孫文博,王合英,陳宜保,陳 宏
(清華大學(xué) 物理系 實(shí)驗(yàn)物理教學(xué)中心,北京 100084)
Ⅰ類(lèi)量子糾纏實(shí)驗(yàn)教學(xué)系統(tǒng)
孫文博,王合英,陳宜保,陳宏
(清華大學(xué) 物理系 實(shí)驗(yàn)物理教學(xué)中心,北京 100084)
摘要:為使量子糾纏實(shí)驗(yàn)更好地服務(wù)于本科生基礎(chǔ)實(shí)驗(yàn)教學(xué),自建了I類(lèi)糾纏源實(shí)驗(yàn)教學(xué)系統(tǒng). 采用2塊光軸相互垂直的薄片BBO晶體粘合,并調(diào)整泵浦光偏振與光軸成45°入射,在粘合面附近位置產(chǎn)生的下轉(zhuǎn)換光錐交疊部分將形成量子糾纏. 由于I類(lèi)源產(chǎn)生的光子對(duì)偏振相同,從而避免建立補(bǔ)償系統(tǒng),降低了糾纏點(diǎn)空間定位的精度要求和操作難度,簡(jiǎn)化接收裝置,同時(shí)保持原實(shí)驗(yàn)中的核心原理和操作訓(xùn)練要求,本科生在1~2次實(shí)驗(yàn)課中達(dá)到教學(xué)設(shè)定要求.
關(guān)鍵詞:量子糾纏;Ⅰ類(lèi)糾纏源;CHSH不等式;符合測(cè)量
2015年底,英國(guó)物理學(xué)會(huì)新聞網(wǎng)站《物理世界》評(píng)選的年度國(guó)際物理學(xué)十大突破揭曉[1],其中“多自由度量子隱形傳態(tài)[2]”、“‘無(wú)漏洞’貝爾不等式實(shí)驗(yàn)[3]”、“硅材料上的量子邏輯門(mén)[4]”3項(xiàng)成果都與量子糾纏密切相關(guān),足見(jiàn)量子糾纏這一既精深又前沿的課題始終煥發(fā)著無(wú)限的學(xué)術(shù)魅力和技術(shù)應(yīng)用前景. 將量子糾纏實(shí)驗(yàn)直接引入教學(xué),讓更多的本科生有機(jī)會(huì)親手實(shí)驗(yàn),加深對(duì)這一神奇現(xiàn)象的認(rèn)知,就顯得極有價(jià)值. 2009年至今,清華大學(xué)近代物理實(shí)驗(yàn)室一直致力于此項(xiàng)工作,并在探索和挖掘量子糾纏實(shí)驗(yàn)在本科生教學(xué)中的規(guī)律和價(jià)值方面開(kāi)展了多項(xiàng)研究[5].
量子糾纏概念是量子力學(xué)、量子信息學(xué)的基本概念,它用以描述子系統(tǒng)間不可分離的特性,其著重強(qiáng)調(diào)一個(gè)量子系統(tǒng)中,多個(gè)子系統(tǒng)之間存在的非定域、非經(jīng)典的強(qiáng)關(guān)聯(lián)特征[6],其在量子通訊、量子計(jì)算機(jī)等尖端領(lǐng)域顯現(xiàn)出了難以估量的應(yīng)用前景. 雙光子偏振糾纏源是量子糾纏的一類(lèi)技術(shù)實(shí)現(xiàn)手段,其中更以入射的泵浦光和出射的糾纏光子對(duì)的偏振關(guān)系為依據(jù)進(jìn)行劃分,將其細(xì)分為Ⅰ類(lèi)糾纏源和Ⅱ類(lèi)糾纏源.
Ⅱ類(lèi)量子糾纏源教學(xué)實(shí)驗(yàn)系統(tǒng)自2009年在清華近代物理實(shí)驗(yàn)室建成以來(lái)[7],受到了學(xué)生們的歡迎,也受到了兄弟院校的關(guān)注. 但因其實(shí)驗(yàn)精度要求高、涉及元器件多、操作難度大、投入成本高,而一直只能作為需要多次課才能完成的綜合設(shè)計(jì)型實(shí)驗(yàn)課題開(kāi)設(shè). 這樣一方面限制了選課學(xué)生數(shù)量、縮小了受益面,另一方面也不適合向有興趣開(kāi)展此類(lèi)教學(xué)的院系和兄弟院校推廣應(yīng)用.
經(jīng)過(guò)幾年的教學(xué)實(shí)踐和摸索,筆者在原有的Ⅱ類(lèi)糾纏源基礎(chǔ)上進(jìn)行改造,制作了Ⅰ類(lèi)糾纏源教學(xué)系統(tǒng). 與原系統(tǒng)相比,新系統(tǒng)應(yīng)用了不同的方法產(chǎn)生糾纏光子對(duì),降低了糾纏點(diǎn)空間定位的精度要求和操作難度,簡(jiǎn)化了接收裝置,同時(shí)保留了原實(shí)驗(yàn)中的核心原理和操作訓(xùn)練要求,本科生在1~2次實(shí)驗(yàn)課中達(dá)到教學(xué)要求,從而增加量子糾纏實(shí)驗(yàn)的受益面,有利于該實(shí)驗(yàn)的推廣.
1量子糾纏態(tài)概念和Bell不等式的數(shù)學(xué)形式
薛定諤最早提出了量子糾纏態(tài)的概念[8-9]. 他強(qiáng)調(diào)在某些特定的條件下,所研究的體系包含多于2個(gè)以上的子系統(tǒng)時(shí),子系統(tǒng)之間就會(huì)具有空間的非定域關(guān)聯(lián). 這些子系統(tǒng)間顯示出糾纏性質(zhì),無(wú)法找到任何一個(gè)量子力學(xué)表象,將其表達(dá)為各個(gè)子系統(tǒng)的直積形式. 在實(shí)驗(yàn)上,將子系統(tǒng)空間分離之后,對(duì)其中一個(gè)子系統(tǒng)的測(cè)量也會(huì)導(dǎo)致另一子系統(tǒng)相關(guān)態(tài)的瞬時(shí)對(duì)應(yīng)坍縮.
量子糾纏概念在其后的若干年中,經(jīng)歷了學(xué)術(shù)界的激烈爭(zhēng)論. 1965年, Bell總結(jié)前人工作,將這一爭(zhēng)論數(shù)學(xué)化,從對(duì)局域隱變量理論[10]的研究出發(fā),提出著名的Bell不等式[11]. 驗(yàn)證這一不等式是否成立,則可以成為鑒別正統(tǒng)量子力學(xué)和局域隱變量理論孰對(duì)孰錯(cuò)的直接依據(jù). 其后,為便于實(shí)驗(yàn)驗(yàn)證,在Bell不等式的基礎(chǔ)上,又誕生了其推廣形式CHSH不等式. 在我們的實(shí)驗(yàn)中將以驗(yàn)算CHSH不等式作為驗(yàn)證糾纏源搭建完成和對(duì)量子力學(xué)完備性驗(yàn)證的手段.
CHSH不等式的數(shù)學(xué)表達(dá)式[12]為
S=|P(θ1,θ2)-P(θ1,θ2′)+P(θ1′,θ2)+P(θ1′,θ2′)|,
(1)
(2)
其中P(θ1,θ2)為關(guān)聯(lián)函數(shù),C(θ1,θ2)為2路偏振片角度分別在θ1和θ2時(shí)的符合計(jì)數(shù).
2自發(fā)參量下轉(zhuǎn)換
在非線(xiàn)性光學(xué)晶體中,單色泵浦光和量子真空噪聲綜合作用產(chǎn)生非經(jīng)典光場(chǎng),即自發(fā)參量下轉(zhuǎn)換(Spontaneous parametric down-conversion, SPDC). 當(dāng)1個(gè)泵浦光子入射到非線(xiàn)性晶體上,將有一定概率自發(fā)地劈裂為2個(gè)能量較低的光子. SPDC產(chǎn)生的1對(duì)光子在時(shí)間、偏振、頻率等方面均可表現(xiàn)出糾纏特征,并具有寬的光譜分布特征[13]. 實(shí)驗(yàn)應(yīng)用了其偏振糾纏特性. SPDC于20世紀(jì)六七十年代被理論預(yù)言[14-15],于1970年被實(shí)驗(yàn)驗(yàn)證[16].
3Ⅰ類(lèi)和Ⅱ類(lèi)糾纏源及其在實(shí)驗(yàn)中的核心器件原理
按照光在晶體中相位匹配的類(lèi)型,將自發(fā)參量下轉(zhuǎn)換分為Ⅰ類(lèi)和Ⅱ類(lèi),在實(shí)驗(yàn)中分別對(duì)其應(yīng)用,從而制成Ⅰ類(lèi)和Ⅱ類(lèi)量子糾纏源. 晶體雙折射作用導(dǎo)致偏振不同的光在晶體內(nèi)具有不同折射率,同時(shí)由于晶體色散作用使得不同波長(zhǎng)的光出射方向不同,從而使出射光形成彩虹圓錐[17]. 若泵浦光選擇e光,Ⅰ類(lèi)下轉(zhuǎn)換將表示為e → o + o,即產(chǎn)生了相同偏振的雙光子,且均與泵浦光偏振方向垂直,如圖1所示.
為了在實(shí)驗(yàn)上產(chǎn)生偏振糾纏的光子對(duì),采用的方法是利用2塊相同的Ⅰ類(lèi)相位匹配BBO晶體,將2塊晶體的光軸取向彼此垂直放置,如果泵浦光的偏振方向與2塊晶體的光軸均成45°角入射,則由2塊晶體產(chǎn)生的2個(gè)光錐的偏振方向相互垂直,如圖2所示[18-19].
圖1 Ⅰ類(lèi)自發(fā)參量下轉(zhuǎn)換(e → o+o)
圖2?、耦?lèi)自發(fā)參量下轉(zhuǎn)換偏振糾纏
若將2塊厚度很薄、光軸垂直的晶體粘接在一起,則2個(gè)晶體的出射光圓錐重合,測(cè)量2個(gè)下轉(zhuǎn)換光子的偏振方向,兩者要么都是水平偏振,要么都是垂直偏振,水平偏振和垂直偏振的概率各為0.5. 因此只要測(cè)量其中一個(gè)光子的偏振方向,就可以推知另一個(gè)光子的偏振方向. 這種偏振態(tài)不能表示成2個(gè)光子態(tài)簡(jiǎn)單的乘積,即|ψEPR〉≠|(zhì)A〉1|B〉2,因而形成了偏振糾纏態(tài). 其波函數(shù)為
(3)
其中|V〉和|H〉分別表示垂直偏振和水平偏振,下標(biāo)1和2分別表示參量下轉(zhuǎn)換的2個(gè)光子.
在實(shí)驗(yàn)中所使用的組合BBO晶體為2塊5 mm×5 mm×0.2 mm、切割角θ=29°的Ⅰ類(lèi)晶體,光軸相互垂直粘接,并在其兩表面分別鍍有405 nm和810 nm增透膜.
圖3?、蝾?lèi)自發(fā)參量下轉(zhuǎn)換(e → e + o)
Ⅱ類(lèi)下轉(zhuǎn)換可以用 e → e+o表示,即產(chǎn)生的雙光子具有互相垂直的偏振方向,如圖3所示. 圖3中上面的光錐由e光形成,下面的光錐由o 光形成[20].
4實(shí)驗(yàn)
圖4為Ⅰ類(lèi)糾纏源實(shí)驗(yàn)裝置示意圖. 半導(dǎo)體激光器1產(chǎn)生泵浦光(403 nm)經(jīng)過(guò)反射鏡2和3調(diào)整光線(xiàn)出射方向,經(jīng)過(guò)低通濾光片5過(guò)濾同方向雜光,經(jīng)過(guò)器件6的起偏器得到豎直偏振光并經(jīng)過(guò)波片消除雙折射帶來(lái)的相位影響,再經(jīng)過(guò)聚焦透鏡8入射到組合BBO晶體9上. 其中光闌4和7一方面起到光路定位作用,另一方面在學(xué)生實(shí)驗(yàn)時(shí)可過(guò)濾不需要的雜光. 聚焦透鏡8將光束聚焦并正入射于組合BBO晶體的雙塊連接點(diǎn)處,這一點(diǎn)很重要. 由于自發(fā)參量下轉(zhuǎn)換的效率只有10-10量級(jí)[21],故將有很強(qiáng)的403 nm未轉(zhuǎn)換光出射,而其對(duì)于數(shù)據(jù)測(cè)試有很大的干擾作用,必須處理掉,故設(shè)置尾光吸收器25將其濾除. 在組合BBO晶體(2個(gè)光軸相互垂直的BBO晶體)內(nèi)有一部分泵浦光光子經(jīng)過(guò)自發(fā)參量下轉(zhuǎn)換形成偏振糾纏的光子對(duì)(注意此處將組合BBO晶體的兩光軸置于豎直方向兩側(cè)各45°處). 由于下轉(zhuǎn)換的糾纏光子對(duì)同時(shí)產(chǎn)生,并分別位于泵浦光的兩側(cè),因此采用2路關(guān)于泵浦光對(duì)稱(chēng)的光路收集糾纏光子對(duì). 被收集光路中的光子先后經(jīng)過(guò)光闌12和13濾除雜光,并輔助收集定位,長(zhǎng)通濾波片14和15濾除雜光,經(jīng)準(zhǔn)直透鏡16和17后,被單模光纖準(zhǔn)直器18和19收集進(jìn)入單模光纖. 進(jìn)一步,由光纖送入單光子計(jì)數(shù)器20和21轉(zhuǎn)化為電信號(hào),送入電子學(xué)系統(tǒng)22測(cè)量其單路計(jì)數(shù)、符合計(jì)數(shù)等必要數(shù)據(jù),而后送入計(jì)算機(jī)23和示波器24計(jì)算處理和顯示數(shù)據(jù)結(jié)果. 其中檢偏器10和11用于偏振方向的設(shè)定和偏振糾纏特性對(duì)比曲線(xiàn)的測(cè)量.
1.激光器 2,3.反射鏡 4,7,12,13光闌 5.低通濾光片 6.起偏器和波片組合件 8.聚焦透鏡(焦距600 mm) 9.組合BBO晶體 10,11.檢偏器 14,15.長(zhǎng)通濾波片 16,17.準(zhǔn)直透鏡 18,19.單模光纖準(zhǔn)直器 20,21.單光子計(jì)數(shù)器 22.電子學(xué)系統(tǒng) 23.計(jì)算機(jī)(軟件) 24.示波器 25.尾光吸收器圖4?、耦?lèi)糾纏源裝置示意圖
5結(jié)果與討論
調(diào)整好光路,進(jìn)行數(shù)據(jù)采集. 此時(shí)采取的實(shí)驗(yàn)條件為:進(jìn)入組合BBO晶體的泵浦光為403 nm豎直偏振,聚焦光斑基本位于BBO晶體組合連接位置. 兩BBO晶體光軸位置與豎直位置均夾角45°. 在未加檢偏器10和11時(shí),記錄到2個(gè)單路計(jì)數(shù)均為約5×104~6 ×104s-1,符合計(jì)數(shù)每5 s約200. 然后加入兩路檢偏器,進(jìn)行符合曲線(xiàn)測(cè)量,得到數(shù)據(jù)圖如圖5所示.
圖5 組合BBO光軸位置合適時(shí)的符合計(jì)數(shù)曲線(xiàn)
從圖5可以看出,將2通道上的檢偏器置于相對(duì)豎直方向45°時(shí)(光具架直接讀數(shù)120°),旋轉(zhuǎn)1通道檢偏器測(cè)得黑色數(shù)據(jù)曲線(xiàn). 將2通道上的檢偏器置于相對(duì)豎直方向-45°時(shí)(光具架直接讀數(shù)210°),旋轉(zhuǎn)1通道檢偏器測(cè)得紅色數(shù)據(jù)曲線(xiàn). 在圖中1通道檢偏器刻度盤(pán)直接讀數(shù)60°時(shí),對(duì)應(yīng)其與豎直方向夾角45°. 從而,通過(guò)對(duì)黑色曲線(xiàn)的觀察可以看出,當(dāng)2通道檢偏器45°時(shí),1通道檢偏器也為45°,符合計(jì)數(shù)最大,而1通道為-45°(直讀150°)時(shí),符合計(jì)數(shù)最小. 對(duì)紅色曲線(xiàn)觀察也會(huì)得到同樣結(jié)果,且二曲線(xiàn)之間具有完全相反的符合計(jì)數(shù)值峰谷關(guān)系. 這表明收集的兩路光子始終滿(mǎn)足偏振方向一致的關(guān)系,也即滿(mǎn)足e → o+o的關(guān)系. 這驗(yàn)證了Ⅰ類(lèi)糾纏源的完成. 由式(1)和式(2),如參考文獻(xiàn)[22]所述選取合適角度,測(cè)量的角度為θ1=92.5°,θ2=115°,θ1′=137.5°,θ2′=160°,得到數(shù)據(jù)如表1所示. 計(jì)算得P(θ1,θ2)=-0.197,P(θ1′,θ2)=0.975,P(θ1,θ2′)=-0.992,P(θ1′,θ2′)=-0.088.
計(jì)算得S=2.252>2,從而完成了CHSH不等式的計(jì)算和破缺驗(yàn)證. 其中考慮到實(shí)驗(yàn)誤差,在測(cè)量符合計(jì)數(shù)時(shí),采用了5次讀數(shù)取平均值的方法;在計(jì)算P時(shí),采取適當(dāng)手段處理了由于實(shí)驗(yàn)環(huán)境所致的每5 s約20的背底噪聲. 綜合看以上實(shí)驗(yàn)設(shè)計(jì)、操作和數(shù)據(jù),并比較以往教學(xué)中使用的Ⅱ類(lèi)糾纏源,可以發(fā)現(xiàn),制作的Ⅰ類(lèi)糾纏源在“亮度”上遠(yuǎn)不及Ⅱ類(lèi),但在體現(xiàn)量子糾纏獨(dú)有性質(zhì)及驗(yàn)證量子力學(xué)完備性方面卻并無(wú)不足,這使得我們能夠保持原有的學(xué)術(shù)教學(xué)目標(biāo)無(wú)絲毫降低. 而在簡(jiǎn)化設(shè)備,降低調(diào)節(jié)精度要求方面,新建的Ⅰ類(lèi)源則具有很大的優(yōu)勢(shì),這決定了新建Ⅰ類(lèi)源更適合拓展量子糾纏實(shí)驗(yàn)的受益面,適合大面積近代物理實(shí)驗(yàn)教學(xué),同時(shí)也可對(duì)兄弟高校推廣.
6結(jié)束語(yǔ)
在教學(xué)實(shí)踐中,將新建的Ⅰ類(lèi)和原有的Ⅱ類(lèi)糾纏源相結(jié)合開(kāi)展教學(xué). 將每學(xué)期分為兩段,前12周使用Ⅰ類(lèi)源作為基礎(chǔ)內(nèi)容教學(xué),這段時(shí)間讓更多的學(xué)生了解和學(xué)習(xí)與糾纏源相關(guān)的知識(shí)和技能,并激勵(lì)學(xué)生們的學(xué)習(xí)興趣,同時(shí)也是對(duì)后期探究型實(shí)驗(yàn)的預(yù)培訓(xùn)和對(duì)此方向?qū)W習(xí)有興趣的學(xué)生的選拔. 后6周使用Ⅱ類(lèi)源與Ⅰ類(lèi)源結(jié)合開(kāi)展探究型、綜合設(shè)計(jì)型實(shí)驗(yàn)教學(xué),給有興趣、有能力研究此方向的學(xué)生以支持,讓他們有更多的機(jī)會(huì)自主學(xué)習(xí). 從而可見(jiàn),新建Ⅰ類(lèi)源實(shí)驗(yàn)教學(xué)系統(tǒng)對(duì)近代物理實(shí)驗(yàn)教學(xué)課程具有重要的價(jià)值和作用.
致謝:感謝蔣文韜、熊浩楠、李嘉琛、王子逸等本科生同學(xué)在實(shí)驗(yàn)學(xué)習(xí)過(guò)程中的數(shù)據(jù)積累.
參考文獻(xiàn):
[1]http://physicsworld.com/cws/article/news/2015/dec/11/double-quantum-teleportation-milestone-is-physics-world-2015-breakthrough-of-the-year[EB/ON].
[2]Wang Xi-lin, Cai Xin-dong, Su Zu-en, et al. Quantum teleportation of multiple degrees of freedom of a single photon [J]. Nature, 2015,518(7540):516-519.
[3]Hensen B, Bernien H, Dréau A E, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres [J]. Nature, 2015,526(7575):682-686.
[4]Veldhorst M, Yang C H, Hwang J C, et al. A two-qubit logic gate in silicon [J]. Nature, 2015,526(7573):410-414.
[5]孫文博,王子逸,王合英,等. 分析自發(fā)參量下轉(zhuǎn)換光場(chǎng)結(jié)構(gòu)輔助搭建雙光子糾纏源[J]. 物理實(shí)驗(yàn),2014,34(4):5-10.
[6]王合英,孫文博,陳宜保,等.光子糾纏態(tài)的制備和測(cè)量實(shí)驗(yàn)[J].物理實(shí)驗(yàn),2009,29(3):1-5.
[7]孫文博,王合英,陳宜保,等.用光子糾纏源驗(yàn)證Bell不等式[J].物理實(shí)驗(yàn),2010,30(12):1-4.
[8]Schr?dinger E. Die gegenw?rtige situation in der quantenmechanik [J]. Naturwissenschaften, 1935,23(49):823-828.
[9]Schr?dinger E. Discussion of probability relations between separated systems [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1935,31(4):555-563.
[10]Bohm D.A suggested interpretation of the quantum theory in terms of “hidden” variables, I and Ⅱ [J]. Phys. Rev., 1952,85(2):166-179,180-193.
[11]Bell J S. Speakable and unspeakable in quantum mechanics [M]. London: Cambridge University Press, 1987.
[12]Clauser J F, Horne M A, Shimony A, et al. Proposed experiment to test local hiddenvariable theories [J]. Phys. Rev. Lett. , 1969,23:880-884.
[13]樊代和,白云飛,張海龍,等. 泵浦譜寬和測(cè)量帶寬對(duì)SPDC過(guò)程產(chǎn)生的光子對(duì)分布的影響[J]. 量子光學(xué)學(xué)報(bào),2008,14(2):109-113.
[14]Klyshko D N. Utilization of vacuum fluctuations as an optical brightness standard [J]. Sov. J. Quantum Electron., 1977,7(5):591-595.
[15]Louisell W H, Yariv A, Siegman R L, et al. Quantum fluctuations and noise in parametric processes Ⅰ[J]. Phys. Rev. A, 1961,124(6):1646-1654.
[16]Burnham D C, Weinberg D L. Observation of simultaneity in parametric production of optical photon pairs [J]. Phys. Rev. Lett., 1970,25(2):84-87.
[17]Shih Y. Entangledbiphoton biphoton source—property and preparation [J]. Rep. Progr. Phys., 2003,66(6):1009-1044.
[18]Dehlinger D, Mitchell M W. Entangled photon apparatus for the undergraduate laboratory [J]. Am. J. Phys., 2002,70(9):898-902.
[19]Dehlinger D, Mitchell M W. Entangled photons, nonlocality, and Bell inequalities in the the undergraduate laboratory [J]. Am. J. Phys., 2002, 70(9):903-910.
[20]孫文博,王合英,陳宜保,等.量子糾纏實(shí)驗(yàn)中SPDC光譜分布的計(jì)算分析與實(shí)驗(yàn)研究[J]. 物理實(shí)驗(yàn),2014,34(11):1-5.
[21]Hsu Feng-Kuo, Lai Chih-Wei. Absolute instrument spectral response measurements using angle-resolved parametric fluorescence[J]. Optics Express, 2013,21(15):18538-18552.
[22]Hariharan P, Sanders B C. Ⅱ quantum phenomena in optical interferometry[J]. Progress in Optics,1996,36:49-128.
[責(zé)任編輯:任德香]
Experimental teaching system of type-Ⅰ quantum entanglement
SUN Wen-bo, WANG He-ying, CHEN Yi-bao, CHEN Hong
(Department of Physics, Tsinghua University, Beijing 100084, China)
Abstract:The experimental teaching system of type-Ⅰ quantum entanglement was built in order to make the experimental teaching of quantum entanglement more expansive for the undergraduates and to improve the service quality for the experimental teaching. Two spliced thin pieces of BBO crystals which had perpendicular optical axes were used in the new system. Entangled photon pairs in the overlapped light cones which generated from the space near splicing area were obtained when a pump laser having a polarization angle with their optical axes was incident. Because the polarizations of the pairs were the same, the compensation system becomes unnecessary. Furthermore, the requirement for the spatial precision and the operation difficulty could be reduced. Thus, we could offer a simplified experimental setup for which the core principles and operational training requirements were maintained. The undergraduates could achieve the teaching goals in 1 or 2 afternoons of experiments.
Key words:quantum entanglement; type-Ⅰ entanglement source; CHSH inequality; coincidence measurement
收稿日期:2016-01-19;修改日期:2016-03-04
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助(No.J1210018);清華大學(xué)實(shí)驗(yàn)室創(chuàng)新基金資助(No.110007019)
作者簡(jiǎn)介:孫文博(1980-),男,遼寧錦州人,清華大學(xué)物理系工程師,學(xué)士,從事近代物理實(shí)驗(yàn)教學(xué).
中圖分類(lèi)號(hào):O413
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1005-4642(2016)06-0001-05