賀敏波,馬志亮,劉衛(wèi)平,韋成華,林新偉,陳林柱
(西北核技術(shù)研究所,西安 710024; 激光與物質(zhì)相互作用國(guó)家重點(diǎn)實(shí)驗(yàn)室,西安 710024)
?
連續(xù)激光輻照下碳纖維環(huán)氧樹脂復(fù)合材料熱解問(wèn)題研究
賀敏波,馬志亮,劉衛(wèi)平,韋成華,林新偉,陳林柱
(西北核技術(shù)研究所,西安710024; 激光與物質(zhì)相互作用國(guó)家重點(diǎn)實(shí)驗(yàn)室,西安710024)
摘要:從能量守恒出發(fā),將熱解吸收的能量隱含于材料等效熱容中,建立了連續(xù)激光輻照下碳纖維環(huán)氧樹脂復(fù)合材料熱響應(yīng)的三維計(jì)算模型。在考慮輻射換熱和表面對(duì)流換熱的影響下,利用該模型計(jì)算了連續(xù)激光輻照下碳纖維環(huán)氧樹脂復(fù)合材料的溫度場(chǎng)和熱解質(zhì)量損失,并與實(shí)驗(yàn)結(jié)果進(jìn)行了比較,兩者比較吻合。結(jié)果表明:氮?dú)饬鞅Wo(hù)可以有效地抑制氧化效應(yīng),但實(shí)驗(yàn)中氧化過(guò)程不可避免;隨激光輻照時(shí)間增大,試樣質(zhì)量損失逐漸增大,在長(zhǎng)時(shí)間輻照下氧化帶來(lái)的額外質(zhì)量損失逐漸顯現(xiàn);在低功率密度下,試樣以熱解為主,質(zhì)量損失隨功率密度增大而增大,但隨著功率密度升高,氧化的影響逐漸增強(qiáng)。
碳纖維環(huán)氧樹脂復(fù)合材料具有高的比剛度和比強(qiáng)度特點(diǎn),廣泛用于航空航天領(lǐng)域。在激光輻照下,復(fù)合材料可發(fā)生燒蝕效應(yīng),包括面燒蝕和體燒蝕[1]。面燒蝕是指發(fā)生在材料表面的燒蝕,主要包括表面材料與環(huán)境氣流的熱化學(xué)反應(yīng)、材料的熔化、蒸發(fā)(升華)、來(lái)流粒子侵蝕以及機(jī)械剝蝕;體燒蝕指材料內(nèi)部因熱化學(xué)反應(yīng)導(dǎo)致的質(zhì)量損失。這兩種燒蝕過(guò)程相互耦合,沒(méi)有明確的分界。國(guó)外學(xué)者對(duì)激光輻照下復(fù)合材料的熱燒蝕開展了大量的研究工作[2-4],國(guó)內(nèi)相關(guān)研究起步較晚,較多學(xué)者開展了一些效應(yīng)實(shí)驗(yàn)[5-9],同時(shí)也通過(guò)數(shù)值模擬來(lái)更好地對(duì)現(xiàn)象進(jìn)行解釋和預(yù)測(cè)[10-13]。本文著重研究碳纖維環(huán)氧樹脂復(fù)合材料體燒蝕中的熱解損傷問(wèn)題,通過(guò)引入等效熱容概念,將材料熱解吸收的能量隱含于材料熱容的變化中,簡(jiǎn)化熱解問(wèn)題;建立了碳纖維環(huán)氧樹脂復(fù)合材料的三維熱解響應(yīng)模型,同時(shí)考慮輻射和表面對(duì)流的影響。為降低熱解過(guò)程中氧化效應(yīng)帶來(lái)的影響,在氮?dú)饬鞅Wo(hù)條件下設(shè)計(jì)了低功率密度輻照實(shí)驗(yàn),并將計(jì)算結(jié)果和實(shí)驗(yàn)結(jié)果進(jìn)行了對(duì)比分析。
1計(jì)算模型
1.1控制方程
在描述碳纖維環(huán)氧樹脂復(fù)合材料熱解過(guò)程時(shí),忽略材料熱解反應(yīng)的細(xì)節(jié),設(shè)熱解產(chǎn)物為焦炭和氣體,其中熱解氣體的密度遠(yuǎn)小于復(fù)合材料密度和焦炭產(chǎn)物密度,因此熱解氣體對(duì)單元體積內(nèi)密度和焓的貢獻(xiàn)很小。忽略固體材料的熱膨脹,假設(shè)熱解過(guò)程中總體積保持不變,復(fù)合材料初始密度記為ρv,焦炭產(chǎn)物的密度記為ρc,則材料熱解反應(yīng)程度定義為
(1)
式中,ρ為固體材料密度;α取值范圍為[0,1]。
考慮復(fù)合材料的熱傳導(dǎo)項(xiàng)及熱化學(xué)分解過(guò)程對(duì)能量守恒方程的影響,忽略熱解氣體對(duì)流傳輸項(xiàng),則能量守恒方程為
(2)
式中,T為溫度,K;t為時(shí)間,s;Cp為熱容,J·K-1;λ為導(dǎo)熱系數(shù);L為環(huán)氧樹脂熱解潛熱,由于環(huán)氧樹脂分解吸熱,L取-996 J·g-1。
為使熱解熱源項(xiàng)不顯式地存在于熱傳導(dǎo)方程中,引入等效熱容概念,將材料熱解吸收的能量隱含于材料熱容的變化中。將式(1)代入式(2)得
(3)
材料的熱解反應(yīng)程度是隨溫度變化的函數(shù),可由熱解反應(yīng)動(dòng)力學(xué)方程給出
(4)
式中,A為指前因子;β為溫升速率;E為活化能,J·mol-1;n為反應(yīng)級(jí)數(shù)。由式(4)可知,熱解反應(yīng)程度α不易直接獲取。但材料的熱解溫度區(qū)間由熱失重測(cè)試分析能夠比較容易獲取,在氮?dú)猸h(huán)境下,碳環(huán)氧復(fù)合材料的熱解溫度區(qū)間為300~531℃。為方便起見,忽略溫升速率的影響,利用COMSOL軟件的平滑插值函數(shù)flc2hs近似給出熱解反應(yīng)程度隨溫度的變化,如圖1所示。熱解開始溫度取573 K,熱解完畢溫度取804 K。
圖1 熱解反應(yīng)程度隨溫度的變化函數(shù)Fig.1 The extent of pyrolysis reaction vs. temperature
1.2邊界條件
通常激光熱源的加載有面加載和體加載兩種形式。但對(duì)1 070 nm波長(zhǎng)激光,碳纖維環(huán)氧樹脂復(fù)合材料表面趨膚深度很小,認(rèn)為是表面吸收。同時(shí)考慮輻射及對(duì)流換熱影響,邊界條件為
(5)
式中,η為激光耦合系數(shù),取為0.9;ε為材料表面發(fā)射率,取為0.92;σ為斯忒藩-玻耳茲曼常量;T∞為環(huán)境溫度;h為對(duì)流傳熱系數(shù)。實(shí)驗(yàn)中復(fù)合材料表面吹氮?dú)?,氣體對(duì)流傳熱系數(shù)可采用經(jīng)驗(yàn)公式[12]求得
h=0.08Ma0.8
(6)
式中,Ma為氣流用馬赫數(shù)表示的速度。
1.3材料參數(shù)
碳纖維環(huán)氧樹脂復(fù)合材料熱物性參數(shù)的變化可通過(guò)熱解反應(yīng)程度α插值獲得
(7)
式中,Yv為未分解材料的物性參數(shù);Yc為完全分解材料的物性參數(shù)。取碳纖維體積分?jǐn)?shù)為65%,依據(jù)復(fù)合材料的混合法則,碳纖維環(huán)氧樹脂復(fù)合材料熱物性參數(shù)[13-15]可寫為
(1 442+0.337 2T)α
(8)
式中,復(fù)合材料的密度ρ、熱容Cp、熱導(dǎo)率λ、溫度T均為國(guó)際制單位。
材料的質(zhì)量損失主要來(lái)自于熱分解,熱解過(guò)程中質(zhì)量損失的計(jì)算方法為
(9)
2結(jié)果分析
設(shè)計(jì)了低功率密度輻照實(shí)驗(yàn),并將計(jì)算結(jié)果和實(shí)驗(yàn)結(jié)果進(jìn)行了對(duì)比分析。圖2為實(shí)驗(yàn)裝置示意圖。為降低氧化帶來(lái)的影響,設(shè)計(jì)了表面氮?dú)饬鞅Wo(hù),氮?dú)鈿饬魉俣?0 m·s-1。實(shí)驗(yàn)中,激光光斑尺寸為5 mm×5 mm,試樣尺寸為20 mm×24 mm×2 mm。
圖3給出了激光輻照時(shí)間5 s、功率密度116 W·cm-2時(shí),試樣后表面中心點(diǎn)和邊緣點(diǎn)(偏離中心點(diǎn)5 mm)處溫度歷程的計(jì)算結(jié)果和測(cè)量結(jié)果。圖中,Test-1和Test-2為兩次重復(fù)實(shí)驗(yàn)測(cè)試結(jié)果。由圖可知,模擬計(jì)算結(jié)果在趨勢(shì)上與實(shí)驗(yàn)測(cè)量結(jié)果符合較好,且中心點(diǎn)溫度明顯高于邊緣點(diǎn)溫度,與實(shí)際相符。另外,模擬計(jì)算時(shí)間取5 s,等于激光輻照時(shí)間,而實(shí)驗(yàn)測(cè)量溫度在激光停止輻照(5 s)后繼續(xù)上升而后才下降,這是由于前表面熱量傳遞至后表面需要一定時(shí)間,表現(xiàn)為試樣后表面最高溫度會(huì)滯后于激光停止時(shí)刻。該結(jié)果也表明計(jì)算模型中材料參數(shù)的取值在一定程度上是合理的。
圖2 實(shí)驗(yàn)裝置示意圖Fig.2 Schematic diagram of experimental system
圖3 試樣后表面溫度-時(shí)間曲線Fig.3 Temperature vs. time on the rear surface of the sample
采用相同的實(shí)驗(yàn)條件,分別考察激光輻照時(shí)間和激光功率密度對(duì)試樣質(zhì)量損失的影響。圖4給出了激光功率密度116 W·cm-2時(shí),不同激光輻照時(shí)間下試樣質(zhì)量損失的數(shù)值模擬結(jié)果和實(shí)驗(yàn)結(jié)果。由圖4可知,受復(fù)合材料個(gè)體性差異影響,實(shí)驗(yàn)數(shù)據(jù)具有一定的離散性,但數(shù)值模擬的質(zhì)量損失在整體趨勢(shì)上與相應(yīng)的實(shí)驗(yàn)結(jié)果相符。在短時(shí)間輻照(2.5 s)時(shí),計(jì)算結(jié)果較實(shí)驗(yàn)結(jié)果略微有所偏高,分析認(rèn)為,激光器在短時(shí)間出光時(shí),功率波動(dòng)對(duì)實(shí)驗(yàn)數(shù)據(jù)的離散性影響較大;在長(zhǎng)時(shí)間10 s輻照時(shí),計(jì)算結(jié)果較實(shí)驗(yàn)結(jié)果偏低,主要是因?yàn)閷?shí)際中氧化不可避免,會(huì)導(dǎo)致額外的質(zhì)量損失,而計(jì)算中沒(méi)有考慮氧化這一因素。
圖4 不同輻照時(shí)間下試樣的質(zhì)量損失Fig.4 Mass loss of sample vs. time
圖5給出了激光輻照時(shí)間5 s時(shí),激光功率密度分別取116, 150, 180和232 W·cm-2時(shí)試樣質(zhì)量損失的數(shù)值模擬結(jié)果和實(shí)驗(yàn)結(jié)果。可以看出,試樣質(zhì)量損失數(shù)值模擬結(jié)果在整體趨勢(shì)上與實(shí)驗(yàn)結(jié)果相吻合,但功率密度較高時(shí)模擬結(jié)果較實(shí)驗(yàn)結(jié)果有所偏低。分析認(rèn)為,盡管實(shí)驗(yàn)過(guò)程中氮?dú)獗Wo(hù)降低了表面熱解過(guò)程中的氧化,但復(fù)合材料中樹脂本身熱解產(chǎn)生的氣體可能與焦炭發(fā)生化學(xué)反應(yīng),難以避免出現(xiàn)氧化過(guò)程。另外,隨著功率密度增加,模擬結(jié)果較實(shí)驗(yàn)結(jié)果的偏差有所增加,表明隨著功率密度升高氧化的影響可能會(huì)增強(qiáng)。
圖5 不同功率密度下試樣的質(zhì)量損失Fig.5 Mass loss of sample vs. power density
3結(jié)論
考慮輻射和表面對(duì)流的影響,建立了激光輻照下碳纖維環(huán)氧樹脂復(fù)合材料熱響應(yīng)的三維計(jì)算模型,可實(shí)現(xiàn)復(fù)合材料熱解問(wèn)題的定量計(jì)算。受復(fù)合材料個(gè)體差異影響,實(shí)驗(yàn)數(shù)據(jù)有一定離散性,但數(shù)值模擬結(jié)果與實(shí)驗(yàn)結(jié)果在整體上比較吻合。隨著激光輻照時(shí)間和功率密度的增大,熱解質(zhì)量損失均逐漸增大,但在長(zhǎng)時(shí)間輻照和較高功率密度時(shí)氧化效應(yīng)逐漸凸顯,表明實(shí)際中氧化過(guò)程難以避免,氮?dú)饬鞅Wo(hù)僅能在一定程度上抑制氧化效應(yīng)。
參考文獻(xiàn)
[1]易法軍, 梁軍, 孟松鶴, 等. 防熱復(fù)合材料的燒蝕機(jī)理與模型研究[J]. 固體火箭技術(shù), 2000, 23(3): 48-56. (YI Fa-jun, LIANG Jun, MENG Song-he, et al. Study on ablation mechanism and models of heat-shield composites[J]. Journal of Solid Rocket Technology, 2000, 23(3): 48-56.)
[2]LAUB B. Laser pyrolysis and ablation of composite materials[C] //Proc SPIE. 1989, 1 064: 45-53.
[3]HAN J C, HE X D, DU S Y. Oxidation and ablation of 3D carbon-carbon composite at up to 3000℃[J]. Carbon, 1995, 33(4): 473-478.
[4]AMAR A J, BLACKWELLl B F, EDWARDS J R. One-dimensional ablation with pyrolysis gas flow using a full Newton’s method and finite control volume procedure[C]//39th AIAA Thermo-physics Conference, Miami, 2007.
[5]張永強(qiáng), 王偉平, 唐小松, 等. 兩種纖維增強(qiáng)復(fù)合材料與連續(xù)激光耦合規(guī)律[J]. 強(qiáng)激光與粒子束, 2007, 19(10): 1 599-1 602. (ZHANG Yong-qiang, WANG Wei-ping, TANG Xiao-song, et al. Coupling rules of two fiber reinforced composites with continuous wave laser[J]. High Power Laser and Particle Beams, 2007, 19(10): 1 599-1 602.)
[6]陳博, 萬(wàn)紅, 穆景陽(yáng), 等. 重頻激光作用下碳纖維/ 環(huán)氧樹脂復(fù)合材料熱損傷規(guī)律[J]. 強(qiáng)激光與粒子束, 2008, 20(4): 547-552. (CHEN Bo, WAN Hong, MU Jing-yang, et al. Ablative mechanism of carbon fiber/epoxy composite irradiated by repetition frequency laser [J]. High Power Laser and Particle Beams, 2008, 20(4): 547-552.)
[7]穆景陽(yáng), 萬(wàn)紅, 白書欣. 長(zhǎng)脈沖激光輻照下環(huán)氧樹脂的熱燒蝕規(guī)律[J]. 強(qiáng)激光與粒子束, 2008, 20(1): 36-40. (MU Jing-yang, WAN Hong, BAI Shu-xin. Thermal ablation law of cured epoxy under long pulse laser irradiation[J]. High Power Laser and Particle Beam, 2008, 20(1): 36-40.)
[8]黃永光, 劉世炳, 龍連春, 等. Nd: YAG激光輻照碳纖維復(fù)合材料的質(zhì)量燒蝕[J]. 復(fù)合材料學(xué)報(bào), 2009, 26(1): 118-122. (HUANG Yong-guang, LIU Shi-bing, LONG Lian-chun, et al. Mass ablation characteristics of carbon fiber composite irradiated by Nd: YAG laser[J]. Acta Materiae Compositae Sinica, 2009, 26(1): 118-122.)
[9]陳敏孫, 江厚滿, 焦路光, 等. 碳纖維增強(qiáng)環(huán)氧樹脂復(fù)合材料在切向氣流和激光作用下的損傷[J]. 復(fù)合材料學(xué)報(bào), 2013, 30(3): 56-62. (CHEN Min-sun, JIANG Hou-man, JIAO Lu-guang, et al. Damage of carbon fiber reinforced resin matrix composite subjected to laser and tangential gas flow loading[J]. Acta Materiae Compositae Sinica, 2013, 30(3): 56-62.)
[10]萬(wàn)紅, 胡凱為, 穆景陽(yáng), 等. 樹脂基復(fù)合材料在連續(xù)激光作用下的損傷[J]. 強(qiáng)激光與粒子束, 2008, 20(1): 6-10. (WAN Hong, HU Kai-wei, MU Jing-yang, et al. Damage analysis of fiber reinforced resin matrix composites irradiated by CW laser [J]. High Power Laser and Particle Beams, 2008, 20(1): 6-10.)
[11]陳敏孫, 江厚滿, 劉澤金. 激光輻照下復(fù)合材料樹脂基熱分解3維溫度場(chǎng)模型[J]. 強(qiáng)激光與粒子束, 2011, 23(3): 642-646. (CHEN Min-sun, JIANG Hou-man, LIU Ze-jin. Three dimensional temperature field model of thermally resin decomposing composite irradiated by laser [J]. High Power Laser and Particle Beam, 2011, 23(3): 642-646.)
[12]張家雷, 劉國(guó)棟, 王偉平, 等. 激光對(duì)碳纖維增強(qiáng)復(fù)合材料的熱燒蝕數(shù)值模擬[J]. 強(qiáng)激光與粒子束, 2013, 25(8): 1 888-1 892. (ZHANG Jia-lei, LIU Guo-dong, WANG Wei-ping, et al. Simulation to thermal ablation of carbon fiber reinforced composites under laser irradiation [J]. High Power Laser and Particle Beams, 2013, 25(8): 1 888-1 892.)
[13]彭國(guó)良, 閆輝, 劉峰, 等. 纖維增強(qiáng)復(fù)合材料激光燒蝕效應(yīng)的數(shù)值模擬[J]. 中國(guó)光學(xué), 2013, 6(2): 216-222. (PENG Guo-liang, YAN Hui, LIU Feng, et al. Numerical simulation of laser ablation of fiber-reinforced composite materials[J]. Chinese Optics, 2013, 6(2): 216-222.)
[14]楊德軍, 李旭東. 防熱復(fù)合材料高溫炭化燒蝕過(guò)程的數(shù)值分析[J]. 功能材料,2013, 44(4): 544-547.(YANG De-jun, LI Xu-dong. Numerical simulation of high-temperature carbonized ablation processes for thermal protective composites[J]. Journal of Functional Materials, 2013, 44(4): 544-547.)
[15]GRIFFIS C A, MASUMURA R A, CHANG C I. Thermal response of graphite epoxy composite subjected to rapid heating[J]. Journal of Composite Materials, 1981, 159(5): 427-442.
關(guān)鍵字:激光輻照;復(fù)合材料;熱解;數(shù)值模擬
Research on Pyrolysis of Carbon-Fiber Reinforced Epoxy Resin Composite Irradiated by CW Laser
HE Min-bo,MA Zhi-liang,LIU Wei-ping,WEI Cheng-hua,LIN Xin-wei,CHEN Lin-zhu
(Northwest Institute of Nuclear Technology, Xi’an710024,China;State Key Laboratory of Laser Interaction with Matter, Xi’an710024,China )
Abstract:This paper studies pyrolysis damage in carbon-fiber reinforced epoxy resin composite materials irradiated by laser. According to the energy conservation, the absorption energy of pyrolysis was reasonably included in the calculation of the equivalent heat capacity of the materials. A 3-D calculation model was established to describe the pyrolysis response of the mateirals irradiated by laser. Taking into account of the effects of heat radiation and heat convection, the temperature and the mass loss were calculated respectively as the functions of irradiation time and power density. The results agree well with those of the experiment. The study reveals that the oxidation is unavoidable in experiment though the oxidation effects can be effectively restrained by nitrogen protection; the mass loss of the sample materials increases gradually with irradiation time, and for a long irradiation time, the mass loss caused by oxidation will become obvious; for a lower power density, pyrolysis is the dominant effect, and the mass loss also increases along with the increase of the power density, and the oxidation effect will be enhanced.
Key words:laser irradiation;composite;pyrolysis;numerical simulation
中圖分類號(hào):TN249
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):2095-6223(2016)010601(5)
作者簡(jiǎn)介:賀敏波(1986- ),男,陜西咸陽(yáng)人,工程師,碩士,主要從事激光輻照效應(yīng)與機(jī)理研究。E-mail:heminbo@nint.ac.cn
收稿日期:2015-10-13;修回日期:2015-11-30