• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Studies on the Interaction of Perfluorononanoic Acid with Human Serum Albumin by Multi-Spectroscopic,Molecular Docking and Isothermal Titration Calorimetry Techniques

    2016-06-05 14:58:29HUTaoyingHUANGFangZHOUShanshanLIUYing
    光譜學(xué)與光譜分析 2016年12期
    關(guān)鍵詞:全氟親和力等溫

    HU Tao-ying,HUANG Fang,ZHOU Shan-shan,LIU Ying,2*

    1. College of Life and Environmental Sciences,Minzu University of China,Beijing 100081,China 2. Beijing Engineering Research Center of Food Environment and Public Health,Minzu University of China,Beijing 100081,China

    Studies on the Interaction of Perfluorononanoic Acid with Human Serum Albumin by Multi-Spectroscopic,Molecular Docking and Isothermal Titration Calorimetry Techniques

    HU Tao-ying1,HUANG Fang1,ZHOU Shan-shan1,LIU Ying1,2*

    1. College of Life and Environmental Sciences,Minzu University of China,Beijing 100081,China 2. Beijing Engineering Research Center of Food Environment and Public Health,Minzu University of China,Beijing 100081,China

    Perfluorononanoic acid (PFNA) is the third most frequently detected in serum among all perfluoroalkyl acids (PFAAs) which is a kind of toxic emerging environmental contaminant. The influence of PFNA on the conformation and even function of human serum albumin (HSA) is still just at the beginning of research. The attempt of this paper was to completely elucidate the interaction mechanism of PFNA with HSA by means of multi-spectroscopic,molecular docking and isothermal titration calorimetry (ITC) techniques. The inner filter effect of all fluorescence data in the paper was eliminated to get accurate binding parameters. The results showed that the fluorescence of HSA was quenched by PFNA through a combined quenching procedure of dynamic and static quenching. Through site marker competitive experiments,subdomain IIA of HSA had been assigned to possess the high-affinity binding site of PFNA. Furthermore,molecular docking reconfirmed that PFNA was bound in subdomain IIA mainly through polar force,hydrophobic interaction and halogen-bond,and the calculated free energy was -26.54 kJ·mol-1which indicated that the PFNA molecule exhibited large binding affinity towards HSA. The thermodynamic characterizations of two different classes of binding sites by ITC displayed that the first class with a higher affinity constant was dominated by an enthalpic contribution due to electrostatic interactions and halogen-bond,whereas the second class with a lower affinity constant was preponderated by hydrophobic interaction. The three-dimensional fluorescence revealed that the conformation of HSA was changed and the hydrophobicity of the Trp and Tyr residues microenvironment increased after formation of PFNA-HSA complex. The alterations of the protein secondary structure were quantitatively calculated from circular dichroism (CD) spectroscopy with reduction ofα-helix content about 14.3%,β-sheet 5.3%,β-turn 3.5%,and augment in random content from 14.4% to 37.5%. Above results revealed that the binding of PFNA with HSA can alter the secondary structure of HSA,further probably affecting HSA physiological function. The results can provide insights with the binding mechanism of PFNA with HSA and salient biophysical and biochemical clues on elucidating the transport and distribution of PFNA in vivo.

    Perfluorononanoic acid; Human serum albumin; Multi-spectroscopic techniques; Molecular docking; Isothermal titration calorimetry

    Introduction

    Human serum albumin (HSA) is a well-known target because of its availability of hydrophobic pockets inside the network and flexibility to adapt its shape. Over recent decades,many researches have centered on the interaction of HSA with various small molecules,such as drugs,metals,dyes,environmental hormone,pesticide and fertilizer,etc.[1],which will alter the distribution,free concentration,metabolism and elimination of the small molecule and consequently affect the levels of its activity and toxicity in organism[2].

    Perfluorononanoic acid (PFNA,structure shown in Fig.1) is a representative of the synthetic perfluoroalkyl acids (PFAAs) which are composed of hydrophobic and hydrophilic functional group[3],and widespread used as surfactants in firefighting foams,food packaging,polymer additives and water- and stain-resistant coatings,which are one large class of the active ingredients receiving comparatively little attention but used in large amounts throughout the world[4]. Numerous reports have shown that PFNA was the third most frequently detected in serum after perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA)[5]. In recent years,most interaction studies of PFAAs with proteins have been focused on the eight carbon atoms of PFOS and PFOA[6]. However,toxicological researchers demonstrated that compared with PFOS and PFOA,PFNA was more likely to accumulate and express reproductive toxicity,hepatotoxicity and immunotoxicity[7]in vivo. Thus,the binding of PFNA to HSA affected conformation,physiological function and activity of HSA,and hindered the transport of endogenous materials. By far,only few trials have been reported on the binding of PFNA proteins[8],and they were insufficient on the binding mechanism,such as lacking the specific information about binding sites,mainly driving force,changes for conformation and secondary structure of protein,which are of great importance for perfectly demonstrating the interaction mechanism of PFNA with proteins.

    In this paper,the binding mechanism and thermodynamic characterization of PFNA-HSA interactions at molecular level is elucidated by multi-spectroscopic,molecular docking and isothermal titration calorimetry (ITC) approaches.

    1 Experimental

    1.1 Materials

    PFNA (Shanghai Aijie Biological Technology Co.,Ltd.,China) was dissolved and diluted to 1.0×10-3mol·L-1with ultrapure water,2.0×10-5mol·L-1HSA (Sigma,USA) working solution was prepared. The stock solutions of phenylbutazone and ibuprofen were prepared to 1.0×10-3mol·L-1. Phosphate buffer solution and 1.0 mol·L-1NaCl solution were used. All reagents were of analytical reagent grade and ultrapure water was used throughout the experiment.

    1.2 Methods

    The methods and setting of parameters on fluorescence spectroscopy,UV-Vis spectroscopy,site marker competitive experiments,circular dichroism spectroscopy and molecular modeling are referred to literature [9].

    The steady state fluorescence anisotropy measurements were performed on an F-4500 spectrophotometer. The excitation wavelength was 295 nm in order to selectively excite the tryptophan residues of HSA,with slit widths of 5 nm for both excitation and emission. The steady-state anisotropy valuerwas defined as[10]:

    (1)

    Where,IVVandIVHare the intensities obtained with the excitation polarizer oriented vertically and the emission polarizer oriented in vertical and horizontal directions,respectively. TheGwas the correction factor for detector sensitivity to the polarization direction of the emission and defined as

    (2)

    Where,Irefers to the similar parameters as mentioned above for the horizontal position of the excitation polarizer.

    1.3 Isothermal titration calorimetry

    ITC of PFNA with HSA was performed using a Model Nano-ITC 2G biocalorimetry instrument (TA,USA) at 298 K. The direct analysis of ITC data curves for PFNA binding to HSA allowed the determination of binding stoichiometry (Ni) and enthalpy change (ΔHi) in theith class of binding site according to Eq.(3)[11]

    (3)

    whereQ(j) is the heat evolved afterjth injection,Mtthe total concentration of the protein,V0the active cell volume,andθithe fraction of sites occupied by PFNA. The heat released fromjth injection ΔQ(j) for an injection volumedVjis then given by the following equation[12]

    (4)

    Results were analyzed with either availability of one or two binding sites by NanoAnalyze v3.1.2 provided with the manufacturer.

    2 Results and discussions

    2.1 Steady state fluorescence

    Fig.1 showed the fluorescence emission spectra of HSA with various amounts of PFNA. The maximum intensity of HSA in absence of PFNA was observed at 351 nm with excitation at 280 nm,and further increasing in PFNA concentration caused a concentration dependent quenching of intrinsic fluorescence of HSA accompanied with a blue shift in the maxima from 351 to 347 nm. This suggested that there were interactions between PFNA and HSA,which was responsible for quenching the fluorescence of HSA.

    Fig.1 Fluorescence emission spectra of PFNA-HSA system,the inset is the structure of PFNA

    cHSA=2.0×10-6mol·L-1;cPFNA(×10-6mol·L-1)(1—7): 0,1.0,2.0,3.0,4.0,5.0,6.0; curve 8:cPFNA=1.0×10-6mol·L-1;T=298 K

    Fig.2 The Stern-Volmer plots for the PFNA-HSA system at different temperatures

    cPFNA(×10-6mol·L-1)(1—7): 0,1.0,2.0,3.0,4.0,5.0,6.0;cHSA=2.0×10-6mol·L-1

    2.2 Mechanisms of fluorescence quenching

    Stern-Volmer equation is used to explain the quenching mechanism[9]

    (5)

    WhereF0,F,Ksv,[Q] andτ0are seen literature [9],kqis the bimolecular quenching rate constant,and its maximum scattering collision quenching constant is 2.0×1010L·mol-1·s-1. The Stern-Volmer plots are shown in Fig.2,Ksvandkqat corresponding temperatures are listed in Table 1.

    Table 1 Stern-Volmer quenching constants for interaction of PFNA with HSA at different temperatures

    pHT/KKsv/(×104L·mol-1)kq/(×1012L·mol-1·s-1)R2988.078.070.99717.403038.438.430.997231010.1710.170.9982

    There was a good linear dependence betweenF0/Fand [Q]PFNA,Ksvvalues increased with increasing temperature,revealing the occurrence of dynamic quenching interaction between PFNA and HSA. Furthermore,the values ofkqwhich were all greater than the upper limit of 2.0×1010L·mol-1·s-1indicated that the static quenching may exist between them. Besides,the fluorescence spectra of HSA (Fig.1) not only decreased gradually with increasing PFNA but also obtained a blue shift (4 nm),manifesting a decrease in polarity of the microenvironment around the Trp residues after binding of PFNA with HSA. It was probably due to the growth of the compact structure of hydrophobic subdomain IIA where Trp-214 is placed. This phenomenon also reconfirmed that probable quenching mechanism of the intrinsic fluorescence of HSA was initiated by PFNA-HSA complex formation.

    Fluorescence anisotropy provides useful information on the changes in orientation of a small molecule upon binding with macromolecules. The anisotropy values (r) of PFNA (5.0×10-6mol·L-1) at three different HSA concentrations (0,1.0,5.0×10-6mol·L-1) were 0,0.103 and 0.126,respectively.rof a small molecule may vary from 0 (randomly oriented molecule) to 0.4 when there is no rotation or restricted motion of molecule. This augment in the anisotropy values with the addition of HSA deduced that a reduction of rotation freedom resulted from the complex formation between PFNA and HSA. In a word,the quenching mechanism of PFNA-HSA system should be a combined quenching process (including dynamic and static quenching)[13].

    2.3 Site marker competitive experiments

    Two site marker phenylbutazone (site Ⅰ in the subdomain ⅡA) and ibuprofen (site Ⅱ in the subdomain ⅢA) were used to identify bonding sites. The fluorescence of the complex was remarkably affected in presence of phenylbutazone,but remained invariant with ibuprofen. The result showed PFNA was to be bound to site Ⅰ in the subdomain ⅡA of HSA.

    2.4 Molecular docking

    In order to further determine the preferred binding sites of PFNA on HSA (PDB: 2BXN),molecular docking was carried out using AutoDock. The calculated free energy was -26.54 kJ·mol-1and the best energy ranked results are shown in Fig.3. The results showed that PFNA bound at subdomain ⅡA (site Ⅰ) [Fig.3(a)],which was consistent with the results observed in the site marker competitive experiments. PFNA molecule was surrounded by the hydrophobic chains and amino acid residues,such as Arg 218,Leu 219,Phe 223,Leu 260,Ala 261,Ile 264,Ser 287 and Val 293. Thus we can conclude that PFNA was able to fit well within the hydrophobic cavity of subdomain IIA. The docking result showed the existence of polar,hydrophobic interactions and halogen-bond between PFNA and HSA (Table 2). For example,O1 and O3 of PFNA interacted with Arg 222 through polar force. Hydrocarbon alkyl chains on Leu 219 and Ile 290 residues interacted with PFNA through hydrophobic interaction. Furthermore,it can be seen that there were four specific halogen-bonds of PFNA with Arg 257,Ser 287,Ile 290 and Ala 291 residues of HSA considering the distance between donor and acceptor atoms from 2.6 to 4.0,which played a crucial role in binding of PFNA to HSA.

    Fig.3 (a) The binding site of PFNA on HSA. HSA is shown in cartoon and PFNA is represented using spheres; (b) Enlarged binding mode between PFNA and HSA. HSA is shown in cartoon,the interacting side chains of HSA are displayed in surface mode and PFNA is represented using balls and sticks; (c) Molecular modeling of the interaction between PFNA and HSA. The atoms of PFNA are blue

    Table 2 The distances and driving forces between the PFNA atoms and the atoms of residues obtained by molecular docking

    2.5 Isothermal titration calorimetry measurement

    To explore the binding procedure and main driving force of PFNA to HSA,a representative calorimetric titration profile of PFNA with HSA is shown in Fig.4(a),the exothermicity and endothermicity of calorimetry peaks suggested that there were more than one binding process for PFNA-HSA interaction. Fig.4(b) shows the integrated heat profile after eliminating dilution heat of PFNA into buffer solution,the solid smooth line represents the best fit of experimental data using the standard nonlinear least-squares regression binding model which two classes of binding sites fitted well to calorimetric data. The thermodynamic parameters are the average of three independent experiments for the interaction of PFNA with HSA obtained from ITC (Table 3). From Table 3 can be seen that for the binding of PFNA to HSA,the number of second-class binding site (N2=9.95) on HSA molecules is higher than correspondingN1(3.33),whereas the second-class binding constant (Ka,2=4.58×104L·mol-1) is much smaller thanKa,1(22.71×104L·mol-1). Moreover,the binding events only occurred in subdomain IIA of HSA according to the results of site marker competitive experiments and molecular docking.

    Fig.4 (a) ITC titration profile of PFNA HSA binding; (b) Integrated heat profile of the calorimetric titration shown in panel A. The solid line represents the best nonlinear least-squares fit to the independent binding sites model

    Table 3 Binding constants and relative thermodynamic parameters of PFNA-HSA at 298 K

    As evident in Table 3,for the first binding site of this system,the both negative enthalpy (ΔH1) and entropy (ΔS1) changes indicated that this binding was an exothermic and entropy decreasing process. This can be explained by two factors: (1) the hydrated PFNA molecules should lose some water molecules when they approached to the binding sites and,simultaneously,the hydration layers on the surface of HSA molecules were partly destroyed. Both dehydration processes were endothermic and entropy increasing. (2) Directly electrostatic interaction of dipole groups of PFNA with peptide sections of HSA molecules,which caused exothermic effects and negative contribution to entropy. The experimentally negative enthalpy and entropy changes indicated that Factor (2) was evidently stronger than Factor (1) for this type of binding. Since seventeen electrophilic F-groups in PFNA can attract strongly the lone pair electrons of polar side groups of peptide chain,and partly PFNA molecules which were negatively charged under physiological condition interacted with the positively charged amino acids of HSA surface. Thus the strong electrostatic interactions gave rise to the strong negative values of enthalpic and entropic changes. Because the first class of binding was entropically opposed but enthalpically favored,the negative change of Gibbs free energy (ΔG1) was due to the contribution of heat effect and the process was mainly driven by enthalpy.

    The positive values of both ΔH2and ΔS2indicated that the second binding was an endothermic and entropy increasing process. This phenomenon can be explained by considering following reasons: firstly,when a PFNA molecule (partly) inserted itself into a hydrophobic cavity of HSA molecule formed by folding and twisting of peptide chain,the hydrophobic interaction between PFNA molecule and the cavity would cause a decrease in both the enthalpy and entropy. Secondly,the hydrophobic interaction led to some water molecules transferring into bulk solution from the hydrophobic cavity at the binding sites of HSA molecule,which was also exothermic but entropy increasing. Thirdly,accompanying the inserting of PFNA molecule into hydrophobic cavity,the original iceberg structure surrounding PFNA molecule was destroyed,which was endothermic and made a major positive contribution to the entropy. Because of the experimentally positive ΔH2and ΔS2,i.e.,entropy effect resulted in the negative change of Gibbs free energy (ΔG2),the second-class binding was entropy driven process. On the other hand,hydrophobic interaction between PFNA and HSA played a key role for this class of binding process as corroborated by the positive entropy changes (ΔS2) at complex formation.

    2.6 Three-dimensional fluorescence spectra

    Fig.5 Three-dimensional fluorescence spectra for HSA and PFNA HSA complexcHSA=2.0×10-6 mol·L-1,cPFNA=2.0×10-6 mol·L-1; T=298 K

    2.7 Circular dichroism spectra

    Further evidence of conformational changes of HSA upon addition of PFNA was confirmed by CD spectroscopy (Fig.6). It was apparently observed that the CD bands of HSA were at 209 and 222 nm. The binding of PFNA to HSA caused only a decrease in negative band intensity without any significant shift of the peaks which implied that HSA had predominantlyα-helix in nature even after binding to PFNA. The secondary structural contents of HSA were expressed in terms of mean residue ellipticity (MRE) according to literature [14],the calculated results exhibited that PFNA caused decrease inα-helical content of HSA from 55.6% in free HSA to 41.3% at a molar ratio of PFNA to HSA of 15∶1,β-sheet from 13.5% to 8.2%,β-turn from 16.5% to 13.0%,and increase in random content of HSA from 14.4% to 37.5%. From above results,it was apparent that the binding of PFNA to HSA led to a secondary structure change of HSA with the loss of helical stability.

    Fig.6 The CD spectra of HSA in the absence and presence of PFNA

    cHSA=2.0×10-6mol·L-1; molar ratiosnPFNA∶nHSAfrom 1 to 3: 0∶1,10∶1,15∶1

    3 Conclusions

    The results indicated that PFNA could quench the intrinsic fluorescence of HSA through static and dynamic quenching process. It was worthy noted that the binding site was located in the hydrophobic pocket of subdomain IIA according to the competitive binding experiment and molecular docking studies. Furthermore,molecular docking offered a molecular level explanation with the ability to estimate the participation of specific chemical groups and their interactions in complex stabilization. The ITC results showed that binding occurred at two different classes of binding sites. It also demonstrated that both electrostatic and hydrophobic interactions were presented in the formation of PFNA-HSA complex,the former being more important when PFNA bound to the first class of binding site,whereas hydrophobic forces were generally predominant in the second class of site,as seen from entropy increases. As further revealed by three-dimensional fluorescence and CD spectra,PFNA caused microenvironmental and conformational changes of HSA. Investigation of PFNA-HSA interaction has a great significance for thoroughly understanding the interaction process of PFNA-HSA,the relationship of structure and function of HSA,and the chemical essence of the interaction between biomacromolecule and ligand.

    [1] Yang B J,Hao F,Li J R,et al. Food Chem. Toxicol.、2014,65: 227.

    [2] Deng F Y,Dong C Y,Liu Y. Mol. Biosyst.、2012,8(5): 1446.

    [3] Brieger A,Bienefeld N,Hasan R,et al. Toxicol. in Vitro、2011,25(4): 960.

    [4] Christian G D,Thomas A T. Environ. Health Persp.、1999,107: 907.

    [5] K?rrman A,Harada K H,Inoue K,et al. Environ. Int.、2009,35(4): 712.

    [6] Qin P F,Liu R T,Pan X R,et al. J. Agric. Food Chem.、2010,58(9): 5561.

    [7] Ohmori K,Kudo N,Katayama K,et al. Toxicology、2003,84(2-3): 135.

    [8] MacManus-Spencer L A,Tse M L,Hebert P C,et al. Anal. Chem.、2010,82(3): 974.

    [9] Hu T Y,Liu Y. J. Pharm. Biomed. Anal.、2015,107: 325.

    [10] Molina-Bolívar J A,Galisteo-González F,Ruiz C C,et al. J. Lumin.、2014,56: 141.

    [11] Sun X J,Xu X Y,Liu M,et al. J. Solution Chem.、2010,39(1): 77.

    [12] Cheema M A,Taboada P,Barbosa S,et al. J. Chem. Thermodyn.、2009,41(4): 439.

    [13] Li J H,Wang S M. J. Chem. Thermodyn.、2013,58: 206.

    [14] Matei I,Hillebrand M. J. Pharm. Biomed. Anal.、2010,51(3): 768.

    *通訊聯(lián)系人

    O657.3

    A

    光譜法聯(lián)合分子對接和等溫滴定微量熱法研究全氟壬酸與人血清白蛋白的相互作用

    胡濤英1、黃 芳1、周珊珊1,2、劉 穎1,2*

    1. 中央民族大學(xué)生命與環(huán)境科學(xué)學(xué)院、北京 100081 2. 中央民族大學(xué)北京市食品環(huán)境與健康工程技術(shù)研究中心、北京 100081

    全氟壬酸(PFNA)是在血清中檢測到第三多的全氟烷酸類(PFAAs)新型有毒環(huán)境污染物。目前PFNA對人血清白蛋白(HSA)結(jié)構(gòu)甚至是功能的影響還處于起步階段、借助于多光譜、分子對接和等溫滴定微量熱(ITC)技術(shù)研究了PFNA和HSA相互作用的結(jié)合機理。所有熒光數(shù)據(jù)均進行了內(nèi)濾光校正以獲得更準確的結(jié)合參數(shù)。熒光結(jié)果表明PFNA通過動靜態(tài)猝滅方式可以猝滅HSA的內(nèi)源熒光。取代實驗和分子對接結(jié)果表明、PFNA主要通過極性鍵、疏水力和鹵素鍵鍵合在HSA亞域ⅡA疏水腔中、最佳對接自由能為-26.54 kJ·mol-1、表明PFNA分子與HSA有較大的結(jié)合親和力。ITC表明兩者的結(jié)合屬于兩類結(jié)合位點模型并給出了相應(yīng)的熱力學(xué)參數(shù):第一類結(jié)合位點有較大的親和力、屬于焓驅(qū)動、靜電力和鹵鍵作為主要驅(qū)動力; 第二類結(jié)合位點親和力較小、主要驅(qū)動力是疏水力。三維熒光光譜揭示PFNA與HSA生成復(fù)合物后、可以改變HSA的構(gòu)象、引起Trp和Tyr殘基微環(huán)境疏水性增強。圓二色譜(CD)定量測定了HSA與PFNA作用前后的二級結(jié)構(gòu)含量:α-螺旋、β-折疊和β-轉(zhuǎn)角含量分別降低14.3%、5.3%和3.5%、無規(guī)卷曲含量從14.4%增加到37.5%。以上結(jié)果表明、PFNA與HSA的結(jié)合可以改變HSA的二級結(jié)構(gòu)、進而可能影響HSA的生理功能。結(jié)果闡述了PFNA與HSA相互作用機理、并且為PFNA在體內(nèi)的運輸和分配提供了可靠的生物物理和生物化學(xué)的相關(guān)依據(jù)。

    全氟壬酸; 人血清白蛋白; 光譜法; 分子對接; 等溫滴定微量熱法

    2015-06-08、

    2015-10-29)

    2015-06-08; accepted:2015-10-29

    The National Natural Science Foundation of China (21177163),111 Project B08044,Special Guidance Fund of Building World First-class Universities (Disciplines) and Characteristic Development of Minzu University of China (2016,ydzxxk201619),Coordinate Development of First-Class and First-Class University Discipline Construction Funds (10301-0150200604),The Academic Team Construction Project of Minzu University of China (2015MDTD25C&13C),First-class Universities and First-class Discipline Construction Transitional Funds Under Special Funding (10301-01404031,2015),2015MDTD08C

    10.3964/j.issn.1000-0593(2016)12-4141-07

    Biography:HU Tao-ying,(1989—),Master of College of Life and Environmental Science,Minzu University of China e-mail: hty0945020@163.com *Corresponding author e-mail: liuying4300@163.com

    猜你喜歡
    全氟親和力等溫
    全氟烷基化合物暴露與成年人抑郁癥間的關(guān)系:基于NHANES 2005~2018
    EPDM/PP基TPV非等溫結(jié)晶行為的研究
    高端訪談節(jié)目如何提升親和力
    新聞傳播(2018年11期)2018-08-29 08:15:30
    高端訪談節(jié)目如何提升親和力探索
    新聞傳播(2018年13期)2018-08-29 01:06:52
    親和力在播音主持中的作用探究
    新聞傳播(2016年9期)2016-09-26 12:20:34
    1種制備全氟聚醚羧酸的方法
    1種制備全氟烯醚磺酰氟化合物的方法
    快速檢測豬鏈球菌的環(huán)介導(dǎo)等溫擴增方法
    納米CaCO3對FEP非等溫結(jié)晶動力學(xué)的影響
    中國塑料(2015年3期)2015-11-27 03:41:54
    將親和力應(yīng)用于播音主持中的方法探討
    新聞傳播(2015年7期)2015-07-18 11:09:57
    一本一本综合久久| 久久6这里有精品| 99久久九九国产精品国产免费| 国产激情偷乱视频一区二区| 精品久久久噜噜| 国产色婷婷99| 联通29元200g的流量卡| 夜夜爽夜夜爽视频| 日韩一区二区视频免费看| 真实男女啪啪啪动态图| 九九爱精品视频在线观看| 免费看日本二区| 晚上一个人看的免费电影| 18禁动态无遮挡网站| 欧美成人午夜免费资源| 午夜精品国产一区二区电影 | 黄色欧美视频在线观看| 一级毛片aaaaaa免费看小| 少妇的逼水好多| 欧美日韩国产亚洲二区| 久久鲁丝午夜福利片| www.av在线官网国产| 少妇的逼水好多| 日韩成人伦理影院| 欧美+日韩+精品| 黄色配什么色好看| 搞女人的毛片| 日韩成人伦理影院| 国产精品一区二区三区四区免费观看| 女人久久www免费人成看片 | 一级毛片久久久久久久久女| 在线观看美女被高潮喷水网站| 国产一区二区在线av高清观看| 国产亚洲午夜精品一区二区久久 | 久久精品国产亚洲av涩爱| 国产午夜精品论理片| 两性午夜刺激爽爽歪歪视频在线观看| 黄色配什么色好看| 波野结衣二区三区在线| 99视频精品全部免费 在线| 免费av观看视频| 99国产精品一区二区蜜桃av| 一二三四中文在线观看免费高清| 成人无遮挡网站| 日韩亚洲欧美综合| 午夜激情欧美在线| 国产单亲对白刺激| 一卡2卡三卡四卡精品乱码亚洲| 99热这里只有精品一区| 老师上课跳d突然被开到最大视频| 十八禁国产超污无遮挡网站| 男女那种视频在线观看| 国产激情偷乱视频一区二区| 久久久久久久久久成人| 少妇的逼水好多| 麻豆一二三区av精品| 看片在线看免费视频| 国产精品不卡视频一区二区| 伦精品一区二区三区| 欧美激情国产日韩精品一区| 成人亚洲欧美一区二区av| 国产女主播在线喷水免费视频网站 | 一夜夜www| 欧美成人a在线观看| 国模一区二区三区四区视频| 久久国内精品自在自线图片| 久久久国产成人免费| 亚洲国产精品成人久久小说| 精品人妻熟女av久视频| 色视频www国产| 欧美成人精品欧美一级黄| 国产综合懂色| 成人欧美大片| 日韩国内少妇激情av| 亚洲国产精品合色在线| 亚洲中文字幕日韩| 白带黄色成豆腐渣| 少妇的逼水好多| 人人妻人人澡人人爽人人夜夜 | 极品教师在线视频| 国产精品伦人一区二区| 亚洲欧美精品综合久久99| 中文字幕人妻熟人妻熟丝袜美| 成人午夜精彩视频在线观看| 亚洲,欧美,日韩| 一区二区三区高清视频在线| 亚洲精品乱码久久久久久按摩| 亚洲精品成人久久久久久| 久久精品国产自在天天线| 亚洲国产欧美在线一区| 亚洲美女视频黄频| 亚洲国产欧洲综合997久久,| 搡女人真爽免费视频火全软件| 免费不卡的大黄色大毛片视频在线观看 | 国产精品久久久久久久电影| 国产免费福利视频在线观看| 日本与韩国留学比较| 高清日韩中文字幕在线| 成人特级av手机在线观看| 亚洲aⅴ乱码一区二区在线播放| 2021少妇久久久久久久久久久| 色视频www国产| 午夜精品一区二区三区免费看| 高清视频免费观看一区二区 | 一区二区三区高清视频在线| 久久久成人免费电影| 精品午夜福利在线看| 日本免费a在线| 男人和女人高潮做爰伦理| 桃色一区二区三区在线观看| 99久久人妻综合| 中文字幕久久专区| 中国美白少妇内射xxxbb| 亚洲色图av天堂| ponron亚洲| 精品国产三级普通话版| 国产一区二区亚洲精品在线观看| av视频在线观看入口| 国语对白做爰xxxⅹ性视频网站| av国产久精品久网站免费入址| 久久久久网色| 特大巨黑吊av在线直播| 久久人妻av系列| 中国美白少妇内射xxxbb| 国产老妇女一区| 波多野结衣高清无吗| 国产不卡一卡二| 色综合亚洲欧美另类图片| 中文字幕熟女人妻在线| 六月丁香七月| 中文乱码字字幕精品一区二区三区 | 精品一区二区免费观看| 男女边吃奶边做爰视频| 女人十人毛片免费观看3o分钟| 久久久久网色| 又爽又黄无遮挡网站| av.在线天堂| av天堂中文字幕网| 国内少妇人妻偷人精品xxx网站| 亚洲怡红院男人天堂| 青春草亚洲视频在线观看| 六月丁香七月| 免费在线观看成人毛片| 老女人水多毛片| 国产精品99久久久久久久久| 老司机影院毛片| 少妇人妻一区二区三区视频| 亚洲国产精品专区欧美| 长腿黑丝高跟| 青青草视频在线视频观看| 性色avwww在线观看| 欧美3d第一页| 亚洲在线自拍视频| 国产探花极品一区二区| 精品人妻偷拍中文字幕| 热99在线观看视频| 日韩成人av中文字幕在线观看| 一本久久精品| 晚上一个人看的免费电影| 大又大粗又爽又黄少妇毛片口| 伦理电影大哥的女人| 纵有疾风起免费观看全集完整版 | 亚洲在久久综合| 大话2 男鬼变身卡| 日本wwww免费看| 免费看美女性在线毛片视频| 99久久精品国产国产毛片| 色视频www国产| 国产色婷婷99| 波野结衣二区三区在线| 亚洲精品亚洲一区二区| 国产精品人妻久久久影院| 天美传媒精品一区二区| 秋霞在线观看毛片| 在线播放国产精品三级| 天堂网av新在线| 国产精品国产高清国产av| 久久99精品国语久久久| 精品国产三级普通话版| 99九九线精品视频在线观看视频| 成人国产麻豆网| 人人妻人人澡欧美一区二区| 久久久久久久久久黄片| 少妇裸体淫交视频免费看高清| 国产真实乱freesex| 精品久久久久久成人av| 国产成人午夜福利电影在线观看| 亚洲中文字幕日韩| 亚洲怡红院男人天堂| 日日干狠狠操夜夜爽| 久久久久网色| 蜜桃久久精品国产亚洲av| 中国美白少妇内射xxxbb| 国内少妇人妻偷人精品xxx网站| 精品人妻视频免费看| 一级毛片电影观看 | 日本黄色片子视频| 成人综合一区亚洲| 日本黄色视频三级网站网址| 欧美日韩精品成人综合77777| 欧美性猛交黑人性爽| 2021少妇久久久久久久久久久| 久久久久久久国产电影| 欧美激情国产日韩精品一区| 永久免费av网站大全| 我的女老师完整版在线观看| 色播亚洲综合网| 免费看av在线观看网站| 亚洲成av人片在线播放无| 边亲边吃奶的免费视频| 高清日韩中文字幕在线| 国产成人a∨麻豆精品| 亚洲精品456在线播放app| 日日摸夜夜添夜夜添av毛片| 欧美一区二区精品小视频在线| 久久久久久久久大av| 少妇猛男粗大的猛烈进出视频 | 午夜日本视频在线| 高清av免费在线| 国产亚洲av嫩草精品影院| 午夜激情欧美在线| 天堂网av新在线| 高清午夜精品一区二区三区| 免费av毛片视频| av卡一久久| 亚洲av电影不卡..在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 又粗又爽又猛毛片免费看| 变态另类丝袜制服| 国产真实乱freesex| 可以在线观看毛片的网站| 国产精品久久久久久久电影| 日本wwww免费看| 卡戴珊不雅视频在线播放| 晚上一个人看的免费电影| 精品少妇黑人巨大在线播放 | 国产美女午夜福利| 成人欧美大片| 国产极品精品免费视频能看的| 男女下面进入的视频免费午夜| 一夜夜www| 午夜精品国产一区二区电影 | 国产男人的电影天堂91| 春色校园在线视频观看| 女的被弄到高潮叫床怎么办| 伦精品一区二区三区| 日韩一本色道免费dvd| 高清av免费在线| 中文乱码字字幕精品一区二区三区 | 你懂的网址亚洲精品在线观看 | 久久精品国产鲁丝片午夜精品| 三级经典国产精品| 日本色播在线视频| 欧美激情在线99| 欧美成人精品欧美一级黄| 少妇熟女aⅴ在线视频| 91av网一区二区| 日本免费a在线| 国产单亲对白刺激| 久久鲁丝午夜福利片| 看非洲黑人一级黄片| 一夜夜www| 蜜桃久久精品国产亚洲av| 黄色日韩在线| 精品一区二区免费观看| 久久久久九九精品影院| 国产大屁股一区二区在线视频| av天堂中文字幕网| 草草在线视频免费看| 一级毛片我不卡| 国产亚洲av片在线观看秒播厂 | 成人午夜精彩视频在线观看| 国产av在哪里看| 午夜亚洲福利在线播放| 亚洲国产成人一精品久久久| 亚洲欧美成人精品一区二区| av播播在线观看一区| 一个人观看的视频www高清免费观看| 高清毛片免费看| 99视频精品全部免费 在线| 亚洲一级一片aⅴ在线观看| 亚洲欧美清纯卡通| 天堂网av新在线| 成年女人看的毛片在线观看| 少妇的逼好多水| 日韩一区二区三区影片| 国产伦一二天堂av在线观看| 精品人妻视频免费看| 欧美激情在线99| 99久久人妻综合| 亚洲av日韩在线播放| 久久久久久国产a免费观看| 青春草国产在线视频| 久久久久国产网址| 国产一区二区在线观看日韩| 欧美激情在线99| 久久精品国产亚洲av天美| 在线a可以看的网站| 国产黄a三级三级三级人| 简卡轻食公司| 女的被弄到高潮叫床怎么办| 亚洲成av人片在线播放无| 亚洲真实伦在线观看| 91久久精品国产一区二区三区| 免费在线观看成人毛片| a级一级毛片免费在线观看| 久久99蜜桃精品久久| 性插视频无遮挡在线免费观看| 日韩欧美国产在线观看| 成年版毛片免费区| 亚洲av成人av| 亚洲精品456在线播放app| 三级男女做爰猛烈吃奶摸视频| 亚洲av成人av| 在线免费观看不下载黄p国产| 少妇熟女aⅴ在线视频| 在线免费观看的www视频| 国产淫片久久久久久久久| 波多野结衣巨乳人妻| 人人妻人人澡欧美一区二区| 卡戴珊不雅视频在线播放| 国产综合懂色| 午夜福利在线在线| 一二三四中文在线观看免费高清| 国产综合懂色| 国产精品综合久久久久久久免费| 日本av手机在线免费观看| av黄色大香蕉| 日本黄色视频三级网站网址| 嫩草影院精品99| 亚洲欧美精品综合久久99| 国产黄片美女视频| 久久久午夜欧美精品| 舔av片在线| 久久精品国产99精品国产亚洲性色| 精品酒店卫生间| 久久国产乱子免费精品| 成人特级av手机在线观看| 国产精品蜜桃在线观看| 欧美一级a爱片免费观看看| 日本免费在线观看一区| 一级毛片电影观看 | 国产成人freesex在线| 最新中文字幕久久久久| 日韩欧美精品免费久久| 免费一级毛片在线播放高清视频| 国产精品一区二区在线观看99 | 国产午夜精品久久久久久一区二区三区| 欧美一区二区亚洲| 99久久人妻综合| 三级国产精品欧美在线观看| 国产精品爽爽va在线观看网站| 亚洲美女搞黄在线观看| 你懂的网址亚洲精品在线观看 | 欧美变态另类bdsm刘玥| 人人妻人人澡欧美一区二区| 男女视频在线观看网站免费| 国产欧美日韩精品一区二区| 亚洲成人中文字幕在线播放| 国产精华一区二区三区| 国产日韩欧美在线精品| 亚洲av中文av极速乱| 亚洲av一区综合| 99久久人妻综合| 亚洲激情五月婷婷啪啪| 一夜夜www| 亚洲天堂国产精品一区在线| 亚洲精品自拍成人| 99国产精品一区二区蜜桃av| 午夜精品一区二区三区免费看| 日韩精品青青久久久久久| 日本免费a在线| 日韩视频在线欧美| 亚洲欧美精品专区久久| 91精品伊人久久大香线蕉| 天堂av国产一区二区熟女人妻| 五月伊人婷婷丁香| 久久久久网色| 亚洲最大成人中文| 国产精品人妻久久久影院| 女人被狂操c到高潮| 国产精品1区2区在线观看.| 亚洲国产欧洲综合997久久,| 女人被狂操c到高潮| 丝袜美腿在线中文| 亚洲av成人精品一区久久| 91午夜精品亚洲一区二区三区| 99国产精品一区二区蜜桃av| 国产精品电影一区二区三区| 97人妻精品一区二区三区麻豆| 毛片女人毛片| 久久亚洲国产成人精品v| 亚洲伊人久久精品综合 | 亚洲国产精品国产精品| 日韩精品青青久久久久久| 国产免费视频播放在线视频 | 特级一级黄色大片| 国产黄a三级三级三级人| 高清毛片免费看| 神马国产精品三级电影在线观看| 久久99热这里只频精品6学生 | 日本免费在线观看一区| 成人特级av手机在线观看| 午夜福利成人在线免费观看| 午夜福利网站1000一区二区三区| 免费搜索国产男女视频| 精品久久久噜噜| 午夜a级毛片| 久久人人爽人人片av| 中文亚洲av片在线观看爽| 久久人人爽人人爽人人片va| 18禁动态无遮挡网站| 又粗又爽又猛毛片免费看| 最后的刺客免费高清国语| 伦精品一区二区三区| 久久精品影院6| 亚洲欧美精品综合久久99| 亚洲电影在线观看av| 嫩草影院精品99| 天堂网av新在线| 亚洲精品亚洲一区二区| 视频中文字幕在线观看| 婷婷色av中文字幕| 精品熟女少妇av免费看| 成人漫画全彩无遮挡| 别揉我奶头 嗯啊视频| 人妻夜夜爽99麻豆av| 长腿黑丝高跟| 国产视频内射| 日韩欧美在线乱码| 精品国产三级普通话版| 亚洲精品国产av成人精品| 亚洲精华国产精华液的使用体验| 久久精品久久久久久噜噜老黄 | 亚洲在久久综合| 国产精品av视频在线免费观看| 在现免费观看毛片| 日日摸夜夜添夜夜添av毛片| 日日撸夜夜添| 国产一级毛片在线| 老司机影院毛片| 精品免费久久久久久久清纯| 啦啦啦观看免费观看视频高清| 日本午夜av视频| 中文字幕精品亚洲无线码一区| 熟妇人妻久久中文字幕3abv| 深爱激情五月婷婷| 黄色欧美视频在线观看| 日本色播在线视频| 非洲黑人性xxxx精品又粗又长| 国产精品1区2区在线观看.| 免费观看人在逋| 一级毛片aaaaaa免费看小| 亚洲av男天堂| 日本黄色片子视频| 国内精品美女久久久久久| 天天躁日日操中文字幕| 久久精品国产亚洲av涩爱| 舔av片在线| 啦啦啦观看免费观看视频高清| 最新中文字幕久久久久| 国产精华一区二区三区| 伦理电影大哥的女人| 我要看日韩黄色一级片| 联通29元200g的流量卡| 国产精品av视频在线免费观看| 麻豆精品久久久久久蜜桃| 国产单亲对白刺激| 亚洲婷婷狠狠爱综合网| 看片在线看免费视频| 黑人高潮一二区| 日本三级黄在线观看| 成人三级黄色视频| 非洲黑人性xxxx精品又粗又长| 亚洲中文字幕一区二区三区有码在线看| 69人妻影院| 欧美激情国产日韩精品一区| 国产一区二区亚洲精品在线观看| 亚洲在线观看片| 我的女老师完整版在线观看| 亚洲欧美精品综合久久99| 中文字幕av成人在线电影| 亚洲精品国产av成人精品| 国产精品1区2区在线观看.| av在线播放精品| 麻豆成人av视频| or卡值多少钱| 精品国内亚洲2022精品成人| 美女国产视频在线观看| 亚洲av不卡在线观看| 亚洲精品,欧美精品| 国产黄色视频一区二区在线观看 | 国产黄色小视频在线观看| 欧美高清成人免费视频www| 九色成人免费人妻av| 亚洲在线观看片| av免费在线看不卡| 国产久久久一区二区三区| 最新中文字幕久久久久| 欧美成人精品欧美一级黄| 深夜a级毛片| 国产精品一二三区在线看| 欧美又色又爽又黄视频| 熟女人妻精品中文字幕| 大话2 男鬼变身卡| 99久国产av精品国产电影| 国产老妇女一区| 色播亚洲综合网| 日韩国内少妇激情av| 亚洲av电影在线观看一区二区三区 | 亚洲欧美日韩东京热| 一级二级三级毛片免费看| 国产又色又爽无遮挡免| 久久久精品94久久精品| 日本熟妇午夜| 成年女人永久免费观看视频| 国产色婷婷99| 亚洲av成人av| 欧美97在线视频| 国产高清视频在线观看网站| 观看免费一级毛片| 七月丁香在线播放| videos熟女内射| 国产精品一及| 99久久人妻综合| www.色视频.com| 在线播放国产精品三级| 久久精品夜夜夜夜夜久久蜜豆| 国产精品伦人一区二区| 只有这里有精品99| 欧美丝袜亚洲另类| 国产女主播在线喷水免费视频网站 | 我的女老师完整版在线观看| 中文字幕制服av| 亚洲精品成人久久久久久| 久久精品久久久久久久性| 欧美一区二区精品小视频在线| 麻豆成人午夜福利视频| 亚洲成色77777| 好男人视频免费观看在线| 一级黄色大片毛片| 午夜老司机福利剧场| 欧美日韩综合久久久久久| 最后的刺客免费高清国语| 全区人妻精品视频| 91久久精品国产一区二区成人| 国产精品乱码一区二三区的特点| 偷拍熟女少妇极品色| 精品少妇黑人巨大在线播放 | av在线亚洲专区| 一夜夜www| 伦理电影大哥的女人| 一二三四中文在线观看免费高清| 三级经典国产精品| 欧美成人一区二区免费高清观看| 一个人看的www免费观看视频| 久久99热这里只频精品6学生 | 国产一区二区在线观看日韩| 国产91av在线免费观看| 搡女人真爽免费视频火全软件| 高清毛片免费看| 丰满人妻一区二区三区视频av| 久久人妻av系列| 最近最新中文字幕免费大全7| 午夜久久久久精精品| 97超视频在线观看视频| 欧美一级a爱片免费观看看| 中文精品一卡2卡3卡4更新| 成人一区二区视频在线观看| 国产黄a三级三级三级人| 波多野结衣巨乳人妻| 最近视频中文字幕2019在线8| 成人午夜精彩视频在线观看| 色哟哟·www| 中国美白少妇内射xxxbb| 一个人免费在线观看电影| 欧美不卡视频在线免费观看| 国模一区二区三区四区视频| 日本黄色视频三级网站网址| 久久久久网色| 亚洲精品亚洲一区二区| 欧美丝袜亚洲另类| 免费观看a级毛片全部| 中文字幕亚洲精品专区| 亚洲av成人精品一二三区| 久久精品国产亚洲av天美| 99热网站在线观看| 欧美一级a爱片免费观看看| 亚洲最大成人av| 天堂av国产一区二区熟女人妻| 精品久久国产蜜桃| 人人妻人人看人人澡| 综合色丁香网| 一个人看的www免费观看视频| 国产亚洲av嫩草精品影院| 成人毛片a级毛片在线播放| 亚洲国产精品成人久久小说| 国产三级中文精品| 国产精品伦人一区二区| 黄片wwwwww| 国产 一区 欧美 日韩| 精品久久久久久久久av| 91精品一卡2卡3卡4卡| 日本av手机在线免费观看| 亚洲经典国产精华液单| 大香蕉97超碰在线| 国产高潮美女av| 亚洲一区高清亚洲精品| 成人国产麻豆网| 久久久精品大字幕| 久久久精品欧美日韩精品| 黄色配什么色好看| 春色校园在线视频观看| 亚洲电影在线观看av| 国产麻豆成人av免费视频|