王 彬 綜述,張曉華 審校
中國(guó)人民解放軍南京軍區(qū)南京總醫(yī)院干部消化內(nèi)科, 江蘇 南京210002
SOCS3在重癥急性胰腺炎炎癥反應(yīng)中的作用
王 彬 綜述,張曉華 審校
中國(guó)人民解放軍南京軍區(qū)南京總醫(yī)院干部消化內(nèi)科, 江蘇 南京210002
SOCS3(suppressor of cytokine signaling 3)是一種細(xì)胞因子信號(hào)轉(zhuǎn)導(dǎo)阻抑蛋白,在許多疾病的器官損傷中起著重要的調(diào)節(jié)作用,它通過對(duì)JAK/STAT信號(hào)通路的反饋調(diào)節(jié)作用抑制炎癥因子的釋放起到抑炎作用,現(xiàn)將SOCS3在重癥急性胰腺炎(severe acute pancreatitis,SAP)炎癥反應(yīng)中的作用作一綜述。
SOCS3;重癥急性胰腺炎;炎癥因子;JAK/STAT信號(hào)通路
重癥急性胰腺炎(severe acute pancreatitis,SAP)是多種病因引起的胰腺局部炎癥、壞死和感染,并伴有全身炎癥反應(yīng)和多個(gè)器官功能損害的疾病。盡管近年SAP的綜合治療已取得重要進(jìn)展,但病死率仍高達(dá)17%[1-2],同時(shí)存在住院時(shí)間長(zhǎng)、治療費(fèi)用高等問題,給社會(huì)及家庭造成巨大的負(fù)擔(dān)。臨床研究表明,SAP通常有兩個(gè)死亡高峰,即早期過度炎癥反應(yīng)和后期的胰腺感染壞死。其中發(fā)病早期強(qiáng)烈的炎癥反應(yīng)及其引起的多臟器功能障礙綜合征(multiple organ dysfunction syndrome,MODS)是SAP患者死亡的重要原因[3-4]。有研究[5-6]提出SAP的“白細(xì)胞過度激活”學(xué)說,胰腺炎致死不僅是由于胰酶的自身消化,白細(xì)胞、單核細(xì)胞的過度激活,產(chǎn)生多種炎癥介質(zhì),形成全身炎癥反應(yīng)綜合征(systemic inflammatory reaction syndrome,SIRS),并最終導(dǎo)致多器官功能障礙。
患者的預(yù)后很大程度上取決于早期炎癥反應(yīng)的處理,如果早期處理恰當(dāng),就可以阻斷病情發(fā)展,則預(yù)后較好[7]。如何在SAP早期控制過度炎癥反應(yīng),阻斷病情發(fā)展,并減少器官功能損傷成為重要的課題,早年針對(duì)細(xì)胞因子的單抗和特異性拮抗物的研究,動(dòng)物實(shí)驗(yàn)療效肯定,但用于人體尚未起到理想的效果[8];以清除炎癥介質(zhì)為基礎(chǔ)的持續(xù)血液濾過治療則存在效果不肯定、費(fèi)用高、潛在的抗凝風(fēng)險(xiǎn)等多種問題[9],因而控制早期炎癥反應(yīng)是SAP治療關(guān)鍵。
關(guān)于細(xì)胞因子在SAP早期炎癥反應(yīng)發(fā)病機(jī)制中作用的研究是危重癥領(lǐng)域的前沿課題之一,闡明其活化和調(diào)控機(jī)制將有助于從細(xì)胞和分子水平深化對(duì)SAP本質(zhì)的認(rèn)識(shí)。研究發(fā)現(xiàn),SAP患者血清中的腫瘤壞死因子(tumor necrosis factor,TNF)-α、白介素(interleukin,IL)-1β、IL-6水平明顯升高,與SAP的病損程度和SIRS的臨床表現(xiàn)呈正相關(guān),在SAP時(shí)局部和全身炎癥反應(yīng)過程中起著關(guān)鍵性作用[10];目前認(rèn)為,單核細(xì)胞作為炎癥反應(yīng)的重要效應(yīng)細(xì)胞,在受到刺激后分泌各種細(xì)胞因子,誘導(dǎo)巨噬細(xì)胞系統(tǒng)異常激活,并產(chǎn)生過多的炎癥介質(zhì)及毒性物質(zhì)是SAP時(shí)炎癥反應(yīng)發(fā)生的重要機(jī)理。細(xì)胞因子一旦產(chǎn)生,不但激活自身,還能促進(jìn)其他細(xì)胞因子的產(chǎn)生,引起連鎖和放大效應(yīng),即所謂的級(jí)聯(lián)效應(yīng)(cascades),使臟器結(jié)構(gòu)和功能受損[11]。盡管細(xì)胞因子種類眾多,但它們作用靶細(xì)胞時(shí)所必須經(jīng)過的信號(hào)轉(zhuǎn)導(dǎo)通路卻不多,如能對(duì)關(guān)鍵的信號(hào)轉(zhuǎn)導(dǎo)通路進(jìn)行有效的阻斷和調(diào)節(jié),則可能控制細(xì)胞因子的級(jí)聯(lián)效應(yīng),從而調(diào)節(jié)全身炎癥反應(yīng),避免MODS的發(fā)生[12-13]。
Janus激酶/信號(hào)轉(zhuǎn)導(dǎo)子和轉(zhuǎn)錄激活子(Janus kinase/signal transducer and activator of transcription,JAK/STAT)信號(hào)轉(zhuǎn)導(dǎo)通路是近些年發(fā)現(xiàn)的在細(xì)胞因子信號(hào)轉(zhuǎn)導(dǎo)過程中起重要調(diào)節(jié)作用的信號(hào)通路。現(xiàn)有資料表明,JAK/STAT信號(hào)通路參與了干擾素γ(IFN-γ)、白細(xì)胞介素(ILs)和生長(zhǎng)激素等多種細(xì)胞因子、激素的信號(hào)轉(zhuǎn)導(dǎo)過程[14-15]。STAT是一族分子量為85~115 kD的蛋白質(zhì),約由700~800個(gè)氨基酸構(gòu)成。目前已在哺乳動(dòng)物細(xì)胞中克隆出7個(gè)STAT家族成員,即STAT1~4、5a、5b和6。已發(fā)現(xiàn),至少有35種多肽配體可激活STAT,包括細(xì)胞因子(如IFN-γ、ILs)、某些生長(zhǎng)因子及生長(zhǎng)激素等,提示STAT在機(jī)體生長(zhǎng)發(fā)育和免疫調(diào)理過程中發(fā)揮了一定的作用。JAK/STAT途徑的信號(hào)轉(zhuǎn)導(dǎo)主要由以下3個(gè)步驟完成:首先,配體與靶細(xì)胞表面的受體結(jié)合,誘導(dǎo)受體發(fā)生二聚化,并通過酪氨酸磷酸化作用激活JAK;活化的JAK又反過來(lái)磷酸化受體的酪氨酸殘基,形成STAT的結(jié)合位點(diǎn),STAT與受體結(jié)合后其第701位酪氨酸殘基也被JAK磷酸化,使它從受體上解離下來(lái);最后,活化的STAT形成同源或異源二聚體轉(zhuǎn)入細(xì)胞核內(nèi),并和相應(yīng)基因啟動(dòng)子上的STAT結(jié)合位點(diǎn)結(jié)合,調(diào)節(jié)基因的轉(zhuǎn)錄表達(dá)。由于IFN-γ、TNF-α和ILs等眾多細(xì)胞因子基因的啟動(dòng)子上均有STAT的結(jié)合位點(diǎn),因此它們的基因轉(zhuǎn)錄表達(dá)直接受STAT的調(diào)控。STATs蛋白包含在調(diào)節(jié)局部與系統(tǒng)的轉(zhuǎn)錄調(diào)控機(jī)制中,它們?cè)诩?xì)胞因子與細(xì)胞因子介導(dǎo)的基因轉(zhuǎn)錄表達(dá)之間提供了一個(gè)直接的聯(lián)系,其中STAT3參與了大量不同的生長(zhǎng)因子與細(xì)胞因子的信號(hào)轉(zhuǎn)導(dǎo)通路的調(diào)節(jié)[16-17]。
近年研究表明,JAK/STAT信號(hào)轉(zhuǎn)導(dǎo)通路參與了多種重要促炎/抗炎細(xì)胞因子的信號(hào)轉(zhuǎn)導(dǎo)和調(diào)控過程,尤以IFN-γ、IL-1、IL-6與JAK/STAT信號(hào)通路的活化關(guān)系最為密切[18]。為避免過度刺激,細(xì)胞因子誘導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)被嚴(yán)密控制,細(xì)胞因子信號(hào)在傳入的同時(shí),又可通過JAK/STAT 信好通路途徑誘導(dǎo)細(xì)胞因子信號(hào)轉(zhuǎn)導(dǎo)抑制因子(suppressor of cytokine signaling,SOCS)基因表達(dá),其表達(dá)產(chǎn)物又可特異性地抑制細(xì)胞因子介導(dǎo)的JAK/STAT信號(hào)轉(zhuǎn)導(dǎo)通路,構(gòu)成一負(fù)反饋調(diào)節(jié)環(huán)路,從而使機(jī)體處于動(dòng)態(tài)平衡[19]。其中SOCS3是SOCS家族中負(fù)性調(diào)控JAK/STAT信號(hào)轉(zhuǎn)導(dǎo)通路作用最強(qiáng)的抑制蛋白之一,其啟動(dòng)子上含有STAT3的結(jié)合位點(diǎn)[20]。STAT3最初被認(rèn)為是一個(gè)核因子,其介導(dǎo)IL-6依賴的有關(guān)肝臟急性期反應(yīng)的信號(hào)。隨后的研究證實(shí)STAT3介導(dǎo)或參與許多不同細(xì)胞和器官的細(xì)胞因子(如IL-6、IL-11、IL-10、IL-2、白血病抑制因子LIF等)和生長(zhǎng)因子(如EGF、TGF-α、G-CSF和肝細(xì)胞生長(zhǎng)因子等)的信號(hào)轉(zhuǎn)導(dǎo)。研究表明,許多細(xì)胞因子既能介導(dǎo)SOCS3的表達(dá),其自身的表達(dá)又能被SOCS3所抑制[21]。例如促炎癥細(xì)胞因子IL-1β、IL-6、TNF-α和LPS 能夠使人和小鼠巨噬細(xì)胞培養(yǎng)中SOCS3的表達(dá)上調(diào),導(dǎo)致JAK/STAT途徑的抑制[22];轉(zhuǎn)染SOCS3進(jìn)入小鼠巨噬細(xì)胞同樣使NO、TNF-α、IL-6的生成減少[23]。更重要的是SOCS3在許多疾病的各種器官損傷中起著重要的調(diào)節(jié)作用。
細(xì)胞因子信號(hào)轉(zhuǎn)導(dǎo)阻抑蛋白(suppressor of cytokine signalling,SOCS)是JAK/STAT信號(hào)轉(zhuǎn)導(dǎo)通路的反饋抑制因子,又被稱為細(xì)胞的“分子剎車”。其中SOCS3是SOCS家族中負(fù)性調(diào)控JAK/STAT信號(hào)通路作用最強(qiáng)的抑制蛋白之一,因其作用廣泛受到廣大研究者的關(guān)注。近年,在其功能及臨床研究等方面都取得了許多新進(jìn)展[24-25]。
關(guān)于SOCS3對(duì)胰腺腺泡細(xì)胞表達(dá)細(xì)胞因子的調(diào)節(jié)作用,實(shí)驗(yàn)研究表明,雨蛙素通過JAK2/STAT3通路誘導(dǎo)胰腺腺泡細(xì)胞表達(dá)IL-1β,SOCS3對(duì)JAK/STAT信號(hào)通路具有負(fù)反饋調(diào)節(jié)作用。在雨蛙素介導(dǎo)的小鼠SAP中,胰腺、肺等臟器內(nèi)STAT3表達(dá)增加,STAT活化發(fā)生在MODS之前,表明STAT3也許是介導(dǎo)MODS的一個(gè)共同途徑,在誘發(fā)炎癥反應(yīng)中發(fā)揮作用。在胰腺腺泡細(xì)胞和大鼠胰腺中,SOCS3可能通過直接調(diào)節(jié)JAK2/STAT3信號(hào),使IL-6和TGF-β1表達(dá)降低,水腫和空泡形成減輕[26]。也有研究表明,LPS 和TNF-α是胰腺表達(dá)STAT3和SOCS3有力的促進(jìn)介質(zhì),IL-6和IL-1β則間接發(fā)揮作用[27]。在SAP并發(fā)MODS時(shí),促炎因子與抗炎因子之間的平衡對(duì)于炎癥反應(yīng)的嚴(yán)重程度起著重要的作用,特別是TNF-α作為SAP最早升高的細(xì)胞因子,在并發(fā)MODS過程中起核心作用[28]。之前有研究表明,JAK2蛋白在SAP發(fā)生時(shí)高表達(dá),參與SAP形成的病理過程,JAK/STAT通路活化可能促進(jìn)SAP肝損傷;抑制JAK/STAT通路活化可下調(diào)胰彈性蛋白酶誘導(dǎo)Kupffer細(xì)胞分泌促炎因子,有助于減輕SAP時(shí)的炎癥反應(yīng)和肝損傷[29-30]。
炎癥因子通過JAK/STAT信號(hào)轉(zhuǎn)導(dǎo)通路誘導(dǎo)SOCS3基因表達(dá),其表達(dá)產(chǎn)物又特異性地抑制炎癥因子介導(dǎo)的JAK/STAT信號(hào)轉(zhuǎn)導(dǎo)通路,形成對(duì)JAK/STAT信號(hào)轉(zhuǎn)導(dǎo)通路的負(fù)反饋調(diào)節(jié)。SOCS3的這種負(fù)反饋調(diào)節(jié)作用主要通過三種方式進(jìn)行:(1)利用和STAT相似的SH2結(jié)構(gòu)域,競(jìng)爭(zhēng)性地與細(xì)胞因子受體胞質(zhì)區(qū)的磷酸化Tyr位點(diǎn)結(jié)合,阻止轉(zhuǎn)錄因子STAT的活化;(2)SOCS3還可以利用SH2結(jié)構(gòu)域與通路中的JAK結(jié)合,競(jìng)爭(zhēng)性抑制JAK與底物的結(jié)合,靠近SH2結(jié)構(gòu)域N端的激酶抑制區(qū)(kinase inhibitory rigion,KIR)在對(duì)JAK的抑制中也起了重要作用;(3)通過C端的SOCS盒與伸蛋白BC(elongin BC)復(fù)合體結(jié)合,將SOCS3結(jié)合的信號(hào)蛋白如JAK和STAT等通過泛素化途徑降解,從而阻斷細(xì)胞因子的信號(hào)傳遞。SOCS3蛋白通過以上三種方式形成對(duì)JAK/STAT信號(hào)通路的負(fù)反饋調(diào)節(jié),抑制炎癥因子的表達(dá)與釋放,起到抑炎作用[31-33]。早期全身炎癥反應(yīng)是SAP防治過程中最為棘手的問題之一,抑制炎癥因子的釋放是抑制早期全身炎癥反應(yīng)的關(guān)鍵,SOCS3作為機(jī)體為數(shù)不多的抑炎蛋白之一,可利用它對(duì)SAP早期炎癥反應(yīng)進(jìn)行干預(yù),可能為SAP的臨床治療提供一條新的思路,其詳細(xì)作用機(jī)制還需大量基礎(chǔ)和臨床研究進(jìn)一步證實(shí)。
[2]Garip G, Sarand?l E, Kaya E. Effects of disease severity and necrosis on pancreatic dysfunction after acute pancreatitis [J]. World J Gastroenterol, 2013, 19(44): 8065-8070.
[3]Adam F, Bor C, Uyar M, et al. Severe acute pancreatitis admitted to intensive care unit: SOFA is superior to Ranson's criteria and APACHE II in determining prognosis [J]. Turk J Gastroenterol, 2013, 24(5): 430-435.
[4]Lei H, Minghao W, Xiaonan Y, et al. Acute lung injury in patients with severe acute pancreatitis [J]. Turk J Gastroenterol, 2013, 24(6): 502-527.
[5]Bhatia M. Acute pancreatitis as a model of SIRS [J]. Front Biosci (Landmark Ed), 2009, 14: 2042-2050.
[6]Gunjaca I, Zunic J, Gunjaca M, et al. Circulating cytokine levels in acute pancreatitis-model of SIRS/CARS can help in the clinical assessment of disease severity [J]. Inflammation, 2012, 35(2): 758-763.
[7]Petrov M. Nutrition, inflammation, and acute pancreatitis [J]. ISRN Inflamm,2013, 2013: 341410.
[9]Greer SE, Burchard KW. Acute pancreatitis and critical illness: a pancreatic tale of hypoperfusion and inflammation [J]. Chest, 2009, 136(5): 1413-1419.
[10]Labbe K, Danialou G, Gvozdic D, et al. Inhibition of monocyte chemoattractant protein-1 prevents diaphramatic inflammation and maintains contratile function during endotoxemia [J]. Crit Care, 2010, 14(5): R187.
[11]Gregoric P, Sijacki A, Stankovic S, et al. SIRS score on admission and initial concentration of IL-6 as severe acute pancreatitis outcome predictors [J]. Hepatogastroenterology, 2010, 57(98): 349-353.
[12]Tamiya T, Kashiwagi I, Takahashi R, et al. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways: regulation of T-cell inflammation by SOCS1 and SOCS3 [J]. Arterioscler Thromb Vasc Biol, 2011, 31 (5): 980-985.
[13]Kang M, Park KS, Seo JY, et al. Lycopene inhibits IL-6 expression in cerulein-stimulated pancreatic acinar cells [J]. Genes Nutr, 2011, 6 (2): 117-123.
[14]Olavarria VH, Sepulcre MP, Figueroa JE, et al. Prolactin-induced production of reactive oxygen species and IL-1β in leukocytes from the bony fish gilthead seabream involves Jak/Stat and NF-κB signaling pathways [J]. J Immunol, 2010, 185(7): 3873-3883.
[15]Soebiyanto RP, Sreenath SN, Qu CK, et al. Complex systems biology approach to understanding coordination of JAK-STAT signaling [J]. Biosystems, 2007, 90(3): 830-842.
[16]Pfeifer AC, Timmer J, Klingmüller U. Systems biology of JAK/STAT signalling [J]. Essays Biochem, 2008, 45: 109-120.
[17]Zhang Y, Wu XH, Luo CL, et al. Interleukin-12-anchored exosomes increase cytotoxicity of T lymphocytes by reversing the JAK/STAT pathway impaired by tumor-derived exosomes [J]. Int J Mol Med, 2010, 25(5): 695-700.
[18]Shirshev SV, Orlova EG. Molecular mechanisms of regulation of functional activity of mononuclear phagocytes by leptin [J]. Biochemistry, 2005, 70(8): 841-847.
[19]Croker BA, Kiu H, Nicholson SE. SOCS regulation of the JAK/STAT signalling pathway [J]. Semin Cell Dev Biol, 2008, 19(4): 414-422.
[20]Koeberlein B, zur Hausen A, Bektas N, et al. Hepatitis B virus overexpresses suppressor of cytokine signaling-3 (SOCS3) thereby contributing to severity of inflammation in the liver [J]. Virus Res, 2010, 148(1-2): 51-59.
[21]Tan JC, Rabkin R. Suppressors of cytokine signaling in health and disease [J]. Pediatr Nephrol, 2005, 20(5): 567-575.
[22]Ben A Croker, Kiu H, Pellegrini M, et al. IL-6 promotes acute and chronic inflammation disease in the absence of SOCS3 [J]. Immunol Cell Biol, 2012, 90(1): 124-129.
[23]Berlato C, Cassatella MA, Kinjyo I, et al. Involvement of suppressor of cytokine signaling-3 as a mediator of the inhibitory effects of IL-10 on lipopolysaccharide-induced macrophage activation [J]. J Immunol, 2002, 168(12): 6404-6411.
[24]Kershaw NJ, Murphy JM, Liau NP, et al. SOCS3 binds specific receptor-JAK complexes to control cytokine signaling by direct kinase inhibition [J]. Nat Struct Mol Biol, 2013, 20(4): 469-476.
[25]Williams, JJ, Munro KM, Palmer TM. Role of ubiquitylation in controlling suppressor of cCytokine signalling 3 (SOCS3) function and expression [J]. Cells, 2014, 3(2): 546-562.
[26]Yu JH, Kim KH, Kim H. SOCS3 and PPAR-gamma ligands inhibit the expression of IL-6 and TGF-beta1 by regulating JAK2/STAT3 signaling in pancreas [J]. Int J Biochem Cell Biol, 2008, 40(4): 677-688.
[27]Vona-Davis LC, Frankenberry KA, Waheed U, et al. Expression of STAT3 and SOCS3 in pancreatic acinar cells [J]. J Surg Res, 2005, 127(1): 14-20.
[28]Yang T, Mao YF, Liu SQ, et al. Protective effects of the free radical scavenger edaravone on acute pancreatitis-associated lung injury [J]. Eur J Pharmacol, 2010, 630(1-3): 152-157.
[29]Wang B, Zhang XH, Zhu RM, et al. Expression and role of SOCS3 in severe acute pancreatitis in rats [J].Word Chinese Journal of Digestology, 2011, 19(31): 3212-3216. 王彬, 張曉華, 朱人敏, 等. SOCS3在重癥急性胰腺炎大鼠胰腺中的表達(dá)和作用[J]. 世界華人消化雜志, 2011, 19(31): 3212-3216.
[30]Wang B, Zhang XH, Zhu RM, et al. Expression and role of SOCS3 in rat with acute pancreatitis associated acute lung injury [J]. Chin J Gastroenterol, 2012, 17(1): 14-18.. 王彬, 張曉華, 朱人敏, 等. SOCS3在實(shí)驗(yàn)性急性胰腺炎急性肺損傷大鼠肺組織中的表達(dá)和作用[J]. 胃腸病學(xué), 2012, 17(1): 14-18.
[31]Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation [J]. Nat Rev Immunol, 2007, 7(6): 454-465.
[32]Drennan M, Elewaut D. Regulating the regulators: SOCS3 joins the dance [J]. Ann Rheum Dis, 2011, 70(12): 2061-2062.
[33]Tamiya T, Kashiwagi I, Takahashi R, et al. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways: regulation of T-cell inflammation by SOCS1 and SOCS3 [J]. Arterioscler Thromb Vasc Biol, 2011, 31(5): 980-985.
(責(zé)任編輯:李 健)
The role of SOCS3 in inflammation response to severe acute pancreatitis
WANG Bin, ZHANG Xiaohua
Department of Gastroenterology, Nanjing General Hospital of Nanjing Military Command, Nanjing 210002, China
SOCS3 (suppressor of cytokine signaling 3) plays an important role in regulating organs injuries of diseases, and it could inhibit cytokines from releasing by feedback regulation of JAK/STAT signal pathway. The role of SOCS3 in inflammation of severe acute pancreatitis (SAP) was summeried in this review.
Suppressor of cytokine signaling 3; Severe acute pancreatitis; Cytokine; JAK/STAT pathway
王彬,住院醫(yī)師,研究方向:重癥急性胰腺炎臨床與基礎(chǔ)研究。E-mail: wangbin198528@163.com
張曉華,主任醫(yī)師,博士,碩士研究生導(dǎo)師,研究方向:重癥急性胰腺炎臨床與基礎(chǔ)研究。E-mail: wangbin198528@163.com
10.3969/j.issn.1006-5709.2016.06.032
R576
A
1006-5709(2016)06-0716-03
2015-09-23