• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on Ground-Based LWIR Hyperspectral Imaging Remote Gas Detection

    2016-06-15 16:37:30ZHENGWeijianLEIZhenggangYUChunchaoYANGZhixiongWANGHaiyangFUYanpengLIXunniuLIAONingfangSUJunhong
    光譜學(xué)與光譜分析 2016年2期
    關(guān)鍵詞:長波乙醚蒸氣

    ZHENG Wei-jian,LEI Zheng-gang,YU Chun-chao,YANG Zhi-xiong,WANG Hai-yang, FU Yan-peng, LI Xun-niu,LIAO Ning-fang,SU Jun-hong

    1. Kunming Institute of Physics, Kunming 650223, China 2. School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China

    Research on Ground-Based LWIR Hyperspectral Imaging Remote Gas Detection

    ZHENG Wei-jian1,2,LEI Zheng-gang1,YU Chun-chao1,YANG Zhi-xiong1,WANG Hai-yang1,2, FU Yan-peng1,2, LI Xun-niu1,2,LIAO Ning-fang2,SU Jun-hong1,2

    1. Kunming Institute of Physics, Kunming 650223, China 2. School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China

    The new progress of ground-based long-wave infrared remote sensing is presented, which describes the windowing spatial and temporal modulation Fourier spectroscopy imaging in details. The prototype forms the interference fringes based on the corner-cube of spatial modulation of Michelson interferometer, using cooled long-wave infrared photovoltaic staring FPA (focal plane array) detector. The LWIR hyperspectral imaging is achieved by the process of collection, reorganization, correction, apodization, FFT etc. from data cube. Noise equivalent spectral radiance (NESR), which is the sensitivity index of CHIPED-1 LWIR hyperspectral imaging prototype, can reach 5.6×10-8W·(cm-1·sr·cm2)-1at single sampling. The data is the same as commercial temporal modulation hyperspectral imaging spectrometer. It can prove the advantage of this technique. This technique still has space to be improved. For instance, spectral response range of CHIPED-1 LWIR hyperspectral imaging prototype can reach 11.5 μm by testing the transmission curve of polypropylene film. In this article, choosing the results of outdoor high-rise and diethyl ether gas experiment as an example, the authors research on the detecting method of 2D distribution chemical gas VOC by infrared hyperspectral imaging. There is no observed diethyl ether gas from the infrared spectral slice of the same wave number in complicated background and low concentration. By doing the difference spectrum, the authors can see the space distribution of diethyl ether gas clearly. Hyperspectral imaging is used in the field of organic gas VOC infrared detection. Relative to wide band infrared imaging, it has some advantages. Such as, it has high sensitivity, the strong anti-interference ability, identify the variety, and so on.

    Hyperspectral imaging; LWIR; Remote sensor; Gas detection

    Biography: ZHENG Wei-jian, (1962—), reseacher grade senior engineer and PhD supervisor, Kunming Institute of Physics e-mail: zwj866@139.com

    Introduction

    Hyperspectral infrared remote sensing for special gas detection, is a novel application of infrared technology. Because of the strong military demand of battlefield chemical gas remote sensing, United States began to setup the research project of infrared remote sensing LOPAIR (Long Path InfraRed) in the 1970s, led by the U.S. Army Edward Wood Biochemical Research Center ERDEC; in the mid-1990s, after the battlefield applications during the Persian Gulf War, RSCAAL plan of the U.S. military defense Advanced Research Projects Agency matured and U.S. Army authorized M21-type FTS remote gas detection instrument as a standard equipment, which formally started the era of hyperspectral gas remote sensing applications[1-3]. At present, internationally the forefront of this research is on the high throughput and high sensitive interference imaging gas detection[4].

    In the 1980s, China started the reserch of chemic gas infrared remote sensing technology. At the beginning of this century, Kunming Institute of Physics, Anhui Institute of Optics and fine Mechanics etc finished the development of time-modulated Fourier transform infrared remote sensing technology together[5]. This technology can monitor real-time gas cloud cluster along the optical path. But there are very few applicable technological results for the environmental gas sensing.

    This paper discussed the technique realization of Michelson spatial modulation hyperspectral imaging spectrometer, and reported some research examples of hyperspectral long-wave infrared imaging gas detection designed by the research team.

    1 The design of infrared interference imaging prototype for ground-based environmental gas sensing

    Ground-based environmental gas sensing, in terms of technology, has relatively stringent requirements. The spectrum window covers mainly on LWIR and the background radiation is very complex. For the passive remote sensing, light source is intrinsic infrared radiation of nature object. Firstly, a spectrometer with high sensitivity is needed, so a cooled photonics detectors was used; secondly, because the intrinsic spectral characteristics of absorption or radiation from VOC molecule/molecular functional-group must be distinguished for the detection and identification, a high spectral resolution is required, which the hyperspectral method meets well. Thirdly, due to the strong fluidity of gas, real-time requirements for the automatic intelligent recognition are high, and it should be on the order of a second at least. Since the detection of gas distribution and flow trends have practical applications in the public, industry and military, recently there are intense research interest on hyperspectral imaging infrared remote sensing technology, especially in Fourier transform infrared interference imaging method.

    Hyperspectral infrared interference imaging technologies are categorized into three groups: temporal modulation, spatial modulation, spatial and temporal hybrid modulation. The product based on temporal modulated Fourier transform infrared spectroscopy is relatively mature internationally, and BRUKER company of German and TELOPS company of Canada already have a number of commercial products in areas of chemical gas remote sensing[6,7]. Noise equivalent sensor response (NESR) of FIRST of TELOPS company is 53 nW·(cm2·sr·cm-1)-1, which is a average calculated by three samplings[7]. However, because the interference fringe depends critically on the time series of the exact position of moving mirror so it is prone to vibrations. Therefore, other technical means, such as spatial modulation or spatial and temporal hybrid modulation, deserve to be explored.

    1.1 The principle of spatial modulation Fourier infrared spectroscopy

    Spatial and temporal hybrid modulation belongs to spatial modulation in nature. The spatial modulated infrared Fourier-transform spectrometer does not rely on the exact position of the relative motion of the moving mirror, and interference fringes are formed on the focal plane of detector. The interferometer usually base on the principle of Sagnac or Michelson. Due to the limitation of LWIR detectors development, progress of LWIR band compared with the visible light and near infrared band is slower[8,9]. In recent years, hyperspectral imaging system based on Sagnac interferometer for the ground based detection designed by USA University of Hawaii and spectrum and photonics company, can detect the flow of ether gas and acetone gas[8]. Charles Fabry laboratory of University of Paris in France, TOSA company and etc have adopted the Michelson interferometer used rectangle prism already reported the laboratory results in 3~5 μm[10]. The LWIR hyperspectral imaging system based on interferometer composed of corner cube designed by Swedish National Defence College and USA University of Florida, measured spectrum of polypropylene film. These researches validated the feasibility of Michelson spatial modulated imaging spectroscopy, but there is no report on gas detection yet[11].

    Figure 1 is block diagram of the CHIPED-1 experimental prototype of spatial and temporal hybrid modulation LWIR hyperspectral imaging designed by our team[12-14]. Infrared detector is a 320×256 array longwave (7.7~11.5 μm) photovoltaic detector assembly, which is cooled by a integrated Stirling cooler, and infrared video images data is transferred into processing computer by Camera Link digital interface. Figure 2 is a photograph of the experimental prototype.

    Fig.1 Block diagram of the experimental device of spatial and temporal modulation LWIR hyperspectral imaging

    Radiation of incident scene forms the interference fringes by spatial modulation of Michelson interferometer, superimposed on the infrared image. By swing the scanning mirror a step according to the Instantaneous FOV interval of spectra dimension. Because interference information has to be collected for each column of pixels of spectral dimension on the scene, infrared images of 640 frames captured form a raw image data cube, then spectral cube can be obtained by interference cube data reorganization, (baseline and phase) correction, FFT transform etc. As shown in figure 3.

    Fig.2 LWIR hyperspectral imaging prototype

    Fig.3 The procedure of window pushbroom spatial and temporal hybrid modulation data cube formation and transformation into spectral cube

    Algorithm of data cube is important part of hyperspectral spectrometer. We develop the software module of data preprocessing, FFT transform etc (Shown in figure 4), and design our software of spectral data processing.

    Fig.4 Diagram of the data-cube processing software

    To obtain spectral image data cube, every row in each frame of the interference image cube is transformed by one-dimensional FFT. If the original frame data is a unilateral interferogram, data shall be symmetrically treated in order to carry out FFT. Interferogram data became bilateral distribution after this symmetric treatment, then the modulus of the Fourier transform coefficient is the measured spectral distribution, wherein

    (k=0,1,2,3,…,N-1)

    (1)

    Spectral information obtained at this time is only relative spectral information, and it must go through the calibration in order to get the spectral information for each wavelength band.

    1.2 Noise equivalent spectral radiance(NESR)

    Definition of Noise equivalent sensor response (NESR)of instrument is that radiation flux density, when S/N of instrument is 1, relative to wavelength (wavenumber) at a given resolution and scanning rate. S/N is Signal-to-Noise of hyperspectral imaging spectrometer, and it also indicate signal quality of hyperspectral imaging spectrometer. So the NESR can reflect photoelectric response ability of system and overall performance index of sensitivity of instrument

    (2)

    Then, the radiance of blackbody calculated by Planck law is

    (3)

    L(ν,T) is spatial radiance, (W·cm-2·sr-1·cm);νis wavenumber, (cm-1);Tis absolute temperature, (K);c1is first radiation constant,c1=1.191×10-12W·cm2·sr-1,c2is second radiation constant,c2=1.439×104K·μm.

    The spatial data of two temperature can do the calculation by use of single scanning data in real condition. When we calculate on spectral luminance difference, the temperature used is same as the temperature of blackbody.

    2 Experimental results of LWIR hyperspectral imaging

    2.1 Characteristic of spatial response

    When the experiment take 65 ℃ plane plate blackbody as background, and we test the spectral absorption of polypropylene film by using hyperspectral imaging prototype.The shape of the trend is the same by comparing the data from BRUKER OPAG33 and literature.

    The spectral response range of CHIPED-1 LWIR hyperspectral imaging prototype can reach 11.5 μm (870 cm-1) by testing the transmission curve of polypropylene film.

    Fig.5 Measured Transmittance spectra of a polypropylene film by OPAG33 and CHIPED-1

    2.2 Measurment of NESR

    According to formula (2), single sampling testing data can calculate the NESR of prototype for the 35 ℃ blackbody and 65 ℃ blackbody by using CHIPED-1 LWIR hyperspectral imaging prototype.

    Noise equivalent spectral radiance(NESR) can reach 5.6×10-8W·(cm-1·sr·cm2)-1in the figure 6.

    Fig.6 Noise equivalent spectral radiance (NESR) of CHIPED-1

    2.3 Hyperspectral remote sensing Experimental in the outfield

    In order to analysis the spectral of highrise in about 500 meters [Figure 7(a),(b)], that it the need to collect image information for three times fiemd of view (Figure 8).

    Fig.7(a) Photogram of the highrise in about 500 m

    Fig.7(b) Interferogram of the highrise in about 500 m

    Fig.8 IR panorama image scene by windowing

    The windowing data cube should be restructured for the Figure 8, and we can get the interference data cube, shown in Figure 9(a). Then, we should do some preprocessing, such as Zero-mean of interferogram, the interferogram apodization, phase correction, etc. Figure 9(b) is interferogram whch has done Zero-mean of interferogram.

    Cross-section of spectral cube after the disposal of data cube is shown in Figure 10 at 950 m-1, and latticed image caused by glass curtain wall.

    2.4 Gas detection test in the outfield

    For scene in the 50 meters, shown as the thermal image gathered by CHIPED-1 in Figure 11, we use volatile ether to make tests of gas detection. Figure 12 and Figure 13 are spectrogram of absorption peak nearby before and after ether liquor douse the ground, but we can not see ether spatial distribution. Figure 14 is differential spectrogram making use the data of Figure 12 and Figure 13, and in the figure we can see the ether spatial distribution of the absorption peak nearby.

    Fig.9(a) Column of rebuilded interferogram cube for sky and highrise interferogram

    Fig.9(b) Column of after interference sectional baseline correction for sky and highrise interferogram

    Figure 13 is ether gas spectrum absorption curve of difference spectrum detected by CHIPED-1 at point (87,98) (Figure 14), and the shape of the ether gas spectrum absorption curve trend is the same by comparing the data from BRUKER OPAG33 and NIST Chemical WebBook.

    Fig.10 The target spectrum of cross section at the 1 260 cm-1

    Fig.11 Quick view of infrared thermal imaging of test scene

    Fig.12 Background spectrogram of scene without ether gas at 1 145 cm-1 in the 50 meters

    3 Analysis and Discussion

    (1) Due to difference of wavelength calibration, polypropylene film absorption peak position detected by CHIPED-1 can not match perfectly with the result of OPAG33. So we should improve on the means of wavelength calibration.

    (2) There are grids in the infrared imaging spectrogram of figure 10, may be caused by vibration of cooler[11], or phase noise. The further research and analysis still need to do.

    Fig.13 Spectrogram of scene with ether gas at 1 145 cm-1 in the 50 meters

    Fig.14 Difference spectrogram of the ether gas at 1 145 cm-1

    Fig.15 Transmittance spectrum of Ether gas from the scene compared to both NIST literature Data (ETHYL ETHER) and BRUKER OPAG33

    (3) Because we just use a few dosage of ether liquid, it can not see the ether gas from infrared spectrum slice of the same wavenumber, shown in figure 12 and figure 13. But we can see the ether gas after the difference spectrum in figure 14. Relative to wide band infrared imaging, the hyperspectral means has some advantages.

    (4) The ether infrared spectrum absorption peak detected by CHIPED-1 and OPAG33 exist in ethyl ether absorption peak envelopment of NIST Chemical WebBook. It reflects the data rationality.

    4 Conclusion

    Experimental prototype of LWIR spectral imaging designed by our team demonstrate the principle of spatial modulated interference, and provides a new technical means for ground-based gas remote sensing. Noise equivalent spectral radiance (NESR), which is the sensitivity index of CHIPED-1 LWIR hyperspectral imaging prototype, can reach 5.6×10-8W·(cm-1·sr·cm2)-1at single sampling at present. The data is the same as commercial temporal modulation hyperspectral imaging spectrometer. It can prove the advantage of this technique. This technique still has space to be improved.

    Hyperspectral imaging is used in the field of organic gas VOC infrared detection in the complicated background. Relative to wide band infrared imaging, it has some advantages. Such as, it has high sensitivity, the strong anti-interference ability, identify the variety, and so on.

    With the development of detector technology, it is expected to cover 8~14 μm LWIR atmospheric window, to make a substantial contribution for detection of environmental gas in the future.

    Acknowledgement

    This project was supported greatly by Fang Yonghua researcher of Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science and Gao Jiaobo researcher of Xi’an Institute of Applied Optics.

    [1] Dennis F Flanigan. SPIE,1996,2763.

    [2] Mark L Althouse et al. Proc. of Protection Against Chemical Warfare Agents, 1995.

    [3] John P Carrico. SPIE, 1998, 3383.

    [4] Zheng Weijian, Hu Xu, Su Junhong, et al. Infrared and Laser Engineering, 2006,35(5): .

    [5] Zheng WeiJian, Jin Weiqi, Su Junhong. SPIE, 2008, 6621: 662129-1.

    [6] Samer Sabbah, Roland Harig, et al. Optical Engineering, 2012, 51(11): 111717.

    [7] Chamberland M, et al. SPIE, 2004, 5416-40.

    [8] Paul G Lucey, Mark Wood, Sarah T Crites, et al. SPIE,2012,8390.

    [9] Crites S T,Lucey P G,Wright R,et al. SPIE, 2012, 8385: 838509-1.

    [10] Noura Matallah,et al. Proc.of SPIE, 2011,8167: 816715-13.

    [11] Bergstrom D,Renhorn I,et al. SPIE, 2010,7660: 76602F-1.

    [12] Li Xunniu,et al. Proc.of SPIE, 2013,8910: 8910P1-10.

    [13] Wang Haiyang,et al. Proc.of SPIE, 2013,8910: 89100Q1-9.

    [14] Fu Yangpeng,et al. Proc. of SPIE, 2013,8910: 89100R1-8.

    [15] Ma Lin, Zheng Weijian, Su Junhong. Proc. of SPIE, 2009,750: 6750610.

    O657.3

    A

    地面長波紅外高光譜成像氣體探測研究

    鄭為建1,2,雷正剛1,余春超1,楊智雄1,王海洋1,2,付艷鵬1,2,李訓(xùn)牛1,2,廖寧放2,蘇君紅1,2

    1. 昆明物理研究所,云南 昆明 650223 2. 北京理工大學(xué),北京 100081

    報道了地面長波紅外遙測的新進(jìn)展,具體闡述了窗掃時空調(diào)制傅里葉光譜成像技術(shù)的實現(xiàn)過程。演示裝置基于角錐反射鏡Michelson干涉具,構(gòu)成了空間調(diào)制干涉; 采用了制冷型長波紅外焦平面探測器組件,通過對數(shù)據(jù)立方體的采集、重組、基線校正、切趾、相位校正和傅里葉變換等處理,實現(xiàn)了長波紅外波段高光譜成像。自研的CHIPED-1長波紅外高光譜成像原理實驗裝置的探測靈敏度指標(biāo)噪聲等效輻射通量密度NESR在單次采樣時達(dá)到了5.6×10-8W·(cm-1·sr·cm2)-1,與商品化時間調(diào)制干涉高光譜成像儀相當(dāng); 反映了技術(shù)的先進(jìn)性,并留有較大的改進(jìn)空間。通過測試聚丙烯薄膜的透過率曲線,CHIPED-1紅外高光譜成像原理實驗裝置的光譜響應(yīng)范圍達(dá)到了11.5 μm。文章還以室外高樓和乙醚氣體的探測實驗為例,研究了二維分布化學(xué)氣體VOC的高光譜成像探測方法。在復(fù)雜背景和低試驗濃度情況下,從同一波數(shù)的紅外光譜切片上,觀察不出乙醚蒸氣的存在,但是進(jìn)行了差譜處理后,可以清楚看到乙醚蒸氣的空間分布。高光譜方法應(yīng)用在有機(jī)蒸氣VOC的紅外探測領(lǐng)域,相對于寬波段熱成像方法,具有靈敏度高、抗干擾能力強(qiáng)和識別種類多等諸多優(yōu)勢。

    高光譜成像; 長波紅外; 遙測; 氣體探測

    2014-09-11,

    2015-01-15)

    2014-09-11; accepted: 2015-01-15

    National Defence Base Scientific Research Project(A40407020201)

    10.3964/j.issn.1000-0593(2016)02-0599-08

    猜你喜歡
    長波乙醚蒸氣
    廣義對稱正則長波方程的孤波解和周期波解及它們與Hamilton能量的關(guān)系
    用乙醚處理共沉淀法合成YAG:Ce熒光粉
    商情(2020年47期)2020-12-15 06:53:14
    乙醚提取與固相萃取兩種方法對比測定醬油中的苯甲酸
    科技視界(2019年12期)2019-06-20 01:34:27
    乙醇蒸氣放空管設(shè)置室內(nèi)引發(fā)爆炸
    西方華佗怎樣引進(jìn)麻醉術(shù)
    百家講壇(2019年24期)2019-04-24 00:27:35
    常見麻醉藥在獸醫(yī)臨床上的應(yīng)用研究
    基于構(gòu)架點頭角速度的軌道垂向長波不平順在線檢測
    掃描型長波紅外連續(xù)變焦光學(xué)系統(tǒng)
    混合蒸氣在板式換熱器中凝結(jié)換熱研究
    壓水堆蒸氣發(fā)生器橫向支撐墻體托架焊接工藝及實踐
    国产精品国产三级国产专区5o| 亚洲性久久影院| 久久毛片免费看一区二区三区| 深夜精品福利| 国产又爽黄色视频| 欧美亚洲日本最大视频资源| 亚洲av在线观看美女高潮| 亚洲国产精品国产精品| h视频一区二区三区| 日日啪夜夜爽| 亚洲国产看品久久| 亚洲精品一二三| 精品少妇黑人巨大在线播放| 欧美人与善性xxx| 黄色一级大片看看| 欧美日韩综合久久久久久| 插逼视频在线观看| 精品国产一区二区三区四区第35| 国产日韩欧美在线精品| 欧美变态另类bdsm刘玥| 日韩成人伦理影院| 欧美激情极品国产一区二区三区 | 色视频在线一区二区三区| 国产日韩欧美视频二区| 亚洲成av片中文字幕在线观看 | 久久99蜜桃精品久久| 色哟哟·www| 在线 av 中文字幕| 久久精品aⅴ一区二区三区四区 | 如日韩欧美国产精品一区二区三区| 黑人猛操日本美女一级片| 亚洲av免费高清在线观看| 一个人免费看片子| 狠狠婷婷综合久久久久久88av| 精品一区二区免费观看| 91精品伊人久久大香线蕉| 中文字幕亚洲精品专区| 免费av不卡在线播放| 欧美日韩精品成人综合77777| 人人澡人人妻人| 下体分泌物呈黄色| 精品视频人人做人人爽| 亚洲精品乱码久久久久久按摩| 亚洲欧洲日产国产| 麻豆乱淫一区二区| 宅男免费午夜| 国产精品成人在线| 亚洲,一卡二卡三卡| 蜜桃国产av成人99| 色94色欧美一区二区| 国产极品粉嫩免费观看在线| 9191精品国产免费久久| 老女人水多毛片| 国产男女超爽视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产最新在线播放| 国产又爽黄色视频| 蜜臀久久99精品久久宅男| √禁漫天堂资源中文www| 精品卡一卡二卡四卡免费| 咕卡用的链子| 两个人看的免费小视频| xxxhd国产人妻xxx| av女优亚洲男人天堂| 美女视频免费永久观看网站| 熟妇人妻不卡中文字幕| 国产精品久久久av美女十八| 男女啪啪激烈高潮av片| 综合色丁香网| 丝袜在线中文字幕| 看免费成人av毛片| 七月丁香在线播放| 日本欧美国产在线视频| 免费看不卡的av| 欧美亚洲 丝袜 人妻 在线| 国产精品一区二区在线不卡| 一边摸一边做爽爽视频免费| 国产又色又爽无遮挡免| 69精品国产乱码久久久| 婷婷色综合www| 国产色爽女视频免费观看| 精品熟女少妇av免费看| 国产激情久久老熟女| 欧美 亚洲 国产 日韩一| tube8黄色片| 国产免费一级a男人的天堂| 啦啦啦在线观看免费高清www| 最近手机中文字幕大全| 日本欧美视频一区| av播播在线观看一区| 欧美日韩视频高清一区二区三区二| 国产无遮挡羞羞视频在线观看| 亚洲,欧美,日韩| 国产 一区精品| 最近中文字幕高清免费大全6| 晚上一个人看的免费电影| 久久久精品免费免费高清| 亚洲欧美成人精品一区二区| 欧美人与善性xxx| 性高湖久久久久久久久免费观看| 亚洲av日韩在线播放| 亚洲精品视频女| 久久这里只有精品19| 多毛熟女@视频| 亚洲欧美日韩卡通动漫| 在现免费观看毛片| 三上悠亚av全集在线观看| 青春草视频在线免费观看| 久久久久久久久久久免费av| 婷婷色麻豆天堂久久| 免费不卡的大黄色大毛片视频在线观看| 国产成人av激情在线播放| 男人爽女人下面视频在线观看| 下体分泌物呈黄色| 蜜臀久久99精品久久宅男| 汤姆久久久久久久影院中文字幕| 亚洲av福利一区| 黑人欧美特级aaaaaa片| 精品第一国产精品| 99久久综合免费| 欧美国产精品va在线观看不卡| 亚洲欧美一区二区三区国产| 日韩制服丝袜自拍偷拍| 久热这里只有精品99| 国产av精品麻豆| 亚洲人成77777在线视频| 国产免费一级a男人的天堂| 国产黄色免费在线视频| 亚洲国产精品成人久久小说| 国产在线一区二区三区精| 国产一区二区三区综合在线观看 | 啦啦啦中文免费视频观看日本| 五月天丁香电影| 狠狠精品人妻久久久久久综合| 在线观看一区二区三区激情| av有码第一页| 少妇人妻 视频| 国产成人a∨麻豆精品| 男人舔女人的私密视频| 女人久久www免费人成看片| 午夜日本视频在线| 日本猛色少妇xxxxx猛交久久| 婷婷色综合www| 日日啪夜夜爽| 香蕉丝袜av| 精品国产一区二区久久| 中国国产av一级| 国内精品宾馆在线| 啦啦啦啦在线视频资源| 亚洲丝袜综合中文字幕| 亚洲人成77777在线视频| 欧美精品一区二区免费开放| 少妇的逼好多水| 嫩草影院入口| 国产成人欧美| 国产不卡av网站在线观看| 国产熟女欧美一区二区| 99香蕉大伊视频| 黄片播放在线免费| 97精品久久久久久久久久精品| 亚洲欧美色中文字幕在线| 国产黄色免费在线视频| 午夜福利影视在线免费观看| 99re6热这里在线精品视频| 亚洲欧洲国产日韩| 丝袜脚勾引网站| 不卡视频在线观看欧美| 久久人人爽人人爽人人片va| 三上悠亚av全集在线观看| 免费观看av网站的网址| 精品少妇久久久久久888优播| 久久精品国产鲁丝片午夜精品| 国产成人精品无人区| 国产日韩一区二区三区精品不卡| 丝袜喷水一区| 日本午夜av视频| 最近手机中文字幕大全| 日本黄色日本黄色录像| 国产激情久久老熟女| 如何舔出高潮| 中文天堂在线官网| 99久久综合免费| 久久久精品免费免费高清| 欧美精品一区二区免费开放| 日本爱情动作片www.在线观看| 热re99久久精品国产66热6| 欧美+日韩+精品| 一区二区三区精品91| 一边亲一边摸免费视频| 热re99久久国产66热| 天天躁夜夜躁狠狠躁躁| 99re6热这里在线精品视频| 亚洲精品久久久久久婷婷小说| 国产精品三级大全| 国产精品一区www在线观看| 亚洲丝袜综合中文字幕| 国产永久视频网站| 夫妻午夜视频| 亚洲欧美一区二区三区国产| 久久久欧美国产精品| 日韩av在线免费看完整版不卡| 一级a做视频免费观看| 欧美精品亚洲一区二区| 成人午夜精彩视频在线观看| 国产女主播在线喷水免费视频网站| 日韩三级伦理在线观看| 中文字幕精品免费在线观看视频 | 看非洲黑人一级黄片| 丝袜美足系列| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人黄色视频免费在线看| 日日爽夜夜爽网站| 丝瓜视频免费看黄片| 精品酒店卫生间| 成人黄色视频免费在线看| 啦啦啦中文免费视频观看日本| 99热这里只有是精品在线观看| 熟女av电影| av网站免费在线观看视频| 精品久久蜜臀av无| 欧美3d第一页| www日本在线高清视频| 中文字幕制服av| 欧美亚洲日本最大视频资源| www.av在线官网国产| 极品人妻少妇av视频| 婷婷色综合www| 欧美变态另类bdsm刘玥| 最近中文字幕2019免费版| 一级a做视频免费观看| 建设人人有责人人尽责人人享有的| 精品99又大又爽又粗少妇毛片| videosex国产| 久久久精品94久久精品| 亚洲伊人色综图| 亚洲av欧美aⅴ国产| 天美传媒精品一区二区| 免费黄频网站在线观看国产| 国产精品成人在线| 搡老乐熟女国产| 黄色 视频免费看| 一级毛片黄色毛片免费观看视频| 亚洲国产精品一区三区| 巨乳人妻的诱惑在线观看| 在线观看免费日韩欧美大片| av电影中文网址| 成人综合一区亚洲| 看非洲黑人一级黄片| 欧美国产精品va在线观看不卡| 亚洲精华国产精华液的使用体验| 一区二区av电影网| 麻豆乱淫一区二区| 免费观看在线日韩| 久久97久久精品| 国产成人精品一,二区| 免费人妻精品一区二区三区视频| 最近手机中文字幕大全| 久久精品国产亚洲av涩爱| 一级毛片 在线播放| 麻豆乱淫一区二区| 亚洲一码二码三码区别大吗| 美女福利国产在线| 久久亚洲国产成人精品v| 精品久久久久久电影网| 超碰97精品在线观看| 香蕉丝袜av| 中国国产av一级| 高清在线视频一区二区三区| 国产一区二区三区av在线| 欧美 亚洲 国产 日韩一| 人妻一区二区av| 18禁裸乳无遮挡动漫免费视频| 热re99久久精品国产66热6| 熟女电影av网| 国产av国产精品国产| 青春草视频在线免费观看| 日本午夜av视频| 中文乱码字字幕精品一区二区三区| 十八禁网站网址无遮挡| 国国产精品蜜臀av免费| 少妇的逼水好多| 搡女人真爽免费视频火全软件| 黄色视频在线播放观看不卡| 狠狠婷婷综合久久久久久88av| 亚洲情色 制服丝袜| 丝袜喷水一区| 久久精品久久久久久噜噜老黄| 人妻少妇偷人精品九色| 香蕉丝袜av| 久久精品久久精品一区二区三区| 国产在线一区二区三区精| 日韩av在线免费看完整版不卡| 18禁在线无遮挡免费观看视频| 欧美老熟妇乱子伦牲交| 免费久久久久久久精品成人欧美视频 | 大香蕉97超碰在线| 少妇高潮的动态图| 国产精品女同一区二区软件| 人妻 亚洲 视频| 五月伊人婷婷丁香| 青春草国产在线视频| 肉色欧美久久久久久久蜜桃| 午夜福利视频精品| 在线精品无人区一区二区三| 日本猛色少妇xxxxx猛交久久| 狠狠精品人妻久久久久久综合| 国产永久视频网站| 国产亚洲精品久久久com| 精品人妻熟女毛片av久久网站| 久久久国产一区二区| 韩国精品一区二区三区 | 国产69精品久久久久777片| 日本-黄色视频高清免费观看| 久久青草综合色| 两个人免费观看高清视频| 菩萨蛮人人尽说江南好唐韦庄| 天堂俺去俺来也www色官网| 永久网站在线| 精品久久久精品久久久| 成人免费观看视频高清| 色视频在线一区二区三区| 两个人免费观看高清视频| 国产精品国产三级国产av玫瑰| 国产精品久久久久久久久免| 日产精品乱码卡一卡2卡三| 国产精品熟女久久久久浪| 亚洲成色77777| 青青草视频在线视频观看| 秋霞伦理黄片| 精品午夜福利在线看| 久久久久久人妻| 国产极品天堂在线| 欧美xxxx性猛交bbbb| 香蕉丝袜av| av卡一久久| 午夜福利,免费看| 日本猛色少妇xxxxx猛交久久| 一本色道久久久久久精品综合| 黄片无遮挡物在线观看| 国产熟女欧美一区二区| 久久精品人人爽人人爽视色| 久久人人爽人人片av| 欧美精品av麻豆av| 99久久中文字幕三级久久日本| 视频区图区小说| 99热国产这里只有精品6| 成人国语在线视频| 大码成人一级视频| 性色avwww在线观看| 男人添女人高潮全过程视频| 国产永久视频网站| 国产成人av激情在线播放| 精品99又大又爽又粗少妇毛片| 最近中文字幕2019免费版| 亚洲av.av天堂| 香蕉精品网在线| 免费人妻精品一区二区三区视频| 激情视频va一区二区三区| 这个男人来自地球电影免费观看 | 国产成人a∨麻豆精品| 国产一区二区三区综合在线观看 | 99视频精品全部免费 在线| 91精品国产国语对白视频| 国产探花极品一区二区| 精品少妇久久久久久888优播| 18禁国产床啪视频网站| 两个人看的免费小视频| 国产成人一区二区在线| 黄色怎么调成土黄色| 国产毛片在线视频| 色视频在线一区二区三区| 18禁国产床啪视频网站| 免费大片18禁| 国产探花极品一区二区| 一二三四中文在线观看免费高清| 五月开心婷婷网| 啦啦啦中文免费视频观看日本| 不卡视频在线观看欧美| 亚洲色图综合在线观看| av有码第一页| 久久精品国产综合久久久 | 国产成人aa在线观看| 男女下面插进去视频免费观看 | av在线观看视频网站免费| 国产黄色视频一区二区在线观看| 天天操日日干夜夜撸| 在现免费观看毛片| 国产成人精品无人区| 99久国产av精品国产电影| 亚洲欧美一区二区三区黑人 | 国产淫语在线视频| 男女高潮啪啪啪动态图| 熟女av电影| 久久午夜综合久久蜜桃| 人妻一区二区av| 欧美日韩视频高清一区二区三区二| 中国美白少妇内射xxxbb| 男女国产视频网站| 亚洲,欧美,日韩| 精品少妇久久久久久888优播| 十八禁网站网址无遮挡| 美女福利国产在线| 香蕉丝袜av| av不卡在线播放| 你懂的网址亚洲精品在线观看| 一区二区三区乱码不卡18| 熟女电影av网| 9热在线视频观看99| 伊人亚洲综合成人网| 国产黄色视频一区二区在线观看| 久久99蜜桃精品久久| 少妇熟女欧美另类| 全区人妻精品视频| 久久人人爽人人爽人人片va| 精品一区二区免费观看| 美国免费a级毛片| 18+在线观看网站| 69精品国产乱码久久久| 99久久综合免费| 新久久久久国产一级毛片| 满18在线观看网站| 日韩欧美精品免费久久| 免费女性裸体啪啪无遮挡网站| 老司机影院成人| 亚洲国产精品一区二区三区在线| 国产精品久久久久久精品电影小说| 亚洲av电影在线进入| 成人18禁高潮啪啪吃奶动态图| 80岁老熟妇乱子伦牲交| 亚洲精品国产色婷婷电影| 亚洲图色成人| 五月伊人婷婷丁香| 男女午夜视频在线观看 | 国产色爽女视频免费观看| 五月玫瑰六月丁香| 一区二区日韩欧美中文字幕 | 在线观看人妻少妇| xxx大片免费视频| 国产日韩欧美在线精品| 国产片内射在线| 色5月婷婷丁香| 久久精品久久精品一区二区三区| 国产男女超爽视频在线观看| 欧美 亚洲 国产 日韩一| 久久久久久久久久久久大奶| 97人妻天天添夜夜摸| 亚洲av日韩在线播放| 欧美xxxx性猛交bbbb| 中文欧美无线码| 国产爽快片一区二区三区| 少妇人妻久久综合中文| 日韩视频在线欧美| 亚洲欧洲精品一区二区精品久久久 | 丰满乱子伦码专区| 不卡视频在线观看欧美| av电影中文网址| 精品福利永久在线观看| 99热全是精品| 亚洲美女视频黄频| 久久狼人影院| 久久人人爽av亚洲精品天堂| 性高湖久久久久久久久免费观看| 中文字幕精品免费在线观看视频 | 18禁在线无遮挡免费观看视频| 天天影视国产精品| 免费在线观看完整版高清| 亚洲成国产人片在线观看| 欧美成人午夜免费资源| 成人手机av| 国产黄色视频一区二区在线观看| 国产av码专区亚洲av| 亚洲av电影在线观看一区二区三区| 建设人人有责人人尽责人人享有的| 99国产综合亚洲精品| 免费在线观看完整版高清| 亚洲 欧美一区二区三区| 男人添女人高潮全过程视频| 少妇人妻久久综合中文| 亚洲国产成人一精品久久久| 超色免费av| 中文字幕av电影在线播放| 熟妇人妻不卡中文字幕| 哪个播放器可以免费观看大片| 春色校园在线视频观看| 女人久久www免费人成看片| 色视频在线一区二区三区| 久久精品aⅴ一区二区三区四区 | 人体艺术视频欧美日本| 欧美另类一区| 久热这里只有精品99| 久久这里只有精品19| videos熟女内射| 搡女人真爽免费视频火全软件| 18禁观看日本| 两性夫妻黄色片 | 国产又爽黄色视频| 桃花免费在线播放| 天天躁夜夜躁狠狠躁躁| 哪个播放器可以免费观看大片| 在线观看www视频免费| 日本av免费视频播放| a级毛色黄片| 这个男人来自地球电影免费观看 | 日韩制服骚丝袜av| av线在线观看网站| 视频区图区小说| 黑人巨大精品欧美一区二区蜜桃 | 黑人巨大精品欧美一区二区蜜桃 | 久久精品国产a三级三级三级| 亚洲国产av新网站| 亚洲美女搞黄在线观看| 日本wwww免费看| 九九爱精品视频在线观看| 婷婷色综合大香蕉| 久久久久久久大尺度免费视频| 欧美日韩视频精品一区| 精品人妻一区二区三区麻豆| 中文字幕最新亚洲高清| 精品国产一区二区三区久久久樱花| 欧美xxxx性猛交bbbb| 久久久久精品久久久久真实原创| 精品国产一区二区三区四区第35| 欧美日韩视频高清一区二区三区二| 插逼视频在线观看| 日韩 亚洲 欧美在线| 中文字幕人妻熟女乱码| 国产又爽黄色视频| 啦啦啦中文免费视频观看日本| 国产成人精品久久久久久| 国产日韩欧美视频二区| 国产精品秋霞免费鲁丝片| 免费人成在线观看视频色| xxxhd国产人妻xxx| 亚洲欧美一区二区三区黑人 | 久久久久久久大尺度免费视频| 中文精品一卡2卡3卡4更新| 十八禁网站网址无遮挡| 成年人午夜在线观看视频| 最黄视频免费看| 久久婷婷青草| 男男h啪啪无遮挡| 久久99一区二区三区| 晚上一个人看的免费电影| 亚洲欧洲国产日韩| 亚洲精品久久成人aⅴ小说| 久久97久久精品| 高清黄色对白视频在线免费看| 婷婷色av中文字幕| 在线观看三级黄色| 国产在线视频一区二区| 国产片特级美女逼逼视频| 婷婷色综合大香蕉| 久久精品aⅴ一区二区三区四区 | 侵犯人妻中文字幕一二三四区| 免费观看a级毛片全部| 国产淫语在线视频| 热re99久久国产66热| 亚洲精品视频女| 国产日韩欧美亚洲二区| 国产高清国产精品国产三级| 日韩熟女老妇一区二区性免费视频| 久久久久精品性色| 搡女人真爽免费视频火全软件| 国产精品国产av在线观看| 在线观看免费高清a一片| 伊人亚洲综合成人网| 国产在线一区二区三区精| 丰满迷人的少妇在线观看| 中文字幕人妻丝袜制服| 国产一级毛片在线| 多毛熟女@视频| 欧美日韩综合久久久久久| 国产69精品久久久久777片| xxx大片免费视频| 国产在线免费精品| 一二三四在线观看免费中文在 | 黄色 视频免费看| 国产男女内射视频| 久久国产精品大桥未久av| 国产乱来视频区| 五月玫瑰六月丁香| 国产白丝娇喘喷水9色精品| 亚洲欧美日韩另类电影网站| 美女国产视频在线观看| 午夜福利,免费看| 国产亚洲精品久久久com| 亚洲天堂av无毛| 男女无遮挡免费网站观看| 亚洲婷婷狠狠爱综合网| 街头女战士在线观看网站| 精品一区二区三卡| 欧美日韩av久久| 超色免费av| 国产av国产精品国产| 精品视频人人做人人爽| 久久综合国产亚洲精品| 国产午夜精品一二区理论片| 精品午夜福利在线看| 国产毛片在线视频| 91精品国产国语对白视频| 国产精品久久久av美女十八| 制服丝袜香蕉在线| 最近手机中文字幕大全| 蜜桃在线观看..| 黑人高潮一二区| 久久毛片免费看一区二区三区| 久久ye,这里只有精品| 成年人免费黄色播放视频| 在线观看免费高清a一片| 边亲边吃奶的免费视频| 国产无遮挡羞羞视频在线观看| 欧美bdsm另类| 国产成人精品一,二区| 国产精品女同一区二区软件| 成人亚洲欧美一区二区av|