任小丹, 陳 玲, 楊 琳, 李晚忱, 付鳳玲
( 四川農(nóng)業(yè)大學(xué) 玉米研究所, 成都 611130 )
兩個(gè)相關(guān)基因表達(dá)量和SNP與玉米雄穗大小相關(guān)
任小丹, 陳玲, 楊琳, 李晚忱, 付鳳玲*
( 四川農(nóng)業(yè)大學(xué) 玉米研究所, 成都 611130 )
摘要:玉米雄穗通常較發(fā)達(dá),散粉量大于授粉需要,過(guò)量消耗能量會(huì)影響光合產(chǎn)物向果穗的分配,過(guò)于發(fā)達(dá)的雄穗還會(huì)影響群體透光性、降低光合效率。生產(chǎn)實(shí)踐和育種研究證明,由于雄穗大小與玉米籽粒產(chǎn)量負(fù)相關(guān),因此成為品種選育的間接選擇指標(biāo)。該研究根據(jù)前人的報(bào)道,從11個(gè)雄穗大小不同的玉米自交系中擴(kuò)增角蛋白相關(guān)蛋白基因KAP5-4和受體樣蛋白激酶基因CLV1的基因組序列,多重比較后用以分析其開(kāi)放閱讀框、保守結(jié)構(gòu)和單核苷酸多態(tài)性,用熒光實(shí)時(shí)定量PCR檢測(cè)其在雄穗原基中的差異表達(dá),并與雄穗分枝數(shù)和雄穗干重兩個(gè)度量雄穗小的指標(biāo)進(jìn)行了相關(guān)分析。結(jié)果表明:KAP5-4基因的相對(duì)表達(dá)量與雄穗分枝數(shù)(r=0.77,P<0.01)和雄穗干重正相關(guān)(r=0.83,P<0.01)。11個(gè)自交系的CLV1 基因開(kāi)放框在2 104 bp存在單核苷酸多態(tài)性,其中5個(gè)自交系的2 014~2 016 bp核苷酸組成密碼子GAC,編碼受體樣蛋白第702位酸性的天冬氨酸,另6個(gè)自交系的2 014~2 016 bp核苷酸組成密碼子AAC,編碼受體樣蛋白第702位極性天冬氨酰胺。在前5個(gè)自交系中,CLV1 基因的相對(duì)表達(dá)量與雄穗分枝數(shù)(r=-0.92, P<0.01)和雄穗干重(r=-0.91, P<0.05)負(fù)相關(guān);而在后6個(gè)自交系中,僅與雄穗干重負(fù)相關(guān)(r=-0.91, P<0.05)。綜上所述,KAP5-4和CLV1基因的表達(dá)和單核苷酸多態(tài)性與玉米雄穗大小關(guān)系密切,可開(kāi)發(fā)功能性的DNA標(biāo)記用于玉米育種的分子標(biāo)記輔助選擇。
關(guān)鍵詞:差異表達(dá), 角蛋白伴侶基因, 玉米, 受體類(lèi)蛋白激酶, 雄穗大小
玉米雄穗通常比較發(fā)達(dá),散粉量大于授粉需要,過(guò)量消耗能量會(huì)影響光合產(chǎn)物向果穗的分配,過(guò)于發(fā)達(dá)的雄穗還會(huì)影響群體透光性、降低光合效率(Gue et al,1996)。前人研究表明,雄穗大小與玉米籽粒產(chǎn)量負(fù)相關(guān)(Lambert & Johnson,1978; Geraldi et al等,1985; Fischer et al,1987; Bodi et al,2008)。玉米生產(chǎn)和育種實(shí)踐證明,在授粉前部分去除雄穗或選擇小雄穗品種,均可顯著提高籽粒產(chǎn)量(Subedi,1996; Upadyayula et al,2006; Duvick et al,1999; Neto & Filho,2000)。在美國(guó)等玉米生產(chǎn)較為發(fā)達(dá)的國(guó)家和地區(qū),推廣玉米雜交種的雄穗一般較小(Duvick & Cassman,1999; Neto & Filho,2000)。而在發(fā)展中國(guó)家,逆境脅迫是玉米生產(chǎn)的主要限制因素,適當(dāng)大小的雄穗可保證授粉所需的花粉量,具有一定的穩(wěn)產(chǎn)作用(Monneveux et al,2008; Tiwari et al,2004)。因此,雖然雄穗大小并不是玉米籽粒產(chǎn)量的構(gòu)成因素,但在育種中常被用作間接選擇指標(biāo),一般以雄穗分枝數(shù)和雄穗干重來(lái)度量。然而,雄穗大小的遺傳性質(zhì)也很復(fù)雜,是一個(gè)受眾多基因調(diào)控的數(shù)量性狀?,F(xiàn)已發(fā)現(xiàn)ba2(barren stalk 2)、bif2(barren inflorescence 2)、bd1(branched silkless 1)、fe2(fasciated ear 2)、ra1(ramosal 1)、ra2(ramosa 2)、ra3(ramosa 3)、Ts6(Tassel seed 6)、td1(thick tassel dwarf 1)等多個(gè)染色體位點(diǎn),均與玉米雄穗分生組織發(fā)育和形態(tài)建成有關(guān)(Vollbrecht et al,2005; Bommert et al,2005; Bortiri et al,2006; Chuck et al,2002; Irish,1997; Skirpan et al,2009; Taguchi-Shibara et al,2001)。而且,與雄穗分枝數(shù)和雄穗重相關(guān)的QTL位點(diǎn)也不少(Upadyayula et al,2006; Mickelson et al,2002)。然而,這些染色體或QTL位點(diǎn)對(duì)雄穗大小的具體調(diào)控關(guān)系,卻不甚了解。
在水稻上,與穗密度、穗粒數(shù)和穗直立性相關(guān)的DEP1(Dense and Erect Panicle 1)基因與編碼角蛋白相關(guān)蛋白5-4(KAP 5-4)的QTL位點(diǎn)qPE9-1等位。進(jìn)化分析還發(fā)現(xiàn),其他溫帶谷物也具有相應(yīng)功能的等位基因,而且早在小麥與大麥分化前就已存在(Huang et al,2009; Kong et al,2007; Yan et al,2007; Zhou et al,2009)。FON1(Floral Organ Number 1)基因。FON1基因與水稻花序分生組織的發(fā)育, 以及后續(xù)的分枝、小穗和小花增殖相關(guān)。該基因與擬南芥編碼富含亮氨酸重復(fù)受體蛋白激酶的CLV1(CLAVATA1)基因高度同源(Chu et al,2006; Suzaki et al,2004)。在擬南芥上,CLV/WUS信號(hào)轉(zhuǎn)導(dǎo)途徑被證實(shí)參與細(xì)胞分裂的調(diào)節(jié),進(jìn)而調(diào)控莖端分生組織的增殖和花芽的分化(Dievarta et al,2003; Godiard et al,2003; Schoof et al,2000; Suzaki et al,2006; Torri,2004)。
本研究根據(jù)同源比對(duì)結(jié)果,克隆與水稻DEP1和FON1基因同源的玉米基因KAP5-4和CLV1,檢測(cè)其在雄穗發(fā)育過(guò)程中的差異表達(dá),以及在雄穗大小差異明顯自交系間的單核苷酸多態(tài)性(single nucleotide polymorphism, SNP),分析其與雄穗分枝數(shù)和雄穗干重的相關(guān)性。
1材料與方法
1.1 田間鑒定與樣品制備
2010-2011年,按隨機(jī)區(qū)組設(shè)計(jì)、3次重復(fù)種植雄穗大小及其他農(nóng)藝性狀差異明顯的11個(gè)玉米自交系。取六葉期腳葉,用DNA quick Plant System試劑盒(Tiangen,北京)提取基因組DNA。在頂端分生組織伸長(zhǎng)期,每小區(qū)隨機(jī)取樣3株,解剖雄穗原基,用Eeasy Spin Plant RNA Mini Kit試劑盒(Aidlab,北京)提取總RNA,并用PrimeScript RT Reagent Kit試劑盒(TakaRa,大連)立即反轉(zhuǎn)錄成cDNA。授粉后2 d,每小區(qū)隨機(jī)抽樣5株收獲雄穗,調(diào)查雄穗分枝數(shù)后105 ℃殺青1 h,95 ℃烘干至恒重,調(diào)查雄穗干重。
1.2 多重比較和保守結(jié)構(gòu)域預(yù)測(cè)
從NCBI數(shù)據(jù)庫(kù)(http://www.ncbi.nlm.nih.gov/guide/)下載水稻DEP1和FON1基因的推導(dǎo)氨基酸序列GI: 208293844和GI: 75112604),以此為探針從UniProt數(shù)據(jù)庫(kù)(http://www.uniprot.org)搜索玉米推導(dǎo)氨基酸序列。先用MEGA 5.05軟件(http: www.megasoftware.net/index.php)與模式植物的同源序列進(jìn)行多重比較, 然后用Sanger Pfam 25.0軟件(http://pfam.sanger.ac.uk)預(yù)測(cè)保守結(jié)構(gòu)域。
1.3 KAP5-4和CLV1基因組序列的SNP分析
根據(jù)與水稻DEP1和FON1基因推導(dǎo)氨基酸序列的同源比對(duì)結(jié)果,分別設(shè)計(jì)3對(duì)(KF1:5′-TCCTCGCTTCCTCATCCAGAC-3′/KR1:5′-GGTAGCCACAGGTTGCCATAA-3′; KF2:5′-GGTTGAAGGGAG-
AAGGCTGAG-3′/KR2:5′-GGTCATACATCGGTATTAGTGGG-3′; KF3:5′-TACCGATGTATGACCTATAC-
TTGAT-3′/KR3:5′-CTTCTGGTGATATGGGATTTCTT-3′)和2對(duì)(CF1:5′-TCGGCTCCACTTCCACTGGTCTA-3′/CR1:5′-CGACAACACGATCAATCCCAAAC-3′/CF2:5′-CGTGCTCTTTCACCCTGTCA-3′/CR2:5′-TCATGGTTCCAGAGTCCCG-3′)特異PCR引物,以11個(gè)玉米自交系的基因組DNA為模板,用PrimeSTAR HS DNA聚合酶(TakaRa,大連),分段擴(kuò)增玉米KAP5-4和CLV1基因。PCR溫度循環(huán)為94 ℃變性1 min;94 ℃變性10 s,按不同引物的退火溫度退火30 s,72 ℃延伸2 min,循環(huán)35次;72 ℃延伸5 min。擴(kuò)增產(chǎn)物用7%瓊脂糖凝膠分離,Universal DNA純化試劑盒(Tiangen,北京)回收,用Taq酶(TaKaRa,大連)在3′-端加(A)尾后,插入pMD19-T質(zhì)粒(TakaRa,大連),分別在Majorbio(上海)和SinoGenoMax(北京)重復(fù)測(cè)序2次。用NCBI網(wǎng)站(http://www.ncbi.nlm.nih.gov/gorf/gorf.html)的開(kāi)放閱讀框分析軟件ORF finder查找開(kāi)放閱讀框,再用DNAMAN軟件(http://www.lynnon.com)進(jìn)行多重比較,分析兩個(gè)基因在11個(gè)自交系間的SNP。
1.4 熒光實(shí)時(shí)定量PCR
根據(jù)測(cè)序結(jié)果,分別設(shè)計(jì)特異PCR引物(KF4:5′-CCCACTAATACCGATAACGAAG-3′/KR4: 5′-CA-
ATGGCAGGAACAGCAGA-3′; CF3:5′-TCAGATTGACAACAACAGC-3′/CR3:5′-GGAGAAACGGTACATGGT-3′),用SsoFast EvaGreen Supermix反應(yīng)體系(Bio-Rad,美國(guó))和iQTM5熒光定量PCR儀(Bio-Rad,美國(guó)),分別擴(kuò)增KAP5-4和CLV1基因的103 bp和75 bp片段,分析雄穗發(fā)育中兩個(gè)基因在11個(gè)自交系間的表達(dá)差異,并用引物GR(5′-CCATCACTGCCACACAGAAAC-3′)/GR(5′-AGGAACACGGAA-
GGACATACCAG-3′)擴(kuò)增GAPDH基因片段作內(nèi)參。10 μL反應(yīng)體系含SsoFast EvaGreen Supermix 5 μL、稀釋cDNA 1 μL和10 pmol/μL 引物各0.5 μL。 溫度循環(huán)為95 ℃變性30 s;95 ℃變性5 s, 60 ℃(KAP5-4)/ 59 ℃(CLV1)延伸10 s,循環(huán)40次。最后一次循環(huán)后,將溫度以0.5 ℃ / 10 s的速度升至95 ℃,計(jì)算標(biāo)準(zhǔn)曲線(xiàn),檢測(cè)擴(kuò)增產(chǎn)物的特異性。iQ 5系統(tǒng)(Bio-Rad,美國(guó))自帶軟件以絕對(duì)表達(dá)量最低的樣品為標(biāo)準(zhǔn)),計(jì)算其他樣品的相對(duì)表達(dá)量(Vandesompele et al,2002)。
2結(jié)果與分析
2.1 玉米KAP 5-4和CLV1基因的同源性比較
KAP5-4基因的開(kāi)放閱讀框長(zhǎng)1 227 bp,編碼蛋白長(zhǎng)408個(gè)氨基酸。多重比較表明,KAP5-4基因的編碼蛋白與水稻DEP1基因(gi: 208293844)的推導(dǎo)氨基酸序列具有51%的同源性。進(jìn)化樹(shù)分析表明,植物KAP5-4蛋白質(zhì)家族可分為單子葉和雙子葉兩個(gè)明顯的亞家族(圖1)。第26至第98位氨基酸的多肽序列包含一個(gè)G-蛋白γ-樣結(jié)構(gòu)域,在物種間高度保守(圖2)。
CLV1基因的開(kāi)放閱讀框長(zhǎng)2 619 bp,編碼蛋白長(zhǎng)872個(gè)氨基酸,包含1個(gè)富含亮氨酸重復(fù)的胞外結(jié)構(gòu)域、1個(gè)小的跨膜結(jié)構(gòu)域和1個(gè)細(xì)胞質(zhì)絲氨酸/蘇氨酸蛋白激酶結(jié)構(gòu)域(圖3)。多重比較表明,其推導(dǎo)氨基酸序列與高粱(gi: 242073424)和大麥(gi: 326531976)受體樣蛋白激酶1(CLV1)高度同源,但與水稻FON1基因(gi: 75112604)推導(dǎo)蛋白的氨基酸序列卻只有31%的同源性。 進(jìn)化樹(shù)分析表明,12個(gè)植物物種的CLV1基因間沒(méi)有明顯的亞家族劃分(圖4)。
2.2 CLV1基因基因組序列SNP
通過(guò)多重比較,在11個(gè)自交系間未發(fā)現(xiàn)KAP5-4基因的基因組序列內(nèi)存在一致性的SNP。但在11個(gè)自交系CLV1基因的基因組序列第2 104 bp存在SNP。自交系“鄭58”、“Mo17”、“178”、“478”和“自330”第2 104 bp堿基為鳥(niǎo)嘌呤(G),組成密碼子GAC,編碼的702位氨基酸為天冬氨酸。自交系“R08”、“昌7-2”、“丹340”、“蘇37”、“ES40”和“RP125”第2 104 bp堿基為腺嘌呤(A),組成密碼子AAC,編碼的702位氨基酸為天冬酰胺(圖5)。根據(jù)圖3所示的結(jié)構(gòu)預(yù)測(cè),702位氨基酸正是CLV1蛋白絲氨酸/蘇氨酸蛋白激酶結(jié)構(gòu)域的質(zhì)子受體。
圖 1 玉米與其他6種植物角質(zhì)蛋白相關(guān)蛋白5-4(KAP5-4)進(jìn)化樹(shù)Fig. 1 Phylogenetic tree of keratin-associated protein 5-4 (KAP 5-4) among maize and six other plant species
2.3 KAP 5-4和CLV1基因的差異表達(dá)及其與雄穗大小的相關(guān)性
KAP5-4和CLV1基因在雄穗原基中的相對(duì)表達(dá)量在11個(gè)自交系間差異明顯(圖6,圖7)。值得注意的是,CLV1基因在第2 104 bp堿基為鳥(niǎo)嘌呤(G)的5個(gè)自交系中的相對(duì)表達(dá)量,均低于其他6個(gè)第2 104 bp堿基為腺嘌呤(A)的自交系。可能是該位點(diǎn)的堿基替代引起了基因表達(dá)的下調(diào),或是酸性天冬氨酸與極性天冬酰胺的差異對(duì)基因表達(dá)的反饋調(diào)節(jié)。
相關(guān)分析表明,KAP5-4基因在伸長(zhǎng)期雄穗原基中的相對(duì)表達(dá)量,與雄穗分枝數(shù)(r=0.77,P<0.01)和雄穗干重(r=0.83,P<0.01)正相關(guān)。然而,CLV1基因相對(duì)表達(dá)量與雄穗分枝數(shù)(r=-0.17,P>0.05)和雄穗干重(r=-0.25,P>0.05)的相關(guān)性不顯著。這一基因序列SNP造成氨基酸序列第702位酸性天冬氨酸與極性天冬酰胺的差異,可能影響其質(zhì)子受體的活性(圖5)。因此,將第702位氨基酸為天冬氨酸的5個(gè)自交系和第702位氨基酸為天冬酰胺的6個(gè)自交系,分別對(duì)CLV1基因相對(duì)表達(dá)量與雄穗大小進(jìn)行相關(guān)分析。在自330、478、鄭58、Mo17和178五個(gè)自交系中,CLV1基因相對(duì)表達(dá)量與雄穗分枝數(shù)(r=-0.92,P<0.01)和雄穗干重(r=-0.91,P<0.05)負(fù)相關(guān)。在丹340、昌7-2、RP125、蘇37、ES40和R08六個(gè)自交系中,CLV1基因相對(duì)表達(dá)量與雄穗干重(r=-0.91,P<0.05)負(fù)相關(guān),而與雄穗分枝數(shù)的相關(guān)性仍不顯著(r=-0.62,P>0.05)。
3討論
KAP5-4基因首先發(fā)現(xiàn)于哺乳動(dòng)物,是KAPty家族5的成員,編碼角質(zhì)蛋白相關(guān)蛋白,是發(fā)基質(zhì)的組成成分(Wu et al,2008)。在水稻上發(fā)現(xiàn),與KAP5-4同源的DEP1基因與穗大小密切相關(guān)(Huang et al,2009; Kong et al,2007; Yan et al,2007; Zhou et al,2009)。The feedback regulation of another ortholog 與CLV1同源的CLV3基因發(fā)現(xiàn)有反饋調(diào)節(jié)現(xiàn)象,而且與擬南芥頂端分生組織的增殖和分化有關(guān)(Brand et al,2000)。在本研究中,KAP5-4基因的相對(duì)表達(dá)量與雄穗大小正相關(guān)(圖6)。根據(jù)結(jié)構(gòu)域預(yù)測(cè),玉米及其他6種植物的KAP5-4蛋白,均包含一個(gè)高度保守的G-蛋白γ-樣結(jié)構(gòu)域。這些結(jié)果說(shuō)明,KAP5-4蛋白在植物中可能是一種調(diào)節(jié)蛋白,而不是發(fā)基質(zhì)的組成成分。
本研究克隆的CLV1基因,位于第10染色體第125009858至125013205 bp。在第5染色體第121675658至121681684 bp,還有另外一個(gè)同源基因(GRMZM2G300133),通過(guò)重穗型突變鑒定為td1(thick tassel dwarf1)。這一突變體的雄穗頂端分生組織發(fā)育不良,造成穗軸縮短、小穗增密、穎片和雄蕊增生等畸形(Bommert et al,2005)。在本研究中,11個(gè)雄穗大小不同自交系的CLV1基因相對(duì)表達(dá)量與其雄穗大小相關(guān)性不顯著,但根據(jù)其2 104 bp的SNP將11個(gè)自交系分為兩組后再作相關(guān)分析,卻發(fā)現(xiàn)存在顯著的負(fù)相關(guān)關(guān)系(圖7),說(shuō)明CLV1基因可能與玉米雄穗發(fā)育存在密切關(guān)系。擬南芥與CLV1同源的基因,編碼富含亮氨酸重復(fù)的受體樣蛋白激酶,參與CLV/WUS信號(hào)轉(zhuǎn)導(dǎo),通過(guò)對(duì)細(xì)胞分裂的負(fù)調(diào)控,對(duì)莖頂端分生組織的細(xì)胞增殖和分化起重要調(diào)控作用(Dievarta et al,2003; Godiard et al,2003; Schoof et al,2000; Suzaki et al,2006; Torri ,2004; Trotochaud et al,1999)。水稻與CLV1同源的FON1基因,也發(fā)現(xiàn)參與花序分生組織的發(fā)育,以及后續(xù)的分枝、小穗和小花分生組織的增殖(Chu et al,2006; Suzaki et al,2004)。
圖 2 玉米與其他6種植物角質(zhì)蛋白相關(guān)蛋白5-4(KAP5-4)的氨基酸序列多重比較 黑色背景表示完全(100%)保守; 深灰背景表示高度(75%)保守; 淺灰背景表示中度(50%)保守; 白色背景表示低度(25%)保守。Fig. 2 Muliple alignment of amino acid sequence of KAP 5-4 protein in maize and other six plant species Black background indicates completely conservative (100%); Dark grey background indicates highly conservative (75%); Light grey background indicates moderate conservative (50%); White background indicates low conservative (25%).
圖 3 玉米CLV1蛋白的域結(jié)構(gòu) SP: 信號(hào)肽; LRR domain: 富含亮氨酸重復(fù)結(jié)構(gòu)域; TM: 跨膜結(jié)構(gòu)域; Ser/Thr kinase: 絲氨酸/蘇氨酸蛋白激酶。Fig. 3 Domain structure of maize CLV1 protein SP. Signal peptide; LRR domain. Leucine-rich repeat domain; TM. Transmembrane domain; Ser/Thr kinase. Serine/threonine protein kinase.
圖 4 玉米與其他7種植物受體樣蛋白激酶1(CLV1)進(jìn)化樹(shù)Fig. 4 Phylogenetic tree of receptor-like protein kinase gene CLV1 among maize and seven other plant species
參考文獻(xiàn):
BODI Z, PEPO P, KOVACS A, 2008. Morphology of tassel components and their relationship to some quantitative features in maize [J]. Cereal Res Comm, 36(2): 353-360.
BOMMERT P, LUNDE C, NARDMANN J, et al, 2005. Thick tassel dwarf1 encodes a putative maize ortholog of theArabidopsisCLAVATA1 leucine-rich repeat receptor-like kinase [J]. Development, 132(6): 1 235-1 245.
BORTIRI E, CHUCK G, VOLLBRECHT E, et al, 2006. Ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize [J]. Plant Cell, 18(3): 574-585.
BRAND U, FLETCHER JC, HOBE M, et al, 2000. Dependence of stem cell fate inArabidopsison a feedback loop regulated by CLV3 activity [J]. Science, 289(5479): 617-619.
CHUCK G, MUSZYNSKI M, KELLOGG E, et al, 2002. The control of spikelet meristem identity by the branched silkless1 gene in maize [J]. Science, 298(5 596): 1 238-1 241.
CHU HW, QIAN Q, LIANG WQ, et al, 2006. The floral organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice [J]. Plant Physiol, 142(3): 1 039-1 052.
DUVICK DN, CASSMAN KG, 1999. Post-green revolution trends in yield potential of temperate maize in the north-central United States [J]. Crop Sci, 39(6): 1 622-1 630.
DIEVART A, DALAL M, TAX FE, et al, 2003. CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development [J]. Plant Cell, 15(5): 1 198-1 211.
FISCHER KS, EDMEADES GO, JOHNSON EC, 1987. Recurrent selection for reduced tassel branch number and reduced leaf area density above the ear in tropical maize populations [J]. Crop Sci, 27(6): 1 150-1 156.GUEI RG, WASSOM CE, 1996. Genetic analysis of tassel size and leaf senescence and their relationships with yield in two tropical lowland maize populations [J]. Afr Crop Sci J, 4(3): 275-281.
GERALDI IO, FILHO JBM, VENCOVSKY R, 1985. Estimates of genetic parameters of tassel characters in maize (Zea mays L) and breeding perspectives [J]. Maydica, 30(1): 1-14.
GODIARD L, SAUBIAC L, TORRI KU, et al, 2003. ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt [J]. Plant J, 36(3): 353-365.
HUANG X, QIAN Q, LIU Z, et al, 2009. Natural variation at the DEP1 locus enhances grain yield in rice [J]. Nat Gen, 41(4): 494-497.
IRISH EE, 1997. Experimental analysis of tassel development in the maize mutant Tassel Seed 6 [J]. Plant Physiol, 114(3): 817-825.
KONG FN, WANG JY, ZOU JC, et al, 2007. Molecular tagging and mapping of the erect panicle gene in rice [J]. Mol Breed, 19(4): 297-304.
LAMBERT RJ, JOHNSON RR, 1978. Leaf angle, tassel morphology, and the performance of maize hybrids [J]. Crop Sci, 18(3): 499-502.
MONNEVEUX P, SANCHEZ C, TIESSEN A, 2008. Future progress in drought tolerance in maize needs new secondary traits and cross combinations [J]. Agric Sci, 146(3): 287-300.
MICKELSON SM, STUBER CS, SENIOR L, et al, 2002. Quantitative trait loci controlling leaf and tassel traits in a B73×Mo17 population of maize [J]. Crop Sci, 42(6): 1 902-1 909.
NETO ALF, FILHO JBM, 2000. Inbreeding in two maize subpopulations selected for tassel size [J]. Sci Agric, 57(3): 487-490.
SUBEDI KD, 1996. Effect of leaf stripping, de-tasselling and topping of maize on the yield of maize and relay intercropped finger millet [J]. Exp Agric, 32(1): 57-61.
SKIRPAN A, CULLER AH, GALLAVOTTI A, et al, 2009. BARREN INFLORESCENCE2 interaction with ZmPIN1a suggests a role in auxin transport during maize inflorescence development [J]. Plant Cell Physiol, 50(3): 652-657.SUZAKI T, SATO M, ASHIKARI M, et al, 2004. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous toArabidopsisCLAVATA1 [J]. Development, 131(22): 5 649-5 657.
SCHOOF H, LENHARD M, HAECKER A, et al, 2000. The stem cell population ofArabidopsisshoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes [J]. Cell, 100(6): 635-644.
SUZAKI T, TORIBA T, FUJIMOTO M, et al, 2006. Conservation and diversification of meristem maintenance mechanism in Oryza sativa: function of the FLORAL ORGAN NUMBER2 gene [J]. Plant Cell Physiol, 47(12): 1 591-1 602.
TIWARI TP, BROOK RM, SINCLAIR FL, 2004. Implications of hill farmers′ agronomic practices in Nepal for crop improvement in maize [J]. Exp Agric, 40(4): 397-417.
TAGUCHI-SHIBARA F, YUAN Z, HAKE S, et al, 2001. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize [J]. Gen Dev, 15(20): 2 755-2 766.
TORRI KU, 2004. Leucine-rich repeat receptor kinases in plants: structure, function and signal transduction pathways [J]. Int Rev Cytol, 234: 1-46.
TROTOCHAUD AE, HAO T, WU G, et al, 1999. The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein [J]. Plant Cell, 11(3): 393-405.
UPADYAYULA N, DA SILVA HS, BOHN MO, et al, 2006. Genetic and QTL analysis of maize tassel and ear inflorescence architecture [J]. Theor Appl Genet, 112(4): 592-606.
VOLLBRECHT E, SPRINGER PS, GOH L, et al, 2005. Architecture of floral branch systems in maize and related grasses [J]. Nature, 436(7 054): 1 119-1 126.
VANDESOMPELE J, PRETER KD, PATTYN F, et al, 2002. Accurate normalization of real time quantitative RT-PCR data by geometric averaging of multiple internal control genes [J]. Gen Biol, 3(7): Research0034- Research0034.11.WU DD, IRWIN DM, ZHANG YP, 2008. Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair [J]. BMC Evol Biol, 8(1): 241-256.
YAN CJ, ZHOU JH, YAN S, et al, 2007. Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (OryzasativaL.) [J]. Theor Appl Genet, 115(8): 1 093-1 100.ZHOU Y, ZHU J, LI Z, et al, 2009. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication [J]. Genetics, 183(1): 315-324.
圖 6 KAP5-4基因在雄穗原基中的相對(duì)表達(dá)量與雄穗性狀的相關(guān)性Fig. 6 Relative expression of gene KAP5-4 in tassel primordial and its correlation with tassel character
圖 7 CLV1基因在雄穗原基中的相對(duì)表達(dá)量與雄穗性狀的相關(guān)性Fig. 7 Relative expression of gene CLV1 in tassel primordial and its correlation with tassel character
Association of expression amount and SNP of two candidate genes to tassel size in maize
REN Xiao-Dan, CHEN Ling, YANG Lin, LI Wan-Chen, FU Feng-Ling*
(MaizeResearchInstitute,SichuanAgriculturalUniversity, Chengdu 611130, China )
Abstract:Maize tassel usually sheds powders much more than the requirement of pollination. The overdeveloped tassel not only consumes excessive energy, preventing the transferring of photosynthate to the developing ear, but also decreases the sunlight transmittance of the population, resulting in photosynthetic rate decrease. Therefore, tassel size becomes an indirect selection criterion in maize variety selection because its negative correlation with grain yield was found in maize production practice and breeding study. According to previous reports, the genomic sequences of the keratin-associated protein gene KAP 5-4 and the receptor-like protein kinase gene CLV1 were amplified piece by piece from eleven maize inbred lines with different tassel size, and used for the analysis of multiple alignment, open reading frames, domain structures, and single nucleotide polymorphism. Their differential expressions in tassel primordial among these inbred lines were detected by fluorescence real-time quantitative PCR, and used for correlation analysis with tassel size measured by number of primary branch and dry weight of tassel. The results showed that the relative expression amount of the KAP 5-4 gene was positively correlated with number of primary branch(r=0.77, P<0.01) and dry weight of tassel (r=0.83, P<0.01). A single nucleotide polymorphism at the 2 104 bp base of the open reading frame of the CLV1 gene from eleven maize inbred lines consisted codon GAC encoding acidic aspartic acid at the 702nd site of the receptor-like protein kinase at the 2 104 to 2 016 bp base in five of the inbred lines, and consisted codon AAC encoding polar asparagine at the same site in the other six inbred lines. The relative expression amount of the CLV1 gene was negatively correlated with number of primary branch (r=-0.92, P<0.01) and dry weight of tassel (r=-0.91, P<0.05) within the former five inbred lines, and negatively correlated only with dry weight of tassel (r=-0.91, P<0.05) within the later six inbred lines. It was concluded that the expression and single nucleotide polymorphism of the KAP 5-4 and CLV1 genes were closely associated with tassel size of maize inbred lines, and functional DNA markers can be developed for DNA marker-assisted selection in maize breeding.
Key words:differential expression, keratin-associated protein, maize, receptor-like protein kinase, tassel size
DOI:10.11931/guihaia.gxzw201410030
收稿日期:2014-12-20修回日期: 2015-03-26基金項(xiàng)目: 國(guó)家自然科學(xué)基金(31071433)[Supported by the National Natural Science Foundation of China(31071433)]。
作者簡(jiǎn)介:任小丹(1989-),女,新疆石河子人, 碩士研究生,研究方向?yàn)橹参锓肿由飳W(xué),(E-mail)1035775907@qq.com。 *通訊作者: 付鳳玲,教授,博士生導(dǎo)師,研究方向?yàn)橛衩走z傳育種與生物技術(shù),(E-mail)ffl@sicau.edu.cn。
中圖分類(lèi)號(hào):Q945.4, Q949.9
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1000-3142(2016)03-0253-08
任小丹,陳玲,楊琳,等. 兩個(gè)相關(guān)基因表達(dá)量和SNP與玉米雄穗大小相關(guān) [J]. 廣西植物, 2016, 36(3):253-260
REN XD,CHEN L,YANG L,et al.Association of expression amount and SNP of two candidate genes to tassel size in maize [J]. Guihaia, 2016, 36(3):253-260