劉思思
(長沙理工大學(xué) 數(shù)學(xué)與計算科學(xué)學(xué)院,湖南 長沙 410004)
?
分枝過程中的幾個極限定理
劉思思
(長沙理工大學(xué) 數(shù)學(xué)與計算科學(xué)學(xué)院,湖南 長沙 410004)
摘要:研究了上臨界分枝過程在產(chǎn)生后代機制指數(shù)距小于無窮的條件下,一個中偏差率的上界.另外還得到了在隨機權(quán)重滿足一定條件下,Mandelbrot鞅的大偏差以及隨機環(huán)境中分枝過程的一個大偏差結(jié)果.
關(guān)鍵詞:分枝過程;Mandelbrot鞅;大偏差;隨機環(huán)境中分枝過程
賦予Galton-watson樹上每個點v一個Av非負權(quán)重,權(quán)重之間為i.i.d.且與分枝過程相獨立.定義ui為u的第i代祖先,若E(∑|u|=1Au)=1,則Yn=∑|u|=nAu1Au1u2…Au1u2…un為一非負鞅且a.s.收斂到隨機變量Z.隨機變量Z的性質(zhì)可見文獻[1],其中分枝過程情形見文獻[2-8],大偏差的性質(zhì)見文獻[9-15].
1主要引理及證明
引理1[16]若存在θ>0使得EeθZ1<,則存在c>0,λ>0使得:
定理1若存在θ>0使得EeθZ1<,則對0
證明由文獻[17]定理5,若存在θ>0使得EeθZ1<,則存在c1>0,θ1>0,使得:
繼而存在c>0,θ>0使得:P(mtn(W-Wn)>x)≤cexp{-θ3/2xmn[(1/2)-t]}2/3=cexp{-λx2/3(m(2-2t/3))n}.
而由于對n>2,{nZn 定理2令P(A1=1)=r>0,假設(shè): (i)權(quán)重與相關(guān)分枝過程相獨立,Ai≤1,1≤i≤N,a.s.; (ii)存在t>0滿足Eet∑|u|=1Au<; 再由引理2和文獻[1]定理2.3,若存在t>0使得Eet∑|u|=1Au<,則存在常數(shù)使得:EeθY<θ,I2n以超幾何速率退化.而: 2主要結(jié)果及證明 因此ε>0,?N使得n≥N時:-ε+Elogp1≤logP(Zn=j)/n≤ε+Elogp1 (1) (2) 聯(lián)立式(1)和式(2)可得出結(jié)論. 參考文獻: [1]QuanshengLiu.Ongeneralizedmultiplicativecascades[J].StochasticProcessesandtheirApplications,2000,86(2):263-286. [2]RLyons,RPemantle,YPeres.ConceptualproofsoflogLcriteriaformeanbehaviorofbranchingprocesses[J].AnnalsofProbability,1995,4:15-18 [3]Didier.HarmonicContinuous-TimeBranchingMoments[J].AnnalsofAppliedProbability,2007,6:56-89. [4]KBAthreya,AVidyashankar.LargeDeviationResultsforBranchingProcesses[J].StochasticProcesses,1993,8:59-98. [5]JDBiggins.AsymptoticpropertiesofsupercriticalbranchingprocessesinrandomenvironmentsGrowthratesinthebranchingrandomwalk[J].ZeitschriftFürWahrscheinlichkeitstheorieUndVerwandteGebiete,1979,5:36-89 [6]JDBiggins.Martingaleconvergenceinthebranchingrandomwalk[J].JApplProbab,1977(3):25-36. [7]DPiau.ImmortalbranchingMarkovprocesses:AveragingpropertiesandPCRapplications[J].AnnalsofProbability,2004,32(1A):337-364 [8]IGrigorescu,MKang.Immortalparticleforacatalyticbranchingprocess[J].ProbabilityTheory&RelatedFields,2012,20:45-63. [9]ODJones.Largedeviationsforsupercriticalmultitypebranchingprocesses[J].JournalofAppliedProbability,2001,4:44-56. [10] P E Ney,N Vidyashankar.Local limit theory and large deviations for supercritical Branching processes[J].Annals of Applied Probability,2004,4:189-201. [11]W Chu.Small value probabilities for supercritical multitype branching processes with immigration[J].Statistics or Probability Letters,2014,9:123-156. [12]O Garet,R Marchand.Large deviations for the chemical distance in supercritical Bernoulli percolation[J].Annals of Probability,2004,5:16-96. [13]趙博,華志強.BD不同分布的隨機變量的和的大偏差[J].湖北民族學(xué)院學(xué)報(自然科學(xué)版),2015,33(4):396-398. [14]華志強,董瑩,張春生,等.一個不同分布的負相依隨機變量的和的不等式[J].內(nèi)蒙古民族大學(xué)學(xué)報(自然科學(xué)版),2015,30(4):277-279. [15]陳洋.帶有重復(fù)分布的寬相依隨機變量的隨機加權(quán)和的精致大偏差[J].蘇州科技學(xué)院學(xué)報(自然科學(xué)版),2013,30(4):8-14. [16]KRISHNA B,Athreya,PETER E.Ney Branching Processes[M].Die Grundlehren der mathematischen Wissenschaften,1972. [17]ATHREVA K B.Large Deviation Rates for Branching Processes-I[J].Single Type Case Ann Appl Probab,1994,4(3):779-790. 責(zé)任編輯:時凌 Some Limit Theorems in Branching Processes LIU Sisi (School of Mathematics and Computer Science,Changsha University of Science and Technology,Changsha 410114,China) Abstract:This paper studies an upper bound of moderate deviation for branching process under some conditions.Otherwise,we aslo get some results of large deviation for Mandelbrot martingale and branching process in random environment. Key words:branching processes;Mandelbrot martingale;large deviation;branching process in random environment 收稿日期:2016-01-20. 基金項目:長沙市科技計劃項目(K1403043-31). 作者簡介:劉思思(1991- ),女,碩士生,主要從事分枝過程的研究. 文章編號:1008-8423(2016)01-0042-03 DOI:10.13501/j.cnki.42-1569/n.2016.03.011 中圖分類號:O155 文獻標志碼:A