高宇 汪景 余慶雄 單圣周 李青峰
?
機(jī)械牽張刺激下大鼠皮膚再生的關(guān)鍵基因篩選
高宇汪景余慶雄單圣周李青峰
【摘要】目的明確機(jī)械牽張刺激下大鼠皮膚再生相關(guān)基因表達(dá)譜的變化,并篩選出其中的關(guān)鍵基因。方法建立大鼠皮膚擴(kuò)張模型,以未擴(kuò)張皮膚為對(duì)照,以注水量不同分組取材。分別是:對(duì)照組(con)、擴(kuò)張器最終注水60 mL組(exp60)、擴(kuò)張器最終注水120 mL組(exp120)、擴(kuò)張器最終注水180 mL組(exp180)。取材后一部分樣本切片行免疫熒光染色,熒光標(biāo)記增殖標(biāo)記物Ki67,繪制皮膚細(xì)胞增殖曲線。另一部分樣本行基因芯片檢測(cè),檢測(cè)mRNA表達(dá)譜的變化,并利用t檢驗(yàn)和差異表達(dá)的倍數(shù)變化(FC值)篩選出關(guān)鍵基因。篩選出皮膚再生的關(guān)鍵基因后,用PCR方法驗(yàn)證以確認(rèn)該基因的表達(dá)量,及其與皮膚增殖之間的關(guān)系。結(jié)果免疫熒光染色顯示,增殖標(biāo)記物Ki67在各組的表達(dá)量由高到低依次是:con、exp180、exp60和exp120。本研究篩選出不同機(jī)械牽張刺激下大鼠皮膚再生的11個(gè)差異基因,分別為:Myh1、Myh2、Myh3、Myh4、Car6、Pi15、Apt12a、Mt1a、Cthrc1、Rsad2和IGF-BP5。其中IGF-BP5和對(duì)照組的皮膚內(nèi)表達(dá)相比為下調(diào)基因;PCR驗(yàn)證得出,IGF-BP5在各組的表達(dá)量由高到低依次是:exp120、exp60、exp180和con。結(jié)論機(jī)械牽張刺激下,隨著擴(kuò)張時(shí)間及擴(kuò)張量的增加,大鼠皮膚再生呈現(xiàn)早期皮膚細(xì)胞增殖加速,中期增殖活躍,后期增殖減緩的趨勢(shì);且IGF-BP5可能為影響機(jī)械牽張刺激下大鼠皮膚再生的關(guān)鍵基因。
【關(guān)鍵詞】皮膚擴(kuò)張機(jī)械牽張皮膚再生基因芯片
作者單位:200011上海市上海交通大學(xué)醫(yī)學(xué)院附屬第九人民醫(yī)院整復(fù)外科。
皮膚軟組織擴(kuò)張就是將醫(yī)用硅膠制作的軟組織擴(kuò)張器埋植于皮下,并定期向擴(kuò)張囊內(nèi)注入生理鹽水,對(duì)表面皮膚組織增加壓力,通過生長和彈性擴(kuò)張,使皮膚發(fā)生層進(jìn)行分裂增殖,以增加額外的皮膚用于對(duì)缺損進(jìn)行修復(fù)[1]。該手術(shù)可為患者提供質(zhì)地、色澤、厚薄以及毛發(fā)分布等同周圍組織相似的組織,并進(jìn)一步避免產(chǎn)生新的瘢痕或畸形[2-5]。它與傳統(tǒng)燒傷整形外科修復(fù)手段,如植皮、遠(yuǎn)位皮瓣等相比,保留了供區(qū)皮膚組織的特征,克服了供區(qū)發(fā)生再缺損的弊端[6-8]。
但是,常規(guī)擴(kuò)張能提供的皮膚有限,常常不能滿足大面積缺損修復(fù)的需要;反復(fù)擴(kuò)張又使得皮膚質(zhì)地改變、擴(kuò)張效率下降,并增加了患者經(jīng)濟(jì)和精神負(fù)擔(dān);超量擴(kuò)張雖能獲得較多的擴(kuò)張量,但擴(kuò)張周期長,破潰、感染等并發(fā)癥的發(fā)生率也隨之增高[9-12]。因此,促進(jìn)皮膚的再生能力、提高擴(kuò)張效率、縮短擴(kuò)張時(shí)間一直是研究的熱點(diǎn)之一。
有研究認(rèn)為,罌粟堿、雌三醇、A型肉毒毒素、二甲亞砜、堿性成纖維細(xì)胞生長因子、鈣通道阻滯劑和骨髓間充質(zhì)干細(xì)胞等能夠提高擴(kuò)張效率[13-20]。盡管這些方法在實(shí)驗(yàn)研究中取得了進(jìn)展,但由于毒副作用、維持時(shí)間、給藥途徑和實(shí)際效果等因素限制,臨床效果并不令人滿意。臨床上尚缺乏一種能有效促進(jìn)皮膚再生并提高擴(kuò)張效率的方法。盡管我們已經(jīng)從組織和細(xì)胞水平上詳細(xì)了解了擴(kuò)張過程中機(jī)體的各種變化,但基因水平上尚缺乏系統(tǒng)全面的認(rèn)識(shí),因而不能明確擴(kuò)張過程中的關(guān)鍵分子并針對(duì)這些關(guān)鍵分子實(shí)行有效的干預(yù)。
本研究根據(jù)擴(kuò)張皮膚中mRNA的變化,通過基因芯片分析技術(shù)及分子生物學(xué)技術(shù),嘗試明確擴(kuò)張皮膚再生相關(guān)基因表達(dá)水平上的變化,找出其中的關(guān)鍵靶基因,為進(jìn)一步的干預(yù)實(shí)驗(yàn)篩選靶點(diǎn)。
1.1實(shí)驗(yàn)動(dòng)物及材料
雄性SD大鼠,7~8周齡(我院SPF級(jí)動(dòng)物實(shí)驗(yàn)中心提供);10 mL皮膚軟組織擴(kuò)張器(廣州萬和整形材料有限公司);mRNA芯片采用Affymetrix GeneChip Rat Gene 2.0 ST Array基因芯片平臺(tái)(上海歐易生物醫(yī)學(xué)科技有限公司)。
1.2建立擴(kuò)張模型
大鼠麻醉,背側(cè)皮膚備皮。在大鼠頸部后方作3 cm切口,切開皮膚、皮下組織至深筋膜淺層。然后向頭側(cè)及尾側(cè)剝離形成腔隙。其中尾側(cè)剝離范圍為3 cm×6 cm。向頭側(cè)腔隙中放置擴(kuò)張器注射壺,并將擴(kuò)張器植入尾側(cè)剝離腔隙,術(shù)畢,縫合切口。術(shù)后1周待切口愈合后,向擴(kuò)張器內(nèi)注入10 mL無菌生理鹽水,每周3次(周一、周三、周五各1次)。實(shí)驗(yàn)分4組,目的注水量分別為0、60 mL、120 mL和180 mL,標(biāo)記為con、exp60、exp120、exp180四組,每組3個(gè)標(biāo)本,共12只大鼠。
1.3免疫熒光染色
使用abcam抗體進(jìn)行免疫熒光染色,檢測(cè)各組增殖標(biāo)記Ki67,熒光顯微鏡下觀察并拍攝標(biāo)記情況,統(tǒng)計(jì)Ki67陽性率以反映皮膚再生情況。
1.4基因芯片
RNA樣本由上海歐易生物醫(yī)學(xué)科技有限公司,進(jìn)行mRNA芯片的雜交數(shù)據(jù)讀取和正態(tài)化工作。樣品總RNA利用NanoDrop ND-2000(Thermo Scientific)定量并經(jīng)Agilent Bioanalyzer 2100(Agilent Technologies)檢測(cè)RNA完整性。RNA質(zhì)檢合格后,樣本的標(biāo)記、芯片的雜交以及洗脫參照芯片標(biāo)準(zhǔn)流程。首先,總RNA反轉(zhuǎn)錄成雙鏈cDNA,再進(jìn)一步合成cRNA,接著對(duì)cRNA進(jìn)行第二輪反轉(zhuǎn)錄合成cDNA,片段化并與生物素標(biāo)記后與芯片雜交,洗脫和染色后利用Affymetrix Scanner 3000(Affymetrix)掃描得到原始圖像。
1.5差異基因的篩選
原始圖像采用Expression Console軟件(version1.3.1,Affymetrix)處理提取原始數(shù)據(jù)和RMA標(biāo)準(zhǔn)化處理。利用Genesrping軟件(version 12.5,Agilent Technologies)進(jìn)行后續(xù)處理。差異基因利用t檢驗(yàn)的P值和倍數(shù)變化值進(jìn)行篩選,篩選的標(biāo)準(zhǔn)為上調(diào)或者下調(diào)倍數(shù)變化值≥2.0且P≤0.05。接著,對(duì)差異基因利用GO和KEGG(Kyoto Encyclope dia of Genes and Genomes)富集分析,以判定差異基因主要影響的生物學(xué)功能或者通路。分別分析出exp60 VS control,exp120 VS control,exp180 VS control三組數(shù)據(jù)分別的差異基因和共同差異基因,根據(jù)共同差異基因的不同功能,我們選定參與細(xì)胞組成的基因,進(jìn)行PCR驗(yàn)證,確認(rèn)其表達(dá)趨勢(shì)和Ki67的陽性率趨勢(shì)是否一致,從而確認(rèn)該基因?qū)τ跔繌埓碳は缕つw再生的作用。
1.6PCR實(shí)驗(yàn)步驟
存于液氮中的組織或細(xì)胞用trizol進(jìn)行mRNA提??;提出的mRNA用MMLV系統(tǒng)進(jìn)行逆轉(zhuǎn)錄得到CDNA;cDNA可在real Time PCR中進(jìn)行內(nèi)參的驗(yàn)證,來驗(yàn)證提取和轉(zhuǎn)錄的效率,確定能進(jìn)行實(shí)驗(yàn)的樣本;最后進(jìn)行real time PCR的擴(kuò)增步驟,判斷實(shí)驗(yàn)數(shù)據(jù),進(jìn)行計(jì)算(圖1)。
圖1 引物信息Fig. 1 Information of primer
2.1不同擴(kuò)張時(shí)間對(duì)皮膚細(xì)胞增殖的影響
熒光顯微鏡檢測(cè)增殖標(biāo)記Ki67顯示,隨著擴(kuò)張器注水量的增多,表皮厚度逐漸增厚(圖2,3)。表皮細(xì)胞的增殖情況可用Ki67的陽性率來表示。結(jié)果顯示,4組中Ki67的陽性率從高到低依次為exp120、exp60、exp180、con(圖4)。說明在注水量達(dá)120 mL時(shí),大鼠皮膚細(xì)胞增殖最活躍,注水量達(dá)60 mL時(shí),處于增殖上升期,注水量在120~180 mL期間,處于增殖減緩期。
圖2 各組免疫熒光觀察增殖標(biāo)記Ki67Fig. 2 Immunohistochemical observation of proliferation marker Ki67 in each group
圖3 各組表皮厚度Fig. 3 Thickness of epidermis in each group
圖4 各組Ki67陽性率Fig. 4 Positive rate of proliferation marker Ki67 in each group
2.2基因芯片分析結(jié)果
將3組實(shí)驗(yàn)組與對(duì)照組進(jìn)行比較,數(shù)據(jù)歸一化處理,初篩基因。滿足上調(diào)或者下調(diào)倍數(shù)變化值≥2.0 且P≤0.05條件的基因,分別有67個(gè)(其中17個(gè)上調(diào)基因,50個(gè)下調(diào)基因)、143個(gè)(其中59個(gè)上調(diào)基因,84個(gè)下調(diào)基因)、94個(gè)(其中5個(gè)上調(diào)基因,89個(gè)下調(diào)基因)(表1)。
表1 60 vs con、120 vs con、180 vs con的差異基因總數(shù)統(tǒng)計(jì)Table 1 Summary of discrepant genes of 60 vs con,120 vscon and 180 vs con
將3組數(shù)據(jù)的差異基因進(jìn)行重合,從304個(gè)備選差異基因中,根據(jù)基因功能,分為四種類型:細(xì)胞組成、生物過程、分子功能和KEGG通路。我們選定參與細(xì)胞組成的基因,從中篩選出11個(gè)表達(dá)存在顯著性差異的共同基因(FC>2,P<0.05),其中,5個(gè)(45.45%)上調(diào)基因,6個(gè)(54.55%)下調(diào)基因(表2)。
表2 60 vs con、120 vs con、180 vs con的共同差異基因Table 2 Common examples of discrepant genes of 60 vscon,120 vs con and 180 vs con
2.3定量PCR驗(yàn)證結(jié)果
在芯片篩選出的參與細(xì)胞組成的差異基因中,根據(jù)已有相關(guān)文獻(xiàn)報(bào)道結(jié)果,我們對(duì)其中一個(gè)基因IGF-BP5進(jìn)行定量PCR驗(yàn)證,發(fā)現(xiàn)與正常未擴(kuò)張皮膚相比,IGF-BP5在擴(kuò)張皮膚中表達(dá)下降。PCR驗(yàn)證結(jié)果顯示,在con、exp60、exp120和exp180這四組中,IGF-BP5表達(dá)量由多到少,依次排序?yàn)閏on、exp180、exp60、exp120(圖5)。
圖5 各組IGF-BP5表達(dá)量Fig. 5 Expression of IGF-BP5 in each group
由于皮膚擴(kuò)張是一個(gè)長期的過程,在擴(kuò)張的不同階段隨著炎癥血流動(dòng)力學(xué)和生物力學(xué)等因素的變化,細(xì)胞的生理狀態(tài)也存在著不同的變化[21-26],因此需要進(jìn)行時(shí)間序列的基因芯片實(shí)驗(yàn),才能完整揭示擴(kuò)張過程中基因水平的各種變化。本實(shí)驗(yàn)免疫熒光染色顯示,各組中增殖標(biāo)記Ki67的表達(dá)量由高到低依次是exp120、exp60、exp180和con。本研究首次明確了SD大鼠皮膚隨著擴(kuò)張器注水量增多的不同時(shí)間點(diǎn)的基因芯片數(shù)據(jù),并篩選出參與細(xì)胞組成的11個(gè)差異基因,分別為:Myh1、Myh2、Myh3、Myh4、Car6、Pi15、Apt12a、Mt1a、Cthrc1、Rsad2和IGF-BP5。其中,IGF-BP5和對(duì)照組的皮膚內(nèi)表達(dá)相比為下調(diào)基因,PCR驗(yàn)證得出,IGF-BP5在4組中的表達(dá)量由高到低依次是exp120、exp60、exp180和con,符合IGF-BP5作為下調(diào)基因的特點(diǎn)。因此我們認(rèn)為,在機(jī)械牽張刺激下,隨著擴(kuò)張時(shí)間及擴(kuò)張量的增加,大鼠皮膚再生呈現(xiàn)早期皮膚細(xì)胞增殖加速,中期增殖活躍,后期增殖減緩趨勢(shì);且IGF-BP5可能為影響機(jī)械牽張刺激下大鼠皮膚再生的關(guān)鍵下調(diào)基因。
Pilewski等[27]在系統(tǒng)性纖維化病人纖維化皮膚的原代成纖維細(xì)胞中發(fā)現(xiàn),IGF-BP5的mRNA和蛋白表達(dá)水平增高;Yasuoka等[28-29]報(bào)道,小鼠模型中IGF-BP5通過增厚真皮結(jié)締組織厚度、增加膠原和纖連蛋白的沉積來誘導(dǎo)皮膚的纖維化。2014年,他們又發(fā)現(xiàn),IGF-BP5誘導(dǎo)皮膚纖維化的機(jī)制可能是通過DOK5調(diào)控細(xì)胞外基質(zhì)的合成[30]。然而,Carolyn等[31]發(fā)現(xiàn),IGF-II∶VN(vitronectin)和IGF-I∶IGFBP-5∶VN的復(fù)合體,可能有增強(qiáng)表皮細(xì)胞的遷徙和增殖的功能,尤其在傷口愈合和皮膚再生過程中。其中,IGF-BP5的作用是使IGF-1和VN的連接更容易。Turchi等[32]證實(shí),在燒傷和外傷的愈合過程中,IGF∶VN復(fù)合體能夠促進(jìn)表皮細(xì)胞的增殖和遷徙。關(guān)于IGF-BP5誘導(dǎo)皮膚纖維化和我們研究顯示的IGFBP5抑制牽張刺激下皮膚再生的關(guān)系,仍需進(jìn)一步研究。
本研究尚存在一定的局限,實(shí)驗(yàn)方法上面,我們研究的是取樣時(shí)某個(gè)擴(kuò)張量下的皮膚,所以只能大概確定皮膚再生的趨勢(shì),不夠精確,以后的實(shí)驗(yàn)中可以更加細(xì)化時(shí)間段。其次,雖然說明了IGF-BP5可能是抑制皮膚再生的關(guān)鍵基因,但是,機(jī)制有待進(jìn)一步明確。未來的研究將會(huì)著力于完善相關(guān)數(shù)據(jù),追蹤本研究發(fā)現(xiàn)的其他關(guān)鍵基因,進(jìn)一步明確其調(diào)控皮膚擴(kuò)張的機(jī)制。
參考文獻(xiàn)
[1]Radovan C. Tissue expansion in soft-tissue reconstruction[J]. Plast Reconstr Surg,1984,74(4):482-492.
[2]Manders EK,Oaks TE,Au VK,et al. Soft-tissue expansion in the lower extremities[J]. Plast Reconstr Surg,1988,81(2):208-219.
[3]Cordeiro PG,McCarthy CM. A single surgeon's 12-year experience with tissue expander/implant breast reconstruction:Part I. A prospective analysis of early complications[J]. Plast Reconstr Surg,2006,118(4):825-831.
[4]Leonard AG,Small JO. Tissue expansion in the treatment of alopecia[J]. Br J Plast Surg,1986,39(1):42-56.
[5]Bozkurt A,Groger A,O'Dey D,et al. Retrospective analysis of tissue expansion in reconstructive burn surgery:Evaluation of complication rates[J]. Burns,2008,34(8):1113-1118.
[6]Heitland AS,Pallua N. The single and double-folded supraclavicular island flap as a new therapy option in the treatment of large facial defects in noma patients[J]. Plast Reconstr Surg,2005,115 (6):1591-1596.
[7]Pallua N,von Heimburg D. Pre-expanded ultra-thin supraclavicular flaps for(full -)face reconstruction with reduced donor -site morbidity and without the need for microsurgery[J]. Plast Reconstr Surg,2005,115(7):1837-1844.
[8]Pallua N,Machens HG,Rennekampff O,et al. The fasciocutaneous supraclavicular artery island flap for releasing postburn mentosternal contractures[J]. Plast Reconstr Surg,1997,99(7):1878-1884.
[9]Antonyshyn O,Gruss JS,Zuker R,et al. Tissue expansion in head and neck reconstruction[J]. Plast Reconstr Surg,1988,82(1):58-68.
[10]Friedman RM,Ingram AE Jr,Rohrich RJ,et al. Risk factors for complications in pediatric tissue expansion[J]. Plast Reconstr Surg,1996,98(7):1242-1246.
[11]Paletta C,Campbell E,Shehadi SI. Tissue expanders in children [J]. J Pediatr Surg,1991,26(1):22-25.
[12]Bauer BS,F(xiàn)ew JW,Chavez CD,et al. The role of tissue expansion in the management of large congenital pigmented nevi of the forehead in the pediatric patient[J]. Plast Reconstr Surg,2001,107(3):668-675.
[13]Tang Y,Luan J,Zhang X. Accelerating tissue expansion by application of topical papaverine cream[J]. Plast Reconstr Surg,2004,114(5):1166-1169.
[14]Lee P,Squier CA,Bardach J. Enhancement of tissue expansion by anticontractile agents[J]. Plast Reconstr Surg,1985,76(4):604-610.
[15]Tercan M,Cokkeser Y,Ozyazgan I,et al. Facilitated tissue expansion with topical estriol[J]. Ann Plast Surg,2001,46(6):617-620.
[16]Chenwang D,Shiwei B,Dashan Y,et al. Application of botulinum toxin type A in myocutaneous flap expansion[J]. Plast Reconstr
Surg,2009,124(5):1450-1457.
[17]Raposio E,Santi PL. Topical application of DMSO as an adjunct to tissue expansion for breast reconstruction[J]. Br J Plast Surg,1999,52(3):194-197.
[18]胡亞蘭,郭樹忠,晏培松,等.堿性成纖維細(xì)胞生長因子和硫糖鋁聯(lián)合局部應(yīng)用對(duì)擴(kuò)張皮膚組織結(jié)構(gòu)的影響[J].中國修復(fù)重建外科雜志,2002,16(5):340-344.
[19]Copcu E,Sivrioglu N,Sisman N,et al. Enhancement of tissue expansion by calcium channel blocker:a preliminary study[J]. World J Surg Oncol,2003,1(1):19.
[20]Yang M,Li Q,Sheng L,et al. Bone marrow-derived mesenchymal stem cells transplantation accelerates tissue expansion by promoting skin regeneration during expansion[J]. Ann Surg,2011,253(1):202-209.
[21]De Filippo RE,Atala A. Stretch and growth:the molecular and physiologic influences of tissue expansion[J]. Plast Reconstr Surg,2002,109(7):2450-2462.
[22]Webb K,Hitchcock RW,Smeal RM,et al. Cyclic strain increases fibroblast proliferation,matrix accumulation,and elastic modulus of fibroblast seeded polyurethane constructs[J]. J Biomech,2006,39(6):1136-1144.
[23]Britani NB,Heather MP. Morphogenesis and Biomechanics of engineered skin cultured under uniaxial strain[J]. Adv Wound Care(New Rochelle),2012,1(2):69-74.
[24]Chin MS,Lancerotto L,Helm DL,et al. Analysis of neuropeptides in stretched skin[J]. Plast Reconstr Surg,2009,124(1):102-113.
[25]Lee Y,Gil MS,Hong JJ. Histomorphologic changes of hair follicles in human expanded scalp[J]. Plast Reconstr Surg,2000,105(7):2361-2365.
[26]Pietramaggiori G,Liu P,Scherer SS,et al. Tensile forces stimulate vascular remodeling and epidermal cell proliferation in living skin[J]. Ann Surg,2007,246(5):896-902.
[27]Pilewski JM,Liu L,Henry AC,et al. Insulin-like growth factor binding proteins 3 and 5 are overexpressed in idiopathic pulmonary fibrosis and contribute to extracellular matrix deposition[J]. Am J Pathol,2005,166(2):399-407.
[28]Yasuoka H,Jukic DM,Zhou Z,et al. Insulin-like growth factor binding protein 5 induces skin fibrosis:A novel murine model for dermal fibrosis[J]. Arthritis Rheum,2006,54(9):3001-3010.
[29]Yasuoka H,Zhou Z,Pilewski JM,et al. Insulin-like growth factorbinding protein -5 induces pulmonary fibrosis and triggers mononuclear cellular infiltration[J]. Am J Pathol,2006,169(5):1633-1642.
[30]Yasuoka H,Yamaguchi Y,F(xiàn)eghali-Bostwick CA. The membraneassociated adaptor protein DOK5 is upregulated in systemic sclerosis and associated with IGFBP-5-induced fibrosis[J]. PLoS One,2014,9(2):e87754.?
[31]Hyde C,Hollier B,Anderson A,et al. Insulin-like growth factors (IGF)and IGF -binding proteins bound to vitronectin enhance keratinocyte protein synthesis and migration[J]. J Invest Dermatol,2004,122(5):1198-1206.
[32]Turchi L,Chassot AA,Rezzonico R,et al. Dynamic characterization of the molecular events duringin vitro epidermal wound healing [J]. J Invest Dermatol,2002,119(1):56-63.
·綜述·
·論著·
Key Gene Screening of Skin Regeneration Under Mechanical Stretch Stimulation in Rats
GAO Yu,WANG Jing,YU Qingxiong,SHAN Shengzhou,LI Qingfeng. Department of Plastic and Reconstructive Surgery,Shanghai Ninth People's Hospital,Shanghai Jiaotong University School of Medicine,Shanghai 200011,China. Corresponding author: LI Qingfeng(E-mail: dr.liqingfeng@shsmu.edu.cn).
【Abstract】Objective To determine the expression changes of skin regeneration-related key genes under mechanical stretch stimulation in rats and to screen key genes. Methods Skin expansion model was established and skin samples were harvested:the unexpanded control group(con),water-injected 60 mL group(exp60),water-injected 120 mL group(exp120)and water-injected 180 mL group(exp180). Immunohistochemical staining was implemented in the sliced the sample,staining proliferation marker Ki67. According to that,the trend curve of Ki67 positive rate of samples was drawn. Gene Chip was also undertaken to reveal the gene expression changes during expansion process. T test and fold change of differential expression were applied to screen key genes. Then PCR was used to confirm the relationship between the expression of the key gene and the proliferation of skin. Results Immunofluorescence staining showed that,the expression of the proliferation marker Ki67 descending order is con,exp180,exp60,exp120. This study screened 11 skin regeneration-related key genes of rats under different mechanical stretch stimulation:Myh1,Myh2,Myh3,Myh4,Car6,Pi15,Apt12a,Mt1a,Cthrc1,Rsad2,IGF-BP5. Compared to the expression of control group,IGF-BP5 was a down-regulated gene. PCR showed that the expression of IGF-BP5 descending order was:exp120,exp60,exp180,con. ConclusionUnder mechanical stretch stimulation,with the increasing time of expansion and amount of water injected,skin regeneration of rats shows accelerated proliferation at early stage,active proliferation in the mid-term and tendency to slow down the proliferation in the later period;IGF-BP5 may be a key regeneration-related gene of rats under mechanical stretch stimulation.
【Key words】Skin expansion;Mechanical stretch;Skin regeneration;Gene chip
【中圖分類號(hào)】R622+.l
【文獻(xiàn)標(biāo)識(shí)碼】A
【文章編號(hào)】1673-0364(2016)02-0107-05
基金項(xiàng)目:國家自然科學(xué)基金(NO.81230042)。
通訊作者:李青峰(E-mail:dr.liqingfeng@shsmu.edu.cn)。
doi:10.3969/j.issn.1673-0364.2016.02.005
收稿日期:(2016年3月1日;修回日期:2016年3月22日)