精品久久久久精免费| 国产一区二区激情短视频| 9191精品国产免费久久| 国产一区二区三区在线臀色熟女| 亚洲一区二区三区不卡视频| 日本a在线网址| 一级黄色大片毛片| 香蕉国产在线看| 日韩精品青青久久久久久| 狂野欧美激情性xxxx| 欧美黑人精品巨大| 人人澡人人妻人| 变态另类丝袜制服| 久久久久免费精品人妻一区二区 | 少妇的丰满在线观看| 免费看a级黄色片| 色综合欧美亚洲国产小说| 久久婷婷人人爽人人干人人爱| 亚洲在线自拍视频| 亚洲av电影在线进入| 少妇熟女aⅴ在线视频| 中国美女看黄片| 一区二区三区高清视频在线| 夜夜夜夜夜久久久久| 久久国产精品男人的天堂亚洲| 法律面前人人平等表现在哪些方面| 久久精品国产亚洲av香蕉五月| 天堂影院成人在线观看| 亚洲精品美女久久久久99蜜臀| 精品久久久久久久人妻蜜臀av| 91成年电影在线观看|