• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Studies on the Interaction of Perfluorononanoic Acid with Human Serum Albumin by Multi-Spectroscopic,Molecular Docking and Isothermal Titration Calorimetry Techniques

    2016-06-05 14:58:29HUTaoyingHUANGFangZHOUShanshanLIUYing
    光譜學(xué)與光譜分析 2016年12期
    關(guān)鍵詞:全氟親和力等溫

    HU Tao-ying,HUANG Fang,ZHOU Shan-shan,LIU Ying,2*

    1. College of Life and Environmental Sciences,Minzu University of China,Beijing 100081,China 2. Beijing Engineering Research Center of Food Environment and Public Health,Minzu University of China,Beijing 100081,China

    Studies on the Interaction of Perfluorononanoic Acid with Human Serum Albumin by Multi-Spectroscopic,Molecular Docking and Isothermal Titration Calorimetry Techniques

    HU Tao-ying1,HUANG Fang1,ZHOU Shan-shan1,LIU Ying1,2*

    1. College of Life and Environmental Sciences,Minzu University of China,Beijing 100081,China 2. Beijing Engineering Research Center of Food Environment and Public Health,Minzu University of China,Beijing 100081,China

    Perfluorononanoic acid (PFNA) is the third most frequently detected in serum among all perfluoroalkyl acids (PFAAs) which is a kind of toxic emerging environmental contaminant. The influence of PFNA on the conformation and even function of human serum albumin (HSA) is still just at the beginning of research. The attempt of this paper was to completely elucidate the interaction mechanism of PFNA with HSA by means of multi-spectroscopic,molecular docking and isothermal titration calorimetry (ITC) techniques. The inner filter effect of all fluorescence data in the paper was eliminated to get accurate binding parameters. The results showed that the fluorescence of HSA was quenched by PFNA through a combined quenching procedure of dynamic and static quenching. Through site marker competitive experiments,subdomain IIA of HSA had been assigned to possess the high-affinity binding site of PFNA. Furthermore,molecular docking reconfirmed that PFNA was bound in subdomain IIA mainly through polar force,hydrophobic interaction and halogen-bond,and the calculated free energy was -26.54 kJ·mol-1which indicated that the PFNA molecule exhibited large binding affinity towards HSA. The thermodynamic characterizations of two different classes of binding sites by ITC displayed that the first class with a higher affinity constant was dominated by an enthalpic contribution due to electrostatic interactions and halogen-bond,whereas the second class with a lower affinity constant was preponderated by hydrophobic interaction. The three-dimensional fluorescence revealed that the conformation of HSA was changed and the hydrophobicity of the Trp and Tyr residues microenvironment increased after formation of PFNA-HSA complex. The alterations of the protein secondary structure were quantitatively calculated from circular dichroism (CD) spectroscopy with reduction ofα-helix content about 14.3%,β-sheet 5.3%,β-turn 3.5%,and augment in random content from 14.4% to 37.5%. Above results revealed that the binding of PFNA with HSA can alter the secondary structure of HSA,further probably affecting HSA physiological function. The results can provide insights with the binding mechanism of PFNA with HSA and salient biophysical and biochemical clues on elucidating the transport and distribution of PFNA in vivo.

    Perfluorononanoic acid; Human serum albumin; Multi-spectroscopic techniques; Molecular docking; Isothermal titration calorimetry

    Introduction

    Human serum albumin (HSA) is a well-known target because of its availability of hydrophobic pockets inside the network and flexibility to adapt its shape. Over recent decades,many researches have centered on the interaction of HSA with various small molecules,such as drugs,metals,dyes,environmental hormone,pesticide and fertilizer,etc.[1],which will alter the distribution,free concentration,metabolism and elimination of the small molecule and consequently affect the levels of its activity and toxicity in organism[2].

    Perfluorononanoic acid (PFNA,structure shown in Fig.1) is a representative of the synthetic perfluoroalkyl acids (PFAAs) which are composed of hydrophobic and hydrophilic functional group[3],and widespread used as surfactants in firefighting foams,food packaging,polymer additives and water- and stain-resistant coatings,which are one large class of the active ingredients receiving comparatively little attention but used in large amounts throughout the world[4]. Numerous reports have shown that PFNA was the third most frequently detected in serum after perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA)[5]. In recent years,most interaction studies of PFAAs with proteins have been focused on the eight carbon atoms of PFOS and PFOA[6]. However,toxicological researchers demonstrated that compared with PFOS and PFOA,PFNA was more likely to accumulate and express reproductive toxicity,hepatotoxicity and immunotoxicity[7]in vivo. Thus,the binding of PFNA to HSA affected conformation,physiological function and activity of HSA,and hindered the transport of endogenous materials. By far,only few trials have been reported on the binding of PFNA proteins[8],and they were insufficient on the binding mechanism,such as lacking the specific information about binding sites,mainly driving force,changes for conformation and secondary structure of protein,which are of great importance for perfectly demonstrating the interaction mechanism of PFNA with proteins.

    In this paper,the binding mechanism and thermodynamic characterization of PFNA-HSA interactions at molecular level is elucidated by multi-spectroscopic,molecular docking and isothermal titration calorimetry (ITC) approaches.

    1 Experimental

    1.1 Materials

    PFNA (Shanghai Aijie Biological Technology Co.,Ltd.,China) was dissolved and diluted to 1.0×10-3mol·L-1with ultrapure water,2.0×10-5mol·L-1HSA (Sigma,USA) working solution was prepared. The stock solutions of phenylbutazone and ibuprofen were prepared to 1.0×10-3mol·L-1. Phosphate buffer solution and 1.0 mol·L-1NaCl solution were used. All reagents were of analytical reagent grade and ultrapure water was used throughout the experiment.

    1.2 Methods

    The methods and setting of parameters on fluorescence spectroscopy,UV-Vis spectroscopy,site marker competitive experiments,circular dichroism spectroscopy and molecular modeling are referred to literature [9].

    The steady state fluorescence anisotropy measurements were performed on an F-4500 spectrophotometer. The excitation wavelength was 295 nm in order to selectively excite the tryptophan residues of HSA,with slit widths of 5 nm for both excitation and emission. The steady-state anisotropy valuerwas defined as[10]:

    (1)

    Where,IVVandIVHare the intensities obtained with the excitation polarizer oriented vertically and the emission polarizer oriented in vertical and horizontal directions,respectively. TheGwas the correction factor for detector sensitivity to the polarization direction of the emission and defined as

    (2)

    Where,Irefers to the similar parameters as mentioned above for the horizontal position of the excitation polarizer.

    1.3 Isothermal titration calorimetry

    ITC of PFNA with HSA was performed using a Model Nano-ITC 2G biocalorimetry instrument (TA,USA) at 298 K. The direct analysis of ITC data curves for PFNA binding to HSA allowed the determination of binding stoichiometry (Ni) and enthalpy change (ΔHi) in theith class of binding site according to Eq.(3)[11]

    (3)

    whereQ(j) is the heat evolved afterjth injection,Mtthe total concentration of the protein,V0the active cell volume,andθithe fraction of sites occupied by PFNA. The heat released fromjth injection ΔQ(j) for an injection volumedVjis then given by the following equation[12]

    (4)

    Results were analyzed with either availability of one or two binding sites by NanoAnalyze v3.1.2 provided with the manufacturer.

    2 Results and discussions

    2.1 Steady state fluorescence

    Fig.1 showed the fluorescence emission spectra of HSA with various amounts of PFNA. The maximum intensity of HSA in absence of PFNA was observed at 351 nm with excitation at 280 nm,and further increasing in PFNA concentration caused a concentration dependent quenching of intrinsic fluorescence of HSA accompanied with a blue shift in the maxima from 351 to 347 nm. This suggested that there were interactions between PFNA and HSA,which was responsible for quenching the fluorescence of HSA.

    Fig.1 Fluorescence emission spectra of PFNA-HSA system,the inset is the structure of PFNA

    cHSA=2.0×10-6mol·L-1;cPFNA(×10-6mol·L-1)(1—7): 0,1.0,2.0,3.0,4.0,5.0,6.0; curve 8:cPFNA=1.0×10-6mol·L-1;T=298 K

    Fig.2 The Stern-Volmer plots for the PFNA-HSA system at different temperatures

    cPFNA(×10-6mol·L-1)(1—7): 0,1.0,2.0,3.0,4.0,5.0,6.0;cHSA=2.0×10-6mol·L-1

    2.2 Mechanisms of fluorescence quenching

    Stern-Volmer equation is used to explain the quenching mechanism[9]

    (5)

    WhereF0,F,Ksv,[Q] andτ0are seen literature [9],kqis the bimolecular quenching rate constant,and its maximum scattering collision quenching constant is 2.0×1010L·mol-1·s-1. The Stern-Volmer plots are shown in Fig.2,Ksvandkqat corresponding temperatures are listed in Table 1.

    Table 1 Stern-Volmer quenching constants for interaction of PFNA with HSA at different temperatures

    pHT/KKsv/(×104L·mol-1)kq/(×1012L·mol-1·s-1)R2988.078.070.99717.403038.438.430.997231010.1710.170.9982

    There was a good linear dependence betweenF0/Fand [Q]PFNA,Ksvvalues increased with increasing temperature,revealing the occurrence of dynamic quenching interaction between PFNA and HSA. Furthermore,the values ofkqwhich were all greater than the upper limit of 2.0×1010L·mol-1·s-1indicated that the static quenching may exist between them. Besides,the fluorescence spectra of HSA (Fig.1) not only decreased gradually with increasing PFNA but also obtained a blue shift (4 nm),manifesting a decrease in polarity of the microenvironment around the Trp residues after binding of PFNA with HSA. It was probably due to the growth of the compact structure of hydrophobic subdomain IIA where Trp-214 is placed. This phenomenon also reconfirmed that probable quenching mechanism of the intrinsic fluorescence of HSA was initiated by PFNA-HSA complex formation.

    Fluorescence anisotropy provides useful information on the changes in orientation of a small molecule upon binding with macromolecules. The anisotropy values (r) of PFNA (5.0×10-6mol·L-1) at three different HSA concentrations (0,1.0,5.0×10-6mol·L-1) were 0,0.103 and 0.126,respectively.rof a small molecule may vary from 0 (randomly oriented molecule) to 0.4 when there is no rotation or restricted motion of molecule. This augment in the anisotropy values with the addition of HSA deduced that a reduction of rotation freedom resulted from the complex formation between PFNA and HSA. In a word,the quenching mechanism of PFNA-HSA system should be a combined quenching process (including dynamic and static quenching)[13].

    2.3 Site marker competitive experiments

    Two site marker phenylbutazone (site Ⅰ in the subdomain ⅡA) and ibuprofen (site Ⅱ in the subdomain ⅢA) were used to identify bonding sites. The fluorescence of the complex was remarkably affected in presence of phenylbutazone,but remained invariant with ibuprofen. The result showed PFNA was to be bound to site Ⅰ in the subdomain ⅡA of HSA.

    2.4 Molecular docking

    In order to further determine the preferred binding sites of PFNA on HSA (PDB: 2BXN),molecular docking was carried out using AutoDock. The calculated free energy was -26.54 kJ·mol-1and the best energy ranked results are shown in Fig.3. The results showed that PFNA bound at subdomain ⅡA (site Ⅰ) [Fig.3(a)],which was consistent with the results observed in the site marker competitive experiments. PFNA molecule was surrounded by the hydrophobic chains and amino acid residues,such as Arg 218,Leu 219,Phe 223,Leu 260,Ala 261,Ile 264,Ser 287 and Val 293. Thus we can conclude that PFNA was able to fit well within the hydrophobic cavity of subdomain IIA. The docking result showed the existence of polar,hydrophobic interactions and halogen-bond between PFNA and HSA (Table 2). For example,O1 and O3 of PFNA interacted with Arg 222 through polar force. Hydrocarbon alkyl chains on Leu 219 and Ile 290 residues interacted with PFNA through hydrophobic interaction. Furthermore,it can be seen that there were four specific halogen-bonds of PFNA with Arg 257,Ser 287,Ile 290 and Ala 291 residues of HSA considering the distance between donor and acceptor atoms from 2.6 to 4.0,which played a crucial role in binding of PFNA to HSA.

    Fig.3 (a) The binding site of PFNA on HSA. HSA is shown in cartoon and PFNA is represented using spheres; (b) Enlarged binding mode between PFNA and HSA. HSA is shown in cartoon,the interacting side chains of HSA are displayed in surface mode and PFNA is represented using balls and sticks; (c) Molecular modeling of the interaction between PFNA and HSA. The atoms of PFNA are blue

    Table 2 The distances and driving forces between the PFNA atoms and the atoms of residues obtained by molecular docking

    2.5 Isothermal titration calorimetry measurement

    To explore the binding procedure and main driving force of PFNA to HSA,a representative calorimetric titration profile of PFNA with HSA is shown in Fig.4(a),the exothermicity and endothermicity of calorimetry peaks suggested that there were more than one binding process for PFNA-HSA interaction. Fig.4(b) shows the integrated heat profile after eliminating dilution heat of PFNA into buffer solution,the solid smooth line represents the best fit of experimental data using the standard nonlinear least-squares regression binding model which two classes of binding sites fitted well to calorimetric data. The thermodynamic parameters are the average of three independent experiments for the interaction of PFNA with HSA obtained from ITC (Table 3). From Table 3 can be seen that for the binding of PFNA to HSA,the number of second-class binding site (N2=9.95) on HSA molecules is higher than correspondingN1(3.33),whereas the second-class binding constant (Ka,2=4.58×104L·mol-1) is much smaller thanKa,1(22.71×104L·mol-1). Moreover,the binding events only occurred in subdomain IIA of HSA according to the results of site marker competitive experiments and molecular docking.

    Fig.4 (a) ITC titration profile of PFNA HSA binding; (b) Integrated heat profile of the calorimetric titration shown in panel A. The solid line represents the best nonlinear least-squares fit to the independent binding sites model

    Table 3 Binding constants and relative thermodynamic parameters of PFNA-HSA at 298 K

    As evident in Table 3,for the first binding site of this system,the both negative enthalpy (ΔH1) and entropy (ΔS1) changes indicated that this binding was an exothermic and entropy decreasing process. This can be explained by two factors: (1) the hydrated PFNA molecules should lose some water molecules when they approached to the binding sites and,simultaneously,the hydration layers on the surface of HSA molecules were partly destroyed. Both dehydration processes were endothermic and entropy increasing. (2) Directly electrostatic interaction of dipole groups of PFNA with peptide sections of HSA molecules,which caused exothermic effects and negative contribution to entropy. The experimentally negative enthalpy and entropy changes indicated that Factor (2) was evidently stronger than Factor (1) for this type of binding. Since seventeen electrophilic F-groups in PFNA can attract strongly the lone pair electrons of polar side groups of peptide chain,and partly PFNA molecules which were negatively charged under physiological condition interacted with the positively charged amino acids of HSA surface. Thus the strong electrostatic interactions gave rise to the strong negative values of enthalpic and entropic changes. Because the first class of binding was entropically opposed but enthalpically favored,the negative change of Gibbs free energy (ΔG1) was due to the contribution of heat effect and the process was mainly driven by enthalpy.

    The positive values of both ΔH2and ΔS2indicated that the second binding was an endothermic and entropy increasing process. This phenomenon can be explained by considering following reasons: firstly,when a PFNA molecule (partly) inserted itself into a hydrophobic cavity of HSA molecule formed by folding and twisting of peptide chain,the hydrophobic interaction between PFNA molecule and the cavity would cause a decrease in both the enthalpy and entropy. Secondly,the hydrophobic interaction led to some water molecules transferring into bulk solution from the hydrophobic cavity at the binding sites of HSA molecule,which was also exothermic but entropy increasing. Thirdly,accompanying the inserting of PFNA molecule into hydrophobic cavity,the original iceberg structure surrounding PFNA molecule was destroyed,which was endothermic and made a major positive contribution to the entropy. Because of the experimentally positive ΔH2and ΔS2,i.e.,entropy effect resulted in the negative change of Gibbs free energy (ΔG2),the second-class binding was entropy driven process. On the other hand,hydrophobic interaction between PFNA and HSA played a key role for this class of binding process as corroborated by the positive entropy changes (ΔS2) at complex formation.

    2.6 Three-dimensional fluorescence spectra

    Fig.5 Three-dimensional fluorescence spectra for HSA and PFNA HSA complexcHSA=2.0×10-6 mol·L-1,cPFNA=2.0×10-6 mol·L-1; T=298 K

    2.7 Circular dichroism spectra

    Further evidence of conformational changes of HSA upon addition of PFNA was confirmed by CD spectroscopy (Fig.6). It was apparently observed that the CD bands of HSA were at 209 and 222 nm. The binding of PFNA to HSA caused only a decrease in negative band intensity without any significant shift of the peaks which implied that HSA had predominantlyα-helix in nature even after binding to PFNA. The secondary structural contents of HSA were expressed in terms of mean residue ellipticity (MRE) according to literature [14],the calculated results exhibited that PFNA caused decrease inα-helical content of HSA from 55.6% in free HSA to 41.3% at a molar ratio of PFNA to HSA of 15∶1,β-sheet from 13.5% to 8.2%,β-turn from 16.5% to 13.0%,and increase in random content of HSA from 14.4% to 37.5%. From above results,it was apparent that the binding of PFNA to HSA led to a secondary structure change of HSA with the loss of helical stability.

    Fig.6 The CD spectra of HSA in the absence and presence of PFNA

    cHSA=2.0×10-6mol·L-1; molar ratiosnPFNA∶nHSAfrom 1 to 3: 0∶1,10∶1,15∶1

    3 Conclusions

    The results indicated that PFNA could quench the intrinsic fluorescence of HSA through static and dynamic quenching process. It was worthy noted that the binding site was located in the hydrophobic pocket of subdomain IIA according to the competitive binding experiment and molecular docking studies. Furthermore,molecular docking offered a molecular level explanation with the ability to estimate the participation of specific chemical groups and their interactions in complex stabilization. The ITC results showed that binding occurred at two different classes of binding sites. It also demonstrated that both electrostatic and hydrophobic interactions were presented in the formation of PFNA-HSA complex,the former being more important when PFNA bound to the first class of binding site,whereas hydrophobic forces were generally predominant in the second class of site,as seen from entropy increases. As further revealed by three-dimensional fluorescence and CD spectra,PFNA caused microenvironmental and conformational changes of HSA. Investigation of PFNA-HSA interaction has a great significance for thoroughly understanding the interaction process of PFNA-HSA,the relationship of structure and function of HSA,and the chemical essence of the interaction between biomacromolecule and ligand.

    [1] Yang B J,Hao F,Li J R,et al. Food Chem. Toxicol.、2014,65: 227.

    [2] Deng F Y,Dong C Y,Liu Y. Mol. Biosyst.、2012,8(5): 1446.

    [3] Brieger A,Bienefeld N,Hasan R,et al. Toxicol. in Vitro、2011,25(4): 960.

    [4] Christian G D,Thomas A T. Environ. Health Persp.、1999,107: 907.

    [5] K?rrman A,Harada K H,Inoue K,et al. Environ. Int.、2009,35(4): 712.

    [6] Qin P F,Liu R T,Pan X R,et al. J. Agric. Food Chem.、2010,58(9): 5561.

    [7] Ohmori K,Kudo N,Katayama K,et al. Toxicology、2003,84(2-3): 135.

    [8] MacManus-Spencer L A,Tse M L,Hebert P C,et al. Anal. Chem.、2010,82(3): 974.

    [9] Hu T Y,Liu Y. J. Pharm. Biomed. Anal.、2015,107: 325.

    [10] Molina-Bolívar J A,Galisteo-González F,Ruiz C C,et al. J. Lumin.、2014,56: 141.

    [11] Sun X J,Xu X Y,Liu M,et al. J. Solution Chem.、2010,39(1): 77.

    [12] Cheema M A,Taboada P,Barbosa S,et al. J. Chem. Thermodyn.、2009,41(4): 439.

    [13] Li J H,Wang S M. J. Chem. Thermodyn.、2013,58: 206.

    [14] Matei I,Hillebrand M. J. Pharm. Biomed. Anal.、2010,51(3): 768.

    *通訊聯(lián)系人

    O657.3

    A

    光譜法聯(lián)合分子對接和等溫滴定微量熱法研究全氟壬酸與人血清白蛋白的相互作用

    胡濤英1、黃 芳1、周珊珊1,2、劉 穎1,2*

    1. 中央民族大學(xué)生命與環(huán)境科學(xué)學(xué)院、北京 100081 2. 中央民族大學(xué)北京市食品環(huán)境與健康工程技術(shù)研究中心、北京 100081

    全氟壬酸(PFNA)是在血清中檢測到第三多的全氟烷酸類(PFAAs)新型有毒環(huán)境污染物。目前PFNA對人血清白蛋白(HSA)結(jié)構(gòu)甚至是功能的影響還處于起步階段、借助于多光譜、分子對接和等溫滴定微量熱(ITC)技術(shù)研究了PFNA和HSA相互作用的結(jié)合機理。所有熒光數(shù)據(jù)均進行了內(nèi)濾光校正以獲得更準確的結(jié)合參數(shù)。熒光結(jié)果表明PFNA通過動靜態(tài)猝滅方式可以猝滅HSA的內(nèi)源熒光。取代實驗和分子對接結(jié)果表明、PFNA主要通過極性鍵、疏水力和鹵素鍵鍵合在HSA亞域ⅡA疏水腔中、最佳對接自由能為-26.54 kJ·mol-1、表明PFNA分子與HSA有較大的結(jié)合親和力。ITC表明兩者的結(jié)合屬于兩類結(jié)合位點模型并給出了相應(yīng)的熱力學(xué)參數(shù):第一類結(jié)合位點有較大的親和力、屬于焓驅(qū)動、靜電力和鹵鍵作為主要驅(qū)動力; 第二類結(jié)合位點親和力較小、主要驅(qū)動力是疏水力。三維熒光光譜揭示PFNA與HSA生成復(fù)合物后、可以改變HSA的構(gòu)象、引起Trp和Tyr殘基微環(huán)境疏水性增強。圓二色譜(CD)定量測定了HSA與PFNA作用前后的二級結(jié)構(gòu)含量:α-螺旋、β-折疊和β-轉(zhuǎn)角含量分別降低14.3%、5.3%和3.5%、無規(guī)卷曲含量從14.4%增加到37.5%。以上結(jié)果表明、PFNA與HSA的結(jié)合可以改變HSA的二級結(jié)構(gòu)、進而可能影響HSA的生理功能。結(jié)果闡述了PFNA與HSA相互作用機理、并且為PFNA在體內(nèi)的運輸和分配提供了可靠的生物物理和生物化學(xué)的相關(guān)依據(jù)。

    全氟壬酸; 人血清白蛋白; 光譜法; 分子對接; 等溫滴定微量熱法

    2015-06-08、

    2015-10-29)

    2015-06-08; accepted:2015-10-29

    The National Natural Science Foundation of China (21177163),111 Project B08044,Special Guidance Fund of Building World First-class Universities (Disciplines) and Characteristic Development of Minzu University of China (2016,ydzxxk201619),Coordinate Development of First-Class and First-Class University Discipline Construction Funds (10301-0150200604),The Academic Team Construction Project of Minzu University of China (2015MDTD25C&13C),First-class Universities and First-class Discipline Construction Transitional Funds Under Special Funding (10301-01404031,2015),2015MDTD08C

    10.3964/j.issn.1000-0593(2016)12-4141-07

    Biography:HU Tao-ying,(1989—),Master of College of Life and Environmental Science,Minzu University of China e-mail: hty0945020@163.com *Corresponding author e-mail: liuying4300@163.com

    猜你喜歡
    全氟親和力等溫
    全氟烷基化合物暴露與成年人抑郁癥間的關(guān)系:基于NHANES 2005~2018
    EPDM/PP基TPV非等溫結(jié)晶行為的研究
    高端訪談節(jié)目如何提升親和力
    新聞傳播(2018年11期)2018-08-29 08:15:30
    高端訪談節(jié)目如何提升親和力探索
    新聞傳播(2018年13期)2018-08-29 01:06:52
    親和力在播音主持中的作用探究
    新聞傳播(2016年9期)2016-09-26 12:20:34
    1種制備全氟聚醚羧酸的方法
    1種制備全氟烯醚磺酰氟化合物的方法
    快速檢測豬鏈球菌的環(huán)介導(dǎo)等溫擴增方法
    納米CaCO3對FEP非等溫結(jié)晶動力學(xué)的影響
    中國塑料(2015年3期)2015-11-27 03:41:54
    將親和力應(yīng)用于播音主持中的方法探討
    新聞傳播(2015年7期)2015-07-18 11:09:57
    成人欧美大片| 成人永久免费在线观看视频| 精品一区二区三区av网在线观看| 美女大奶头视频| 久久精品国产亚洲av涩爱 | 一区二区三区高清视频在线| 国产在线精品亚洲第一网站| 男人舔奶头视频| 男女午夜视频在线观看| www日本黄色视频网| 又黄又粗又硬又大视频| 国产成人a区在线观看| 国产伦人伦偷精品视频| 国产高清视频在线播放一区| 国产在视频线在精品| 一本精品99久久精品77| 级片在线观看| 蜜桃久久精品国产亚洲av| 精品人妻一区二区三区麻豆 | 久久精品国产99精品国产亚洲性色| 午夜福利免费观看在线| 成人特级黄色片久久久久久久| 最后的刺客免费高清国语| 国产主播在线观看一区二区| 亚洲av电影不卡..在线观看| 又粗又爽又猛毛片免费看| 欧美另类亚洲清纯唯美| 国产精品 国内视频| 丰满的人妻完整版| 免费av不卡在线播放| 久久国产精品人妻蜜桃| 免费高清视频大片| 熟女电影av网| 婷婷亚洲欧美| 俺也久久电影网| 黄色日韩在线| 18美女黄网站色大片免费观看| 日韩成人在线观看一区二区三区| 国产精品野战在线观看| 欧美成人一区二区免费高清观看| 亚洲精品国产精品久久久不卡| 亚洲美女黄片视频| 国产av一区在线观看免费| 成年人黄色毛片网站| 高清日韩中文字幕在线| 亚洲中文日韩欧美视频| 久久天躁狠狠躁夜夜2o2o| 国产爱豆传媒在线观看| 少妇人妻精品综合一区二区 | 一夜夜www| 国产精品电影一区二区三区| 久久精品91无色码中文字幕| 国产一级毛片七仙女欲春2| 国产69精品久久久久777片| 亚洲av美国av| 亚洲国产日韩欧美精品在线观看 | 国产单亲对白刺激| av专区在线播放| 一二三四社区在线视频社区8| 99久久综合精品五月天人人| 国产精品久久久人人做人人爽| 久久人妻av系列| 少妇的逼好多水| 国产亚洲精品久久久久久毛片| 女人十人毛片免费观看3o分钟| 一级毛片高清免费大全| av视频在线观看入口| 每晚都被弄得嗷嗷叫到高潮| 色视频www国产| 国产精品日韩av在线免费观看| 国产一级毛片七仙女欲春2| 伊人久久精品亚洲午夜| 国产欧美日韩精品一区二区| 成年女人毛片免费观看观看9| 在线观看午夜福利视频| 亚洲美女视频黄频| 伊人久久大香线蕉亚洲五| 国内精品久久久久精免费| 日本黄色片子视频| 欧美性感艳星| 欧美性猛交╳xxx乱大交人| 国产一区二区激情短视频| 一a级毛片在线观看| 又粗又爽又猛毛片免费看| 亚洲真实伦在线观看| 日韩 欧美 亚洲 中文字幕| 大型黄色视频在线免费观看| 麻豆成人av在线观看| 亚洲一区二区三区不卡视频| 中文字幕av在线有码专区| 内地一区二区视频在线| 两人在一起打扑克的视频| 日本黄色片子视频| 欧美丝袜亚洲另类 | 99久久精品国产亚洲精品| av女优亚洲男人天堂| 嫩草影院入口| 成人无遮挡网站| 日本 欧美在线| 免费大片18禁| 免费看美女性在线毛片视频| 久久精品影院6| 亚洲美女视频黄频| 啦啦啦免费观看视频1| 精品人妻偷拍中文字幕| 此物有八面人人有两片| 精品一区二区三区视频在线观看免费| 国产伦一二天堂av在线观看| 亚洲av电影不卡..在线观看| 一级黄片播放器| 十八禁人妻一区二区| 美女cb高潮喷水在线观看| 国产精品久久视频播放| 男女之事视频高清在线观看| 国产成人影院久久av| 别揉我奶头~嗯~啊~动态视频| 午夜精品在线福利| 久久天躁狠狠躁夜夜2o2o| 深爱激情五月婷婷| 国产欧美日韩精品亚洲av| 欧美黑人欧美精品刺激| 天堂动漫精品| 中文字幕人妻丝袜一区二区| 一区福利在线观看| 宅男免费午夜| 一进一出抽搐动态| 51午夜福利影视在线观看| 性色av乱码一区二区三区2| 老鸭窝网址在线观看| 中国美女看黄片| 国产高清有码在线观看视频| 欧美成人一区二区免费高清观看| 欧美日韩一级在线毛片| www国产在线视频色| 国产真实乱freesex| 国产成人影院久久av| 床上黄色一级片| 日韩欧美一区二区三区在线观看| 久久久久久九九精品二区国产| 黄色日韩在线| 国产精品99久久久久久久久| 国产免费男女视频| 丁香六月欧美| 国产精品久久电影中文字幕| 午夜精品在线福利| 国产精品 国内视频| 久久久久九九精品影院| 午夜福利在线观看吧| 男插女下体视频免费在线播放| 亚洲精华国产精华精| 母亲3免费完整高清在线观看| 18禁美女被吸乳视频| 国产精品爽爽va在线观看网站| 噜噜噜噜噜久久久久久91| 乱人视频在线观看| 国产伦人伦偷精品视频| 少妇裸体淫交视频免费看高清| 十八禁网站免费在线| 天堂√8在线中文| 国产真实伦视频高清在线观看 | 黄色女人牲交| 欧美日韩黄片免| 日韩国内少妇激情av| 国产欧美日韩精品一区二区| 亚洲天堂国产精品一区在线| 国产v大片淫在线免费观看| 在线看三级毛片| 两人在一起打扑克的视频| 99热6这里只有精品| 国产真实乱freesex| 国产精品嫩草影院av在线观看 | 日韩欧美精品免费久久 | 国产精品日韩av在线免费观看| 久久久久久国产a免费观看| 中文字幕人妻丝袜一区二区| 岛国视频午夜一区免费看| 3wmmmm亚洲av在线观看| 久久久成人免费电影| avwww免费| 一进一出好大好爽视频| 丰满的人妻完整版| 99久久精品热视频| 亚洲片人在线观看| 国产精品av视频在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 午夜a级毛片| 啦啦啦免费观看视频1| 少妇丰满av| 国产午夜精品久久久久久一区二区三区 | 嫩草影视91久久| 日韩精品青青久久久久久| 国产精品一区二区三区四区免费观看 | 变态另类丝袜制服| 亚洲精品国产精品久久久不卡| 国产高清激情床上av| 无遮挡黄片免费观看| 97碰自拍视频| 欧美国产日韩亚洲一区| 亚洲最大成人手机在线| 最近最新中文字幕大全免费视频| 亚洲内射少妇av| 美女黄网站色视频| 日本 av在线| 在线观看一区二区三区| 啦啦啦免费观看视频1| 亚洲,欧美精品.| 午夜影院日韩av| 一区二区三区激情视频| 日日摸夜夜添夜夜添小说| 午夜精品久久久久久毛片777| 日韩 欧美 亚洲 中文字幕| 啦啦啦免费观看视频1| avwww免费| 男女做爰动态图高潮gif福利片| 国产不卡一卡二| 亚洲av免费在线观看| 欧美午夜高清在线| 国产三级在线视频| 精品一区二区三区视频在线观看免费| 久久精品国产亚洲av香蕉五月| 亚洲精品亚洲一区二区| 日韩欧美国产一区二区入口| 嫩草影视91久久| 嫩草影视91久久| 亚洲成人中文字幕在线播放| 国产真实伦视频高清在线观看 | 亚洲av成人av| 黄色女人牲交| 中文字幕人成人乱码亚洲影| 亚洲美女黄片视频| 女人高潮潮喷娇喘18禁视频| 老汉色av国产亚洲站长工具| 亚洲成av人片免费观看| 亚洲最大成人手机在线| 热99re8久久精品国产| 非洲黑人性xxxx精品又粗又长| 色播亚洲综合网| 天美传媒精品一区二区| 精品欧美国产一区二区三| 一本久久中文字幕| 日韩有码中文字幕| 国产探花极品一区二区| 90打野战视频偷拍视频| 88av欧美| 丰满人妻一区二区三区视频av | 国模一区二区三区四区视频| 久9热在线精品视频| 久久久久久久精品吃奶| 亚洲激情在线av| 1000部很黄的大片| 男人舔奶头视频| 欧美av亚洲av综合av国产av| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久久人妻蜜臀av| 法律面前人人平等表现在哪些方面| 久久亚洲真实| 亚洲精品色激情综合| 婷婷精品国产亚洲av在线| 激情在线观看视频在线高清| 午夜日韩欧美国产| 欧美国产日韩亚洲一区| 男人和女人高潮做爰伦理| 欧美黑人巨大hd| 亚洲欧美一区二区三区黑人| 一进一出好大好爽视频| av天堂在线播放| 精品国产亚洲在线| 99国产精品一区二区三区| 啦啦啦韩国在线观看视频| 成年女人毛片免费观看观看9| 欧洲精品卡2卡3卡4卡5卡区| www.熟女人妻精品国产| 国产亚洲精品综合一区在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一区福利在线观看| 少妇的逼好多水| 一夜夜www| 日韩av在线大香蕉| 国产日本99.免费观看| 中文字幕人妻熟人妻熟丝袜美 | 男女做爰动态图高潮gif福利片| 在线免费观看的www视频| 99热只有精品国产| 亚洲av电影在线进入| 成人无遮挡网站| 国产精品美女特级片免费视频播放器| 99久久综合精品五月天人人| www国产在线视频色| 99久久成人亚洲精品观看| 国产av麻豆久久久久久久| 天天一区二区日本电影三级| 国产高清视频在线播放一区| 神马国产精品三级电影在线观看| 长腿黑丝高跟| 青草久久国产| 18美女黄网站色大片免费观看| 亚洲欧美日韩高清专用| 国产单亲对白刺激| 久久国产精品人妻蜜桃| 国产精品98久久久久久宅男小说| 精品电影一区二区在线| 国产精品自产拍在线观看55亚洲| 亚洲成人精品中文字幕电影| 午夜日韩欧美国产| 国内精品久久久久精免费| 亚洲av成人精品一区久久| 久久久精品大字幕| 看片在线看免费视频| 天堂网av新在线| 亚洲人成网站在线播放欧美日韩| 亚洲精品在线观看二区| 久久99热这里只有精品18| 偷拍熟女少妇极品色| 男插女下体视频免费在线播放| 两人在一起打扑克的视频| 国产成人a区在线观看| 欧美乱码精品一区二区三区| 日本黄大片高清| 日韩成人在线观看一区二区三区| 国产精品久久久久久精品电影| 噜噜噜噜噜久久久久久91| 国产亚洲av嫩草精品影院| 久久九九热精品免费| 蜜桃久久精品国产亚洲av| 欧美绝顶高潮抽搐喷水| 欧美激情久久久久久爽电影| 三级国产精品欧美在线观看| 久久精品国产亚洲av香蕉五月| 成人三级黄色视频| 天堂√8在线中文| 亚洲性夜色夜夜综合| 18禁裸乳无遮挡免费网站照片| 国产精品久久久久久久久免 | 国产99白浆流出| 亚洲精品一区av在线观看| 国产一区二区在线av高清观看| 在线观看午夜福利视频| 精品久久久久久成人av| 91在线观看av| 亚洲精品一区av在线观看| 精品久久久久久久毛片微露脸| 青草久久国产| 尤物成人国产欧美一区二区三区| 欧美精品啪啪一区二区三区| eeuss影院久久| 乱人视频在线观看| 国产v大片淫在线免费观看| 在线观看舔阴道视频| 亚洲欧美日韩无卡精品| 麻豆国产97在线/欧美| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品合色在线| 国产野战对白在线观看| 天天添夜夜摸| 国产日本99.免费观看| 欧美日本视频| 在线观看av片永久免费下载| 女生性感内裤真人,穿戴方法视频| 美女cb高潮喷水在线观看| 九色国产91popny在线| 亚洲专区国产一区二区| 欧美在线黄色| 两个人视频免费观看高清| x7x7x7水蜜桃| 成人精品一区二区免费| 12—13女人毛片做爰片一| 国产一区二区亚洲精品在线观看| 国产亚洲av嫩草精品影院| svipshipincom国产片| 免费无遮挡裸体视频| 亚洲激情在线av| 免费看十八禁软件| 最近最新中文字幕大全电影3| 99久久九九国产精品国产免费| 色综合亚洲欧美另类图片| 听说在线观看完整版免费高清| www.www免费av| 婷婷丁香在线五月| 91九色精品人成在线观看| 人人妻,人人澡人人爽秒播| 久久久久久久精品吃奶| 法律面前人人平等表现在哪些方面| 国产精品久久久久久久电影 | 亚洲精品乱码久久久v下载方式 | 欧美成人一区二区免费高清观看| 99久久综合精品五月天人人| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲精品久久国产高清桃花| 别揉我奶头~嗯~啊~动态视频| 日韩大尺度精品在线看网址| 精品国产超薄肉色丝袜足j| 18禁国产床啪视频网站| 亚洲欧美日韩无卡精品| 一a级毛片在线观看| 观看美女的网站| 亚洲欧美精品综合久久99| 亚洲国产日韩欧美精品在线观看 | 男女视频在线观看网站免费| 91麻豆av在线| 日本熟妇午夜| 九九久久精品国产亚洲av麻豆| 午夜福利在线观看吧| 欧美中文综合在线视频| av福利片在线观看| www日本黄色视频网| 99久久无色码亚洲精品果冻| 国产又黄又爽又无遮挡在线| 精品国产超薄肉色丝袜足j| 久久久久久久久久黄片| 精品欧美国产一区二区三| 亚洲天堂国产精品一区在线| 又黄又爽又免费观看的视频| 亚洲真实伦在线观看| 极品教师在线免费播放| 亚洲人与动物交配视频| 日韩欧美在线乱码| 精品久久久久久,| 欧美性感艳星| 国产精品亚洲av一区麻豆| 色老头精品视频在线观看| 欧美黄色片欧美黄色片| 久久久久性生活片| 国产精品亚洲美女久久久| 亚洲国产精品999在线| 亚洲精品国产精品久久久不卡| 夜夜夜夜夜久久久久| 国产探花极品一区二区| 国产精品一区二区三区四区久久| xxxwww97欧美| av天堂中文字幕网| 国产成人福利小说| 午夜福利成人在线免费观看| 亚洲av成人精品一区久久| 久久欧美精品欧美久久欧美| 欧美性猛交╳xxx乱大交人| 欧美一级毛片孕妇| 免费电影在线观看免费观看| 国产精品久久视频播放| 亚洲成人久久爱视频| 久久久久免费精品人妻一区二区| 美女大奶头视频| 久久久精品欧美日韩精品| 最新在线观看一区二区三区| 国产精品1区2区在线观看.| 丰满的人妻完整版| 成年人黄色毛片网站| 免费av观看视频| 国产一区二区在线观看日韩 | 国产欧美日韩一区二区精品| 一个人看视频在线观看www免费 | svipshipincom国产片| 久久欧美精品欧美久久欧美| 性色avwww在线观看| 一个人看的www免费观看视频| 久久久久久国产a免费观看| 欧美日韩一级在线毛片| 国产伦一二天堂av在线观看| 久久亚洲精品不卡| 欧美日韩福利视频一区二区| 国产伦一二天堂av在线观看| 五月伊人婷婷丁香| 美女cb高潮喷水在线观看| 国产亚洲精品综合一区在线观看| 国产真人三级小视频在线观看| 日本一二三区视频观看| 韩国av一区二区三区四区| 少妇人妻一区二区三区视频| 久9热在线精品视频| 国产探花极品一区二区| 亚洲熟妇熟女久久| 欧美极品一区二区三区四区| 国内少妇人妻偷人精品xxx网站| 一个人免费在线观看电影| 久久伊人香网站| 99久久久亚洲精品蜜臀av| 久久久久久大精品| 午夜福利成人在线免费观看| 国产老妇女一区| 国产精品自产拍在线观看55亚洲| 一卡2卡三卡四卡精品乱码亚洲| 女同久久另类99精品国产91| 国产精品日韩av在线免费观看| 国产精品久久电影中文字幕| 又紧又爽又黄一区二区| 丰满乱子伦码专区| 亚洲成a人片在线一区二区| 亚洲天堂国产精品一区在线| 小说图片视频综合网站| 搡老妇女老女人老熟妇| 国产在视频线在精品| 1000部很黄的大片| 日韩高清综合在线| 成人精品一区二区免费| 美女大奶头视频| 精品欧美国产一区二区三| 国产熟女xx| 免费电影在线观看免费观看| 成人鲁丝片一二三区免费| 欧美一区二区精品小视频在线| 亚洲七黄色美女视频| 国产亚洲精品综合一区在线观看| 国产一区二区在线av高清观看| 亚洲第一电影网av| 亚洲国产高清在线一区二区三| 国产伦人伦偷精品视频| 国产av麻豆久久久久久久| 99久久精品热视频| 成年免费大片在线观看| 久久精品91蜜桃| 免费搜索国产男女视频| 麻豆一二三区av精品| av欧美777| 亚洲人成伊人成综合网2020| 免费av不卡在线播放| 听说在线观看完整版免费高清| 级片在线观看| av中文乱码字幕在线| 成人无遮挡网站| 好看av亚洲va欧美ⅴa在| 精品国产三级普通话版| 亚洲人成伊人成综合网2020| 白带黄色成豆腐渣| 亚洲狠狠婷婷综合久久图片| 国产av一区在线观看免费| 久久欧美精品欧美久久欧美| 99久久无色码亚洲精品果冻| 成人精品一区二区免费| 日韩 欧美 亚洲 中文字幕| 亚洲欧美日韩高清专用| 欧美日韩瑟瑟在线播放| 五月玫瑰六月丁香| 亚洲久久久久久中文字幕| 色哟哟哟哟哟哟| 90打野战视频偷拍视频| 国产综合懂色| 国产真实伦视频高清在线观看 | 亚洲av中文字字幕乱码综合| 国产欧美日韩一区二区三| 成人av在线播放网站| 国产视频一区二区在线看| 免费人成视频x8x8入口观看| 国产欧美日韩精品一区二区| 99精品欧美一区二区三区四区| 黄色丝袜av网址大全| av天堂在线播放| 99热6这里只有精品| 国产黄片美女视频| 久久精品国产清高在天天线| 首页视频小说图片口味搜索| 精品一区二区三区人妻视频| 久久九九热精品免费| www日本在线高清视频| 国产精品免费一区二区三区在线| 成人性生交大片免费视频hd| 特级一级黄色大片| 久久99热这里只有精品18| 国产视频内射| av在线蜜桃| 久9热在线精品视频| 国产精品亚洲一级av第二区| 欧美性猛交黑人性爽| 淫妇啪啪啪对白视频| 亚洲国产精品999在线| 国产欧美日韩一区二区精品| 久久精品91蜜桃| 日日干狠狠操夜夜爽| 亚洲国产欧美网| АⅤ资源中文在线天堂| 亚洲av电影不卡..在线观看| 久久久久亚洲av毛片大全| 久久久久国内视频| 欧美日韩精品网址| 99国产精品一区二区蜜桃av| 亚洲国产欧美网| 久久久久久久午夜电影| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产单亲对白刺激| 老熟妇仑乱视频hdxx| 狂野欧美白嫩少妇大欣赏| 亚洲 国产 在线| 午夜激情欧美在线| 嫩草影视91久久| 午夜激情福利司机影院| 每晚都被弄得嗷嗷叫到高潮| 夜夜爽天天搞| 亚洲国产精品合色在线| 18禁美女被吸乳视频| 国产午夜精品论理片| 免费大片18禁| 熟妇人妻久久中文字幕3abv| 最近视频中文字幕2019在线8| 啦啦啦韩国在线观看视频| 欧美午夜高清在线| 亚洲第一电影网av| 黄色女人牲交| 国产日本99.免费观看| 亚洲美女黄片视频| 无人区码免费观看不卡| 伊人久久大香线蕉亚洲五| 热99re8久久精品国产| 亚洲精品在线观看二区| 操出白浆在线播放| 婷婷精品国产亚洲av在线| 欧美日韩一级在线毛片| 国产午夜福利久久久久久| 俺也久久电影网| 亚洲成人免费电影在线观看| 久久亚洲真实| 欧美绝顶高潮抽搐喷水| 黄色视频,在线免费观看| 中文资源天堂在线| 岛国在线免费视频观看| 一级黄色大片毛片| 国产成人影院久久av| 国产免费一级a男人的天堂|