• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Examination of Correlation between Histidine and Cadmium Absorption by Eleagnusangustifolia L., Vitisvinifera L. and Neriumoleander L. Using HPLC-MS and ICP-MS

    2016-06-15 16:37:25SukranAkkusOzenMehmetYaman
    光譜學(xué)與光譜分析 2016年2期

    Sukran Akkus Ozen, Mehmet Yaman

    Firat University, Faculty of Science, Department of Chemistry, Elazig, Turkey

    Examination of Correlation between Histidine and Cadmium Absorption byEleagnusangustifoliaL.,VitisviniferaL. andNeriumoleanderL. Using HPLC-MS and ICP-MS

    Sukran Akkus Ozen, Mehmet Yaman*

    Firat University, Faculty of Science, Department of Chemistry, Elazig, Turkey

    In this study, HPLC-MS and ICP-MS methods wereused for the determination of histidine and cadmiuminEleagnusangustifoliaL.,VitisviniferaL. andNeriumoleanderL. leaves taken from industrial area including Gaziantep and Bursa cities. To histidine determination by HPLC-MS, flow rate of mobile phase, fragmentor potential, injection volume and column temperature were optimized as 0.2 mL·min-1, 70 V, 15 μL and 20 ℃, respectively. For extraction of histidine from plants, distilled water was used by applying on 90 ℃ and 30 min. The concentrations (as mg·kg-1) of histidine were found to be in range of 8~22 forEleagnusangustifoliaL., 10~33 forVitisviniferaL. and 6~11 forNeriumoleanderL. The concentrations of cadmium were found to be in ranges of 6~21 μg·kg-1forVitisviniferaL. 15~110 μg·kg-1forEleagnusangustifoliaL. and 63~218 μg·kg-1forNeriumoleanderL.

    Histidine; Cadmium; Hyperaccumulator plants; ICP-MS; HPLC-MS

    e-mail: sakkus23@gmail.com *Corresponding author e-mail: ijpacmy@gmail.com; myaman@firat.edu.tr

    Introduction

    Heavy metals can be harmful to humans and animals and tend to bioaccumulate through the food chain[1-2]. Cadmiumhas common industrial use as well as its carcinogenic effect, and thus, it has become a serious pollutant in diverse environmental settings[3-4]. Over the past two centuries, anthropogenic and industrial activities have led to high emissions of toxic metals into the environment at the more high concentrations. Because metals exposed into environment are toxic and none biodegradable unlike organical compounds, removal of excess metal ions from polluted sites is important, reasonably. So, numerous efforts have been undertaken to find methods of removing heavy metals from soil, such as chemical remediation,phytoremediation, soil washing, nano materials, remediation with bacteria, electricalforce and heat[5-7]. Chemical remediation involves the use of chemicals to clean the environment. However, this method is not universal, highly costly and may cause secondary pollution[8]. Phytoextraction (in other words, phytoremediation) is the removal of metals from soil using hyperaccumulatorplants. Phytoextraction or phytoremediation is both 1000-fold cheaper than conventional remediation methods and environmentally friendly technology[8-9]. The use of hyperaccumulator plants opens a new branch of phytoremediation technology that is an ecofriendly and scientific approach to remove, extract, or inactivate metal ions in the soil using plants[5,10-12]. In the phytoremediation, the basic concept is as follow: Growing and harvesting of plants on the polluted soils, burning of plants and smelting or storing of the ash. Hyperaccumulators often exhibit higher metal concentrations in their tissues than are present in the soil and can tolerate much higher metal concentrations before showing symptoms of toxicity[12]. Most hyperaccumulators absorb selectively particular metals but the mechanisms of selection are not understood at the molecular level[13]. Plant-ligands play a role in the sequestration of metals from soils, transport to the above-ground tissue and finally storage. Nitrogen-donor ligands and especially free amino acids are assumed to play a role in hyperaccumulators. Heavy metals are intracellularly chelated through the synthesis of amino acids, organic acids, GSH, or HM-binding ligands such as metallothioneins (MTs), phytochelatins (PCs), compartmentation within vacuoles. Some metals can inactivate enzymes by binding to cysteine residues. Among free amino acids, histidine (His) is considered to be the most important formetal hyperaccumulation[10-14]. Histidine can act as a tridentate ligand via its carboxylato, amine and imadazole functions. While there are many metal-binding biomolecules, this study focuses only on histidine ligand that has been reported to play a role in sequestering, transporting or storing the accumulated metal.As a result, the discovery of new hyperaccumulator plants has high importance.In terms of toxicity of elements, most concern to date has been centered on Cd, Pb and Ni in plants[15-20].

    The aim of this study is,firstly, to examine the correlation between Cd and histidine in plants leaves includingEleagnusangustifoliaL.,VitisviniferaL. andNeriumoleanderL. Secondly, to consider the Cd-pollution extent in two highly industrialized cities in Turkey using three plant species. For this purpose, HPLC-MS and ICP-MS methods were optimized for the determination of histidine and Cd in the leaves samples Representative locations in the surrounding area of the organized industrial zone including lead battery production, cement factory and other similar industrial factories placed around Gaziantep and Bursa cities were chosen for this study.

    1 Experimental

    1.1 Apparatus and Reagents

    The concentrations of Cdwere determinedusing a Perkin-Elmer SCIEX ELAN9000 inductively coupled plasma mass spectrometer (ICPMS) (PerkinElmer SCIEX, Concord, ON, Canada). The operation conditions for ICP-MS were taken from the manual Handbook. A microwave digestion system (CEM MARSXpress) was used to prepare the samples for the analysis. Doubly distilled water, obtained with a water purification system (Millipore Direct-Q, Millipore Corporation, Bedford, MA, USA) was used for all samples and standard preparations. An Agilent 1200 HPLC-MS system was used for the quantification of histidine. The instrument included an autosampler, a binary pump, a temperature controlled column oven, and an Agilent 6110 MS detector that was operated in selected ion monitoring (SIM) and scan mode equipped with positive ion electrospray ionization. The HPLC effluent entered the mass spectrometer through an electrospray capillary set at 3 000 V. Nitrogen was used as the drying and vaporizer gas at 300 and 500 ℃. The drying gas flow was 11.0 L·min-1(Table 1). A Zorbax Eclipse XDB-C18 (4.6 mm, 150 mm, 5 μm) was used as the column. Unless stated otherwise, all chemicals used throughout the study were of high-purity reagent grade. Concentrated nitric acid (65%, Merck) was used in the digestion procedure. The cadmium stock solution (1 000 mg·L-1) was prepared from its nitrate salt (Merck, Darmstadt, Germany). All chemicals used were of analytical reagent grade.

    1.2 Sampling and sample preparation

    EleagnusangustifoliaL.,VitisviniferaL. andNeriumoleanderL. leaves were collected around Gaziantep and Bursa citiesof 1 500 000 and 2 000 000 populations in SE and NWTurkey, respectively, that arethe important industrial centers of Turkey (Figure 1). The samples for the control area were taken away from the urban and industrial areas. The sampling was conducted in the summer of 2011. The healthy looking leaves (about 100 g fresh plant) were taken from per site. The plants were transferred to the laboratory in plastic bags, washed with tap water, and then, rinsed with distilled water. After drying procedure at 70 ℃, the samples were ground with agate mortar and then homogenously mixed. The locations of plant sampling were shown at Figure 1.

    Fig.1 Map of sampling locations

    To digestion of plant leaves, a 0.3 g portion of the sample was transferred into Teflon and concentrated nitric acid added. Then, the mixtures were irradiated for 30 min as described in manual handbook of microwave oven. The solutions were heated up near to dryness. After addition 20 mL of 0.1 mol·L-1nitric acid, the solution was filtrated, if necessary, and the clear solution was analyzed by ICP-MS. Each of samples was analyzed in triplicate and mean values were taken as result.

    Table 1 Operating conditions for histidine and Cd determination by HPLC-MS and ICP-MS

    A HPLC-MS method was optimized for the determination of histidine inEleagnusangustifoliaL.,VitisviniferaL. andNeriumoleanderL. leaves. For this purpose, flow rate of mobile phase, fragmentorpotential, injection volume and column temperature were examined and optimized as 0.2 mL·min-1, 70 V, 15 μL and 20 ℃, respectively. To extract histidine from plant leaves, 0.1 M HCl and distilled water wereexamined by applying different temperatures between 20~90 ℃ and stirring times of 15~60 minutes as seen in Figure 2. It was found that distilled water, the temperature of 90 ℃ and stirring time of 30 min are the optimum conditions. Further, different volumes of distilled water were examined to determine optimum amount of extractant using the same amount of the same plant species. It was found that 30 mL of distilled water is sufficient to maximum signal of histidine. In the derivatization step, direct distilled water (underivatization), fenilisothiosiyanat anddabsyl chloride were examined by using the scheme in Figure 2, to determine the best derivatization reagent.

    2 Results and discussion

    Analytical performance: There are three methods to check the reliability of the results obtained. These are (1) the usage of Standard Reference Material (SRM), (2) comparison of the results with those obtained by independent method for the same samples, and (3) the recovery test. In this study, the first method was used to metal determinations and the third method was used for HPLC-MS measurements. The obtained concentration ofCd in SRM, “Bush branches and leaves-Trace elements (NCS DC73348)”, were found to be 135 μg·kg-1that the certified value is 140 μg·kg-1. Becausethe recovery of 96% was achieved, Cd determination in this study is considered as the accurate. In the HPLC measurements for histidine, the recoveries, at least, 95% from the plant leaves fortified (3 mg·kg-1) with histidine were obtained to test the accuracy. The effects of contaminationwere eliminated by subtracting the obtained valuesfrom the blank.

    Fig.2 Steps in analytical scheme for histidine determination

    From the Table 2and Figures 3—5, the concentrations of Cd were found to be in ranges of 15~110 μg·kg-1forEleagnusangustifoliaL., 6~21 μg·kg-1forVitisviniferaL. and 63~218 μg·kg-1forNeriumoleanderL. The concentrations of histidine were found to be in range of 10~33 mg·kg-1forVitisviniferaL. 8~23 mg·kg-1forAngustifoliaL. and 6~11 mg·kg-1forNeriumoleanderL. except control group. Normal concentrations of Cd in plants wereconsidered in ranges of 0.01~1.0 mg·kg-1for plants[21-22]. Kabata-Pendias considered a much higher value of 10 mg·kg-1asan excessive or toxic level of this elementfor plants[21]. Hyperaccumulation has been recognized as an extreme physiological response in heavy metal tolerance. In other words, hyperaccumulator plants can tolerate much higher metal concentrations without symptoms of toxicity[12, 23-25]. However, the physiological processes involved in hyperaccumulation are not well understood. Plants must be able to store the metal ions in nonlabile complexes to eliminate toxic effects. The most likely areas for storage are the cellwall, the cytosol and the vacuole. A number of steps are required for metal ions to reach the storage tissues: mobilization and uptake from soil, compartmentation and sequestration within roots, transfer to the xylem for transport, distribution between metal sinks in abovegroundtissue and sequestration and storage in leaf cells[26]. Each stage could affect metal accumulation.

    The hyperaccumulator may be detoxifying the metal in the leaves via strong binding ligands. So, the ligands including histidine (His), cysteine and phytate may play a part in sequestration within isolated compartments[10-14]. Kaya et al. found cadmium concentrations inVitisviniferaL.,EleagnusangustifoliaL. andNeriumoleanderL. leaves grown area around lead battery factory, up to 70 (in range of 7~70), 327 (in range of 106~327) and 172 (in range of 66~172) μg·kg-1, respectively[15-20]. They obtained those results on 2006—2007. Four years later, the obtained values in this study for the same area were given in Table 2 and Figures 3—5.

    Table 2 Cd and Histidine concentrations in the studied samples, μg·kg-1

    It was reported that metal concentrations in plants change depending on the plant species, polluted source, and the wind direction[27]. Onianwa and Fakayodedetermined trace metal levels in topsoil and vegetation (the plant Cromonolinaodorata, a composite) taken from the vicinity of a lead-battery manufacturing plant located in Ibadan-the largest city in Nigeria[27]. They found that Cd concentration (as mg·kg-1) in plants grown in polluted area was 1.5, while Cd concentration in plant samples taken from the control site was 0.4 mg·kg-1[27]. The high metal uptake may be attributed to high-lyefficient intracellular compartmentalization. Hyperaccumulation in a number of speciesappeared to be the result of airborne contamination of the leaf surface,rather than root uptake and translocation. Boyd hasreviewed interactions between heavy metals pollutants and chemical ecology[28]. It was concluded that communities and ecosystems are difficult tostudy due to their complexity, but a complete understanding of metal pollutanteffects cannot be accomplished without such studies. Hopefully, amore complete understanding will enable us to limit harmful effects of anthropogenic heavy metal pollutants on Earth’s biota. Due to high toxic and carcinogenic effects of metals including cadmium for human and animal, numerous studies were carried out to determine its concentration in environment, food and biological matrices[29-33]. The correlation coefficient between Cd and histidine concentrations were found to ber=0.67 forEleagnusangustifoliaL.,r=0.09 forVitisviniferaL. andr=0.29 forNeriumoleanderL. Hence, insignificant linear correlation forEleagnusangustifoliaL.(r=0.67) were seen.

    Fig.3 Comparison of Cd and histidine levels inE.angustifoliaL. depending on sampling location

    Fig.4 Comparison of Cd and histidine levels inV.viniferaL. depending on sampling location

    Fig.5 Comparison of Cd and histidine levels inN.oleanderL. depending on sampling location

    3 Conclusion

    Cadmium concentrations up to 218 μg·kg-1(in leaves ofN.oleanderL. ) were found in leaves of the studied matrices includingNeriumoleanderL.,VitisviniferaL. andEleagnusangustifoliaL. taken from organized industrial zonein Gaziantep city. The lowest Cd concentration in this plant species was found to be 61.0 μg·kg-1. So, the rate of highest to lowest Cd concentration (Table 2) forN.oleanderL. is 3.6-fold, and this reveal, clearly, that thisplant leaves has a potential as biomonitor and/or hyperaccummulator for Cd.Taking into consideration between Cd and histidine values from Table 2, insignificant linear correlation forEleagnusangustifoliaL. (r=0.67) were seen.

    [1] Mertz W. Academic Press, Newyok. Fifth Ed, 1987.

    [2] Yaman M. Current Medical Chem., 2006, 13(21): 2513.

    [3] Rani A, Kumar A, Lal A, et al. International Journal of Environmental Health Research, 2014, 24(4): 378.

    [4] Huff,et al. Int. J. Occup. Environ. Health., 2007, 13(2): 202.

    [5] Mulligan C N,et al. Engineering Geology, 2001, 60: 193.

    [6] Gunawardana B,et al. Plant Soil, 2010, 329: 283.

    [7] Pilon-Smils E, Pilau M. Critical Reviews in Plant Sciences, 2002, 21: 439.

    [8] Shah K, Nongkynrih J M. Biologia Plantarum, 2007, 51(4): 618.

    [9] Kr?mer U, Chardonnens A N. Appl. Microbiol. Biotechnol.,2001, 55: 661.

    [10] Haydon M J, Cobbett C S. New Phytol., 2007, 174(3): 499.

    [11] Callahan D L, Baker A J M, Kolev S D, et al. Journal of Biological Inorganic Chemistry, 2006, 11: 2.

    [12] Ugulu I. Applied Spectroscopy Reviews, 2015, 50: 113.

    [13] Hall J L. Journal of Experimental Botany, 2002, 366: 1.

    [14] Kr?mer U, et al. Nature, 1996, 379: 635.

    [15] Kaya G, Okumus N, Yaman M. Fresenius Environ. Bull., 2010, 19(4):669.

    [16] Kaya G, Yaman M. Trace Elements and Electrolytes, 2008, 25(3): 156.

    [17] Kaya G, Yaman M. Talanta, 2008, 75: 1127.

    [18] Kaya G, Ozcan C, Yaman M. Bull. Environ. Contam Toxicol, 2010, 84(2): 191.

    [19] Kaya G, Yaman M. Spectrosc. Spectral Anal., 2012, 32(1): 229.

    [20] Kaya G, Yaman M. Instrumentation Science & Technology, 2012, 40(1): 61.

    [21] Kabata-Pendias A. Trace Elements in Soils and Plants, Fourth Edition, Taylor and Francis Group, 2011.

    [22] Dong J, Mao W H, Zhang G P,et al. Plant Soil and Environment, 2007, 53(5): 193.

    [23] Bargagli R. Plants as Biomonitors, in: Trace Elements in Terrestrial Plants: an Ecophysiological Approach to Biomonitoring and Biorecovery. Springer, Berlin Heideberg New York, 1998.

    [24] Mulgrew A, Willeams P. Biomononitoring of Air Quality Using Plants, Air Hygiene Report no:10 Berlin, Germany WHO CC. 165, 2000.

    [25] Mertens J, et al. Environmental Pollution, 2005, 138: 1.

    [26] Clemens S, Palmgren M G, Kramer U. Trends Plant Sci., 2002, 7: 309.

    [27] Onianwa P C, Fakayode S O. Environmental Geochemistry and Health, 2000, 22: 211.

    [28] Boyd R S. J. Chem. Ecol., 2010, 36(1): 46.

    [29] Yaman M, Kaya G, Yekeler H. World J. Gastroentor., 2007, 13(4): 612.

    [30] Er C, Senkal B F, Yaman M. Food Chem., 2013, 137(1-4): 55.

    [31] Ozen O A, Songur A, Sarsilmaz M, et al. Trace Elem. Med. Biol., 2003, 17(3): 207.

    [32] Yaman M, Cokol N. At. Spectrosc., 2004, 25(4): 185.

    [33] Yaman M, Bakirdere S. Mikrochim. Acta, 2003, 141: 47.

    O657.3

    A

    2015-08-20; accepted: 2015-10-09

    This study was financially supported by the Scientific Investigate Projects of Firat University, Turkey (Project Number: FF.11.19)

    10.3964/j.issn.1000-0593(2016)02-0588-05

    毛片一级片免费看久久久久| 亚洲精品影视一区二区三区av| 久久久午夜欧美精品| 久久久午夜欧美精品| 免费观看av网站的网址| 国产精品久久久久久久电影| 三级国产精品欧美在线观看| 久久久久久久亚洲中文字幕| 亚洲人与动物交配视频| 亚洲国产色片| 18禁裸乳无遮挡免费网站照片| 久久精品久久精品一区二区三区| 国产精品三级大全| 国产成人午夜福利电影在线观看| 最近的中文字幕免费完整| 免费观看在线日韩| 国产高清三级在线| 99久久人妻综合| 直男gayav资源| 可以在线观看毛片的网站| 欧美日本视频| 蜜桃久久精品国产亚洲av| 久久久久久久国产电影| 日本三级黄在线观看| 国产探花在线观看一区二区| 国产淫语在线视频| 国产成人精品一,二区| 久久久精品免费免费高清| 久久精品国产鲁丝片午夜精品| 99久久人妻综合| 老女人水多毛片| 国产欧美日韩精品一区二区| 国产精品人妻久久久久久| 亚洲,欧美,日韩| 欧美区成人在线视频| 网址你懂的国产日韩在线| 在线天堂最新版资源| 午夜福利高清视频| 黄片wwwwww| 国产成人免费观看mmmm| 国产伦精品一区二区三区视频9| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲综合精品二区| 在线观看国产h片| 日本猛色少妇xxxxx猛交久久| 久久午夜福利片| 国产一级毛片在线| 热re99久久精品国产66热6| 99热这里只有精品一区| 欧美高清成人免费视频www| 熟女电影av网| 久久久亚洲精品成人影院| 视频区图区小说| 国产黄a三级三级三级人| 国产精品精品国产色婷婷| 久久韩国三级中文字幕| 久久久色成人| 亚洲精品第二区| 好男人在线观看高清免费视频| 春色校园在线视频观看| 干丝袜人妻中文字幕| 亚洲精品国产av蜜桃| 99久久精品一区二区三区| www.av在线官网国产| 寂寞人妻少妇视频99o| 久久久久久久久久久免费av| 亚洲欧美精品自产自拍| 91aial.com中文字幕在线观看| 免费播放大片免费观看视频在线观看| 亚洲美女视频黄频| 精品久久国产蜜桃| 中国三级夫妇交换| 美女xxoo啪啪120秒动态图| 美女内射精品一级片tv| 又爽又黄无遮挡网站| 中文在线观看免费www的网站| 久久人人爽av亚洲精品天堂 | 成人黄色视频免费在线看| 狂野欧美激情性xxxx在线观看| 亚洲精品国产av成人精品| 极品教师在线视频| 亚洲av成人精品一区久久| 看免费成人av毛片| 亚洲精品日韩在线中文字幕| 少妇丰满av| 超碰av人人做人人爽久久| 中文乱码字字幕精品一区二区三区| 又爽又黄无遮挡网站| 亚洲人成网站在线观看播放| 亚洲欧美一区二区三区黑人 | 国产免费一区二区三区四区乱码| 在线观看免费高清a一片| 99久国产av精品国产电影| 天堂俺去俺来也www色官网| 免费黄网站久久成人精品| 国产成人午夜福利电影在线观看| 欧美日韩综合久久久久久| 亚洲欧美精品自产自拍| 国产伦理片在线播放av一区| 老司机影院毛片| 91久久精品电影网| 国产永久视频网站| 日本色播在线视频| 色吧在线观看| 我要看日韩黄色一级片| 王馨瑶露胸无遮挡在线观看| 五月天丁香电影| 久久久久久久大尺度免费视频| 午夜精品一区二区三区免费看| 亚洲在线观看片| 日韩欧美精品免费久久| 熟女人妻精品中文字幕| 精品人妻熟女av久视频| 亚洲精品456在线播放app| 丝袜喷水一区| 国产在线男女| 国产男女超爽视频在线观看| 欧美xxⅹ黑人| 亚洲av日韩在线播放| 亚洲激情五月婷婷啪啪| 日韩制服骚丝袜av| 日韩强制内射视频| 女人十人毛片免费观看3o分钟| 亚洲国产色片| 精品99又大又爽又粗少妇毛片| 免费看日本二区| 最近手机中文字幕大全| 亚洲成人一二三区av| 成年免费大片在线观看| 2018国产大陆天天弄谢| 国产高清国产精品国产三级 | 在线亚洲精品国产二区图片欧美 | 我的女老师完整版在线观看| 国产男人的电影天堂91| 久久久久久久久大av| 国产一区二区亚洲精品在线观看| 欧美成人一区二区免费高清观看| 最近的中文字幕免费完整| 国产亚洲av片在线观看秒播厂| 亚洲,欧美,日韩| 人妻夜夜爽99麻豆av| 久久久久精品久久久久真实原创| 麻豆国产97在线/欧美| 久久6这里有精品| 国产老妇伦熟女老妇高清| 欧美成人精品欧美一级黄| 国产免费又黄又爽又色| 亚洲在久久综合| 汤姆久久久久久久影院中文字幕| 亚洲精品色激情综合| 在线观看美女被高潮喷水网站| 欧美成人一区二区免费高清观看| 久久久色成人| 久久精品国产自在天天线| 欧美日韩在线观看h| 草草在线视频免费看| 一区二区av电影网| 有码 亚洲区| 久久97久久精品| 久久韩国三级中文字幕| 国产精品99久久99久久久不卡 | 免费大片黄手机在线观看| 精品熟女少妇av免费看| 国产极品天堂在线| 国产av不卡久久| 18禁裸乳无遮挡免费网站照片| 欧美3d第一页| 国产伦理片在线播放av一区| 高清午夜精品一区二区三区| 精品久久久久久久久亚洲| 亚洲av福利一区| 卡戴珊不雅视频在线播放| 欧美成人一区二区免费高清观看| 极品教师在线视频| 欧美潮喷喷水| 精品国产一区二区三区久久久樱花 | 久久久亚洲精品成人影院| 国产女主播在线喷水免费视频网站| 男女边摸边吃奶| 亚洲国产av新网站| 九色成人免费人妻av| 久久精品久久精品一区二区三区| 国产 精品1| 国产91av在线免费观看| av黄色大香蕉| 一区二区三区免费毛片| 丰满少妇做爰视频| 久久久久国产精品人妻一区二区| 国产 一区 欧美 日韩| 可以在线观看毛片的网站| 亚洲成色77777| 蜜臀久久99精品久久宅男| 18禁裸乳无遮挡动漫免费视频 | 亚洲aⅴ乱码一区二区在线播放| 真实男女啪啪啪动态图| eeuss影院久久| 色婷婷久久久亚洲欧美| 免费大片黄手机在线观看| 爱豆传媒免费全集在线观看| 2021少妇久久久久久久久久久| 国产乱来视频区| 亚洲av免费在线观看| 国产综合精华液| 嫩草影院入口| 亚洲四区av| 久热久热在线精品观看| 免费看不卡的av| 寂寞人妻少妇视频99o| 亚洲欧美成人综合另类久久久| 国产黄a三级三级三级人| 黄色怎么调成土黄色| 亚洲国产色片| av在线app专区| 日日摸夜夜添夜夜添av毛片| 美女脱内裤让男人舔精品视频| freevideosex欧美| av免费观看日本| 精品久久久久久久久亚洲| 成人特级av手机在线观看| 国产片特级美女逼逼视频| 蜜桃亚洲精品一区二区三区| 国产成人a区在线观看| 欧美丝袜亚洲另类| 久久精品久久久久久久性| 搡老乐熟女国产| 日日摸夜夜添夜夜爱| 下体分泌物呈黄色| 欧美丝袜亚洲另类| 国产日韩欧美亚洲二区| 在线观看一区二区三区激情| 国产日韩欧美在线精品| 亚洲人成网站在线观看播放| 白带黄色成豆腐渣| 黄片无遮挡物在线观看| 精品久久国产蜜桃| 热99国产精品久久久久久7| 国产乱人偷精品视频| 日韩,欧美,国产一区二区三区| 神马国产精品三级电影在线观看| 久久人人爽人人爽人人片va| 99久久精品国产国产毛片| 欧美高清性xxxxhd video| 免费看不卡的av| 麻豆成人av视频| 国产午夜福利久久久久久| 亚洲精品成人久久久久久| 久久影院123| 亚洲欧美中文字幕日韩二区| 久久精品国产亚洲av天美| 亚洲欧美日韩东京热| 只有这里有精品99| 亚洲欧洲日产国产| 免费大片18禁| 丰满少妇做爰视频| 亚洲精品第二区| 亚洲国产精品国产精品| 少妇高潮的动态图| 寂寞人妻少妇视频99o| av国产免费在线观看| 亚洲内射少妇av| 亚洲国产最新在线播放| 三级国产精品片| 国产在线男女| 亚洲精品aⅴ在线观看| 亚洲av福利一区| 亚洲精品日本国产第一区| 国产探花在线观看一区二区| 国产精品一区二区性色av| 精品久久国产蜜桃| 高清欧美精品videossex| 99久久精品一区二区三区| 久久久午夜欧美精品| 97在线视频观看| 一本一本综合久久| 亚洲精品日本国产第一区| 又爽又黄无遮挡网站| 欧美极品一区二区三区四区| 中文字幕人妻熟人妻熟丝袜美| 美女视频免费永久观看网站| 99热国产这里只有精品6| 国产黄色免费在线视频| 亚洲怡红院男人天堂| 青春草亚洲视频在线观看| 午夜老司机福利剧场| 国产人妻一区二区三区在| 在线亚洲精品国产二区图片欧美 | 99热网站在线观看| 欧美少妇被猛烈插入视频| 国产成人福利小说| 亚洲av福利一区| 一级a做视频免费观看| 丰满乱子伦码专区| av在线播放精品| 久久久久九九精品影院| 在线免费观看不下载黄p国产| 人妻少妇偷人精品九色| 国产黄色视频一区二区在线观看| 香蕉精品网在线| 高清视频免费观看一区二区| 国产精品福利在线免费观看| 欧美zozozo另类| 在线亚洲精品国产二区图片欧美 | 亚洲四区av| 国产免费又黄又爽又色| 哪个播放器可以免费观看大片| 97精品久久久久久久久久精品| 插逼视频在线观看| 18禁在线无遮挡免费观看视频| 国产成人一区二区在线| 精品一区在线观看国产| 人妻 亚洲 视频| 亚洲精品乱久久久久久| 国产高清三级在线| 国产精品一及| 狠狠精品人妻久久久久久综合| freevideosex欧美| 狂野欧美白嫩少妇大欣赏| 欧美三级亚洲精品| 日韩免费高清中文字幕av| 伦理电影大哥的女人| 午夜免费鲁丝| 在线播放无遮挡| 国产伦精品一区二区三区视频9| 亚洲综合精品二区| 在线亚洲精品国产二区图片欧美 | a级毛片免费高清观看在线播放| 免费黄色在线免费观看| 日韩成人伦理影院| 精品国产三级普通话版| 最近手机中文字幕大全| 赤兔流量卡办理| eeuss影院久久| 国产精品国产三级国产专区5o| 两个人的视频大全免费| 免费观看的影片在线观看| 久久女婷五月综合色啪小说 | 赤兔流量卡办理| 777米奇影视久久| 新久久久久国产一级毛片| 五月伊人婷婷丁香| 免费看日本二区| av在线观看视频网站免费| 熟女人妻精品中文字幕| 精品人妻偷拍中文字幕| 黄色视频在线播放观看不卡| 1000部很黄的大片| 国产人妻一区二区三区在| 亚洲欧美一区二区三区黑人 | 免费大片18禁| 中国美白少妇内射xxxbb| 激情五月婷婷亚洲| 人人妻人人看人人澡| 日本猛色少妇xxxxx猛交久久| 日本一本二区三区精品| 九九久久精品国产亚洲av麻豆| 嘟嘟电影网在线观看| 中文欧美无线码| 免费黄色在线免费观看| 午夜日本视频在线| 麻豆乱淫一区二区| 亚洲精品久久久久久婷婷小说| 国产美女午夜福利| 亚洲一区二区三区欧美精品 | 欧美bdsm另类| 免费黄网站久久成人精品| eeuss影院久久| 嘟嘟电影网在线观看| 国产精品无大码| 亚洲精品成人av观看孕妇| 亚洲激情五月婷婷啪啪| 免费在线观看成人毛片| 久久久午夜欧美精品| 国产美女午夜福利| 2022亚洲国产成人精品| 性色av一级| 久久99精品国语久久久| 欧美3d第一页| 婷婷色综合大香蕉| 丝瓜视频免费看黄片| 又大又黄又爽视频免费| 别揉我奶头 嗯啊视频| 国产伦精品一区二区三区视频9| 国产91av在线免费观看| 亚洲国产av新网站| 国产亚洲av片在线观看秒播厂| 亚洲综合色惰| 国产色爽女视频免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产爱豆传媒在线观看| 午夜激情福利司机影院| freevideosex欧美| 国产精品久久久久久精品古装| 国产精品福利在线免费观看| 嘟嘟电影网在线观看| 日本午夜av视频| 婷婷色av中文字幕| 日韩中字成人| 日日啪夜夜爽| 日韩三级伦理在线观看| 精品视频人人做人人爽| 久久人人爽人人爽人人片va| 国产午夜精品一二区理论片| 深爱激情五月婷婷| 精品少妇黑人巨大在线播放| 亚洲,一卡二卡三卡| 成人高潮视频无遮挡免费网站| 久久精品久久精品一区二区三区| 日本熟妇午夜| 国国产精品蜜臀av免费| 国产高清三级在线| 国内揄拍国产精品人妻在线| 国产精品一二三区在线看| 免费观看在线日韩| 亚洲婷婷狠狠爱综合网| 国产毛片在线视频| 精品久久久久久久久av| 伊人久久国产一区二区| 亚洲精品日韩av片在线观看| 国产美女午夜福利| 欧美xxⅹ黑人| 精品久久久精品久久久| 不卡视频在线观看欧美| 男女国产视频网站| 免费少妇av软件| 在线观看一区二区三区| 亚洲精品第二区| 一级毛片黄色毛片免费观看视频| 亚洲,一卡二卡三卡| 看黄色毛片网站| 国产成人91sexporn| 国产精品久久久久久精品古装| 成人毛片60女人毛片免费| 嫩草影院入口| 亚洲国产日韩一区二区| 深爱激情五月婷婷| 国产又色又爽无遮挡免| 狂野欧美激情性xxxx在线观看| 欧美激情国产日韩精品一区| 嫩草影院入口| 精品久久久久久久末码| 草草在线视频免费看| 国产精品蜜桃在线观看| 成人黄色视频免费在线看| 蜜桃久久精品国产亚洲av| 免费播放大片免费观看视频在线观看| 精品人妻一区二区三区麻豆| 亚洲内射少妇av| 亚洲国产精品成人久久小说| 亚洲精品,欧美精品| 18禁动态无遮挡网站| 九九久久精品国产亚洲av麻豆| 久久精品国产亚洲av天美| 亚洲av成人精品一区久久| 蜜臀久久99精品久久宅男| 美女高潮的动态| 五月伊人婷婷丁香| 99热这里只有是精品在线观看| 99久久精品国产国产毛片| 亚洲一级一片aⅴ在线观看| 性色avwww在线观看| 18+在线观看网站| 在线观看一区二区三区| 亚洲人与动物交配视频| 黄色日韩在线| 搡老乐熟女国产| 国产亚洲av片在线观看秒播厂| 免费观看在线日韩| 日韩欧美精品v在线| 一本一本综合久久| 大话2 男鬼变身卡| 国模一区二区三区四区视频| 不卡视频在线观看欧美| 国产成人91sexporn| 国产精品久久久久久精品古装| 亚洲av中文av极速乱| 亚洲四区av| 在线天堂最新版资源| videossex国产| www.av在线官网国产| 日韩精品有码人妻一区| 国产精品99久久99久久久不卡 | 在线 av 中文字幕| 欧美最新免费一区二区三区| 综合色av麻豆| 精品视频人人做人人爽| 国产男人的电影天堂91| 别揉我奶头 嗯啊视频| 日韩一本色道免费dvd| 亚洲高清免费不卡视频| 精品酒店卫生间| 女人十人毛片免费观看3o分钟| 欧美老熟妇乱子伦牲交| 久久久精品94久久精品| 精品一区二区三卡| 高清日韩中文字幕在线| 在线亚洲精品国产二区图片欧美 | 亚洲精品日韩av片在线观看| 亚洲人与动物交配视频| av.在线天堂| 亚洲精品影视一区二区三区av| 亚洲性久久影院| 国产视频首页在线观看| 中文资源天堂在线| 国产一区二区亚洲精品在线观看| 晚上一个人看的免费电影| 99久久精品热视频| 成人一区二区视频在线观看| 69人妻影院| 在线天堂最新版资源| 97精品久久久久久久久久精品| 3wmmmm亚洲av在线观看| 一级爰片在线观看| av在线天堂中文字幕| 老司机影院毛片| 简卡轻食公司| 美女主播在线视频| 免费少妇av软件| 偷拍熟女少妇极品色| 三级男女做爰猛烈吃奶摸视频| 熟女人妻精品中文字幕| 最新中文字幕久久久久| 久久精品熟女亚洲av麻豆精品| 欧美日韩视频高清一区二区三区二| 色综合色国产| 国产精品久久久久久精品电影小说 | 网址你懂的国产日韩在线| 亚洲精品日本国产第一区| 欧美日韩在线观看h| av黄色大香蕉| 久久影院123| 亚洲成人av在线免费| 97精品久久久久久久久久精品| 亚洲欧洲国产日韩| 大又大粗又爽又黄少妇毛片口| 超碰av人人做人人爽久久| 国产av码专区亚洲av| 最近的中文字幕免费完整| 最新中文字幕久久久久| 秋霞伦理黄片| av卡一久久| 日韩欧美 国产精品| 一级av片app| 国产一区亚洲一区在线观看| 久久精品国产亚洲av涩爱| 日本一二三区视频观看| 国产精品偷伦视频观看了| 精品亚洲乱码少妇综合久久| 搡老乐熟女国产| 在线a可以看的网站| 最近2019中文字幕mv第一页| 亚洲美女视频黄频| 看黄色毛片网站| 大片免费播放器 马上看| 亚洲激情五月婷婷啪啪| 久久久久久久久久久丰满| 国产高清国产精品国产三级 | 男女啪啪激烈高潮av片| 亚洲欧美一区二区三区国产| 国产爱豆传媒在线观看| 韩国av在线不卡| 国产精品成人在线| 极品教师在线视频| 99热国产这里只有精品6| 精品亚洲乱码少妇综合久久| 国产一区亚洲一区在线观看| 午夜视频国产福利| 欧美性感艳星| 99久久九九国产精品国产免费| 91精品伊人久久大香线蕉| 大陆偷拍与自拍| 日本一二三区视频观看| 男的添女的下面高潮视频| 日本欧美国产在线视频| 91午夜精品亚洲一区二区三区| 99热全是精品| 亚洲自拍偷在线| 中文字幕制服av| 草草在线视频免费看| 国产成人精品一,二区| 一级片'在线观看视频| 久久这里有精品视频免费| 欧美国产精品一级二级三级 | 97超视频在线观看视频| 真实男女啪啪啪动态图| 18禁裸乳无遮挡动漫免费视频 | 五月伊人婷婷丁香| 亚洲最大成人av| 亚洲无线观看免费| 免费大片18禁| 亚洲经典国产精华液单| 亚洲四区av| 久久久午夜欧美精品| 极品教师在线视频| 日韩不卡一区二区三区视频在线| 国产综合懂色| 久久人人爽人人爽人人片va| 小蜜桃在线观看免费完整版高清| 欧美国产精品一级二级三级 | 免费人成在线观看视频色| 丰满乱子伦码专区| 日韩国内少妇激情av| 亚洲精品影视一区二区三区av| 免费观看在线日韩| 午夜激情福利司机影院| av免费观看日本| 女的被弄到高潮叫床怎么办| 3wmmmm亚洲av在线观看| 精品人妻一区二区三区麻豆| 丰满人妻一区二区三区视频av| 乱码一卡2卡4卡精品| 一边亲一边摸免费视频| 一级毛片aaaaaa免费看小| 国产精品精品国产色婷婷| 亚洲国产日韩一区二区| 日韩欧美精品免费久久|