• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Equivalence tests to support environmental biosafety decisions:theory and examples

    2016-06-02 09:21:44DavidANDOWGborVEIboraPiresPAULA
    生物安全學(xué)報 2016年2期
    關(guān)鍵詞:收稿責(zé)任編輯通訊

    David A. ANDOW, Gbor L. L?VEI, Débora Pires PAULA

    1DepartmentofEntomology,UniversityofMinnesota,St.Paul,MN55108,USA;2DepartmentofAgroecology,AarhusUniversity,FlakkebjergResearchCentre,DK-4200Slagelse,Denmark;3EmbrapaGeneticResourcesandBiotechnology,ParqueEsta??oBiológica,W5Norte,P.O.Box02372,Brasília,DF, 70770-917,Brazil

    ?

    Equivalence tests to support environmental biosafety decisions:theory and examples

    David A. ANDOW1*, Gbor L. L?VEI2, Débora Pires PAULA3

    1DepartmentofEntomology,UniversityofMinnesota,St.Paul,MN55108,USA;2DepartmentofAgroecology,AarhusUniversity,FlakkebjergResearchCentre,DK-4200Slagelse,Denmark;3EmbrapaGeneticResourcesandBiotechnology,ParqueEsta??oBiológica,W5Norte,P.O.Box02372,Brasília,DF, 70770-917,Brazil

    Abstract:A major role of ecological risk assessment (ERA) has been to provide scientific guidance on whether a future human activity will cause ecological harm, including such activities as release of a genetically modified organism (GMO), exotic species, or chemical pollutant into the environment. This requires the determination of the likelihoods that the activity: would cause a harm, and would not cause a harm. In the first case, the focus is on demonstrating the presence of a harm and developing appropriate management to mitigate such harm. This is usually evaluated using standard hypothesis analysis. In the second case, the focus is on demonstrating the absence of a harm and supporting a decision of biosafety. While most ERA researchers have focused on finding presence of harm, and some have wrongly associated the lack of detection of harm with biosafety, a novel approach in ERA would be to focus on demonstrating directly the safety of the activity. Although, some researchers have suggested that retrospective power analysis can be used to infer absence of harm, it actually provides inaccurate information about biosafety. A decision of biosafety can only be supported in a statistically sound manner by equivalence tests, described here. Using a 20% ecological equivalence standard in GMO examples, we illustrated the use of equivalence tests for two-samples with normal or binomial data and multi-sample normal data, and provided a spreadsheet calculator for each. In six of the eight examples, the effects of Cry toxins on a non-target organism were equivalent to a control, supporting a decision of biosafety. These examples also showed that demonstration of equivalence does not require large sample sizes. Although more relevant ecological equivalence standards should be developed to enable equivalence tests to become the main method to support biosafety decision making, we advocate their use for evaluating biosafety for non-target organisms because of their direct and accurate inference regarding safety.

    Key words:GM crops; average bioequivalence; environmental impact; ERA; statistical methods

    Introduction

    A major role of ecological risk assessment (ERA) has been to provide scientific guidance on whether a future human activity will cause ecological harm (Suter,2006). These activities may include land use changes, such as rural and suburban development, agricultural expansion, or deforestation, the release of organic and inorganic chemicals, such as CO2, NOX, pesticides and other toxic chemicals, and the release of biological organisms, such as biological control organisms, exotic species, and genetically modified organisms (GMOs). The logic of all of these ERAs directs the assessments to determine the likelihood that the activity would cause an adverse environmental change, and at the same time the likelihood that the activity will not cause an adverse environmental effect. A risk assessor is interested in both the probability that there will be an adverse effect(s) and the probability that there will be no adverse effect(s). The first of these can be determined by standard statistical hypothesis tests. In the case of "no harm", the assessor must be able to conclude that a test treatment has similar risk or effect as the control treatment, i.e. the two are equivalent, and this requires the use of equivalence tests, described here.

    Under standard experimental design and statistical hypothesis testing, the null hypothesis is that the responses to the test and control treatments are the same. Rejecting the null hypothesis (that they are the same) will lead to the conclusion that they are different. In other words, it allows a conclusion that there is a difference between the two treatments, but it does not allow a conclusion that they are the same or similar. Equating the lack of statistical significance with "no difference" or biosafety is a serious logical flaw, because the lack of significance can be related to low replication and/or high error variation, not because there is truly no effect. Inability to reject the null hypothesis can lead to a Type Ⅱ error (= not rejecting the null hypothesis when in fact the treatments are different). For any given estimated difference between the treatments, as the estimated standard error of the difference increases from 0, the result will eventually change from an inference of significant difference to one of equivalence, which is the opposite of what is desired for equivalence testing. For the most part, this problem — that the null hypothesis cannot be proved with standard hypothesis testing — is recognized, but because alternatives are not recognized it is largely ignored (e.g., Raybould,2010).

    In recent decades, however, a new branch of statistical theory, equivalence testing, has been developed to address these problems. An equivalence test inverts the null and alternative hypotheses, so that the null hypothesis is that the treatments are different and the alternative hypothesis is that they are equivalent. Thus the rejection of the null hypothesis enables a sound statistical inference that the treatments are equivalent. Equivalence tests have gained widespread use for supporting regulatory decisions about new generic drugs, and there are now textbooks for conducting such tests (e.g., Patterson & Jones,2005). In this paper, we summarize the statistical theory underlying equivalence tests, compare this approach with standard hypothesis testing and power analysis, illustrate how to conduct these statistical tests with examples from ecological risk analysis experiments for testing the safety of GM crops, and suggest that equivalence testing is superior to standard hypothesis testing for assessing ecological safety. We use GM crops because we have conducted research in this area. A spreadsheet calculator for the equivalence tests described in this paper is provided in the supplementary material. Even though the examples are solely related to GMOs, the potential scope of application of equivalence tests in ecological risk assessment and environmental policy is quite broad (Diamondetal.,2012; Hanson,2011; Kristofersson & Navrud,2005).

    Statistical theory for equivalence tests

    There are three kinds of equivalence tests: average equivalence, population equivalence and individual equivalence (Liu & Chow,1996). Average equivalence evaluates the similarity in the average response between a test and control treatment. Population equivalence evaluates the similarity in the entire statistical distribution (average, variance, skew, kurtosis, etc) of the responses to the treatments. Population equivalence is a more rigorous similarity standard than average equivalence because the average, variance, and possibly higher statistical moments all must be similar. Individual equivalence tests examine the similarity in the responses to the treatments within the same individuals. This last is often used in drug testing, where each individual is exposed to both treatments with a suitable re-equilibration period between treatments (a so-called two-period crossover design), and also includes other designs, such as repeated measures, and paired designs. From such a design it is possible to evaluate equivalence individual by individual.

    For ecological risk assessment, average equivalence is the more generally applicable of the three. Individual equivalence testing will be limited because it is often be difficult to expose individuals to more than one treatment, especially in a toxicity assay. Population equivalence testing will also be limited because it is usually not possible to have sufficiently high replication to test for equivalence in variance, skewness, etc.

    Equivalences tests can be understood by contrasting them with standard hypothesis tests (Fig.1). If the average response of some biological entity to a test treatmentiis denotedμiand the average response to the control treatment (negative control) isμc, a standard hypothesis for normally distributed data is

    H0:μi/μc=1Ha:μi/μc<1 orμi/μc>1

    [1]

    whereH0is the null hypothesis andHais the alternative hypothesis. The null hypothesis is that the two populations have the same mean, and the alternative hypothesis is that they do not.

    An equivalence hypothesis reverses the null and alternative hypotheses. Using the same notation, the analogous equivalence hypothesis is

    [2]

    wherethevaluesΔLandΔUareequivalencestandardssetaccordingtoregulatory,statisticalandbiologicalconsiderationsthatdefinehowclosethemeansmustbetobeconsideredequivalent.Thenullhypothesisstatesthattheratiooftheaveragesiseitherlessthanthelowerorgreaterthantheupperequivalencestandard,andthealternativehypothesisisthatthevalueoftheratioisbetweenthetwostandards.Notethatthehypothesisthattheaveragesarethesame,isnowapartofthealternativehypothesis.Theequationsin[2]aretypicallyreformulatedas:

    H01: 0≥μi-ΔLμcversusHa1: 0<μi-ΔLμc

    H02: 0≤μi-ΔUμcversusHa2: 0>μi-ΔUμc

    [3]

    Thenullhypothesisin[2]isrejectedandthemeansareequivalentifandonlyifbothnullhypotheses[3]arerejected.Forsomeregulatoryprocedures, ±20%isacommonlyusedequivalencestandard(ΔL=0.80andΔU=1.25).

    Whenequation[2]islog-transformed,linearhypothesesareproduced:

    H0: θL≥ηi-ηcorηi-ηc≥θU

    Ha: θL<ηi-ηcandηi-ηc<θU

    [4]

    whereη=ln(μ)andθ=ln(Δ).IntheUSandEurope,thevalueθU=-θL=0.223144isrequiredformostgenericdrugtests,whichisthesameas±20%ontheuntransformedscale.

    Hypotheses[2]~[4]arecalledintersection-unionhypotheses(Berger&Hsu,1996a).Thenullhypothesisistheintersectionoftwoone-sidedhypotheses,andthealternativehypothesisistheunionoftwoone-sidedhypotheses.Atestofanintersection-unionhypothesisiscalledanintersection-uniontest(IUT)andisoftenformulatedasatestoftwoone-sidedhypotheses,whichiscalledatwoone-sidedtest(TOST).TheformulationofanequivalencetestasanIUTallowstheapplicationofsomegeneralmathematicaltheoremstodeterminetheTypeⅠerrorrateforthetest(Berger,1982;Berger&Hsu,1996a).AlthoughitmightbethoughtthattheTypeⅠerrorrateforthetwotestswouldneedtobeadjustedbecausetherearemultipletestswiththesamedata,thetheoremsprovethatsuchcorrectionsarenotneededforanyofthetestsdiscussedinthispaper(Berger,1982;Berger&Hsu,1996a).

    Anothertheorem(Theorem4,Berger&Hsu,1996a)providesconditionsforconstructingconfidenceintervals(orregions)onthestatisticalparameter(s)sothatconfidenceintervals(orregions)canbeusedtotestequivalenceinlieuofhypothesistesting.IfandonlyifanIUTrejectsthenullhypothesiswithaTypeⅠerrorof0.05,the95%confidenceintervalaroundηi-ηrwillbeentirelycontainedintheinterval[θL, θU],whichiscalledtheequivalenceregionorinterval.Thisdemonstratestheidentitybetweenhypothesistestingandinterpretationofconfidenceintervalsandregions.Wewillusethistheoremtotesttheequivalenceofmultipletesttreatmentstoasinglecontroltreatment.

    Comparisonwithretrospective(observed)power

    AretrospectiveanalysisofthestatisticalpowerofanexperimenthasbeenproposedtoaddresstheproblemofTypeⅡerrorinGMOecologicalriskassessment(e.g.,Romeiset al.,2011).ThepowerofanexperimentaldesignisanestimateoftheprobabilityofnotmakingaTypeⅡerror(notrejectingthenullhypothesis,wheninfactitshouldhavebeenrejected).Therearetwokindsofpoweranalysis:prospectiveandretrospective.Prospectivepoweranalysisusesinformationfrompreviousexperimentstooptimizethedesignofexperimentsyettobeconducted,andisalegitimateandusefulstatisticaltool(Hoenig&Heisley,2001).Itcanalsobeusedtooptimizeequivalencetests.

    Hoenig&Heisley(2001)provideadeepcritiqueofretrospectivepoweranalysis.RetrospectivepoweranalysisaimstoprovideanindependentestimateoftheprobabilityofnotmakingaTypeⅡerrorbasedonthedesignanddataofanexperimentthathasalreadybeencompleted,andreliesonastatisticcalled"observedpower".AdvocatesforretrospectivepoweranalysisarguethathighobservedpowerindicatesalowTypeⅡerrorrateandthereforethenullhypothesisismorelikelytobetruewhenitisnotrejectedandthereishighobservedpower(e.g.,Romeiset al.,2011).TheseargumentsandinferencesarelogicallyflawedbecauseretrospectivepoweranalysisdoesnotprovideanindependentestimateoftheprobabilityofnotmakingaTypeⅡerror(Brosi&Biber,2009;Nakagawa&Foster,2004;Perryet al.,2009).

    Hoenig&Heisley(2001)providedaspecificexampletoillustratethisseriouslogicalflawintheuseofobservedpower.Supposetwosimilarexperimentsareconducted,andneitherrejectsthenullhypothesis,buttheobservedpowerinthefirstexperimentwaslargerthantheobservedpowerinthesecondone.Advocatesoftheuseofobservedpowermaywishtoinferthatthefirstexperimentgivesstrongersupportfavoringthenullhypothesisthanthesecond.However,thisleadstoafatallogicalcontradiction.Supposetheexperimentsweretestedwithaone-sidedt-test.Lettp1andtp2betheobservedteststatisticsfromtherespectiveexperiments.Becausetheobservedpowerwashigherinthefirstexperiment,thisimpliesthattp1>tp2,becauseobservedpowerisanincreasingfunctionofthetpstatistic.Butiftp1>tp2,thenthep-valuesfromtheexperimentswouldhavep1

    Conductingequivalencetests

    Equivalencetestscanbeconductedformanydifferentexperimentaldesigns,andoneareaofactiveresearchisextendingtheiruseformorecomplexdesigns.Hereweprovideabasicintroductiontoequivalencetestsforsomecommonandsimpleexperimentaldesigns:twoindependenttreatmentsandnormaldata,twoindependenttreatmentsandbinomialdata,multipleindependenttreatmentsandnormaldata,andreplicationofexperimentswithmultipleindependenttreatmentsandnormaldata.WeuseexamplesforGMObiosafetytestingbecausewehavebeenconductingresearchinthisareaandcanuserealdatatoillustratetheuseofequivalencetests.Theseexamplesincludeonlyoneswherenosignificantdifferencewasdetectedusingstandardhypothesistests,andareusedtoillustratewhenitispossibletoconcludethatthereisstatisticalequivalencesupportingabiosafetydecisionandwhenthisisnotpossible.

    Normaldata

    TL>tα,νandTU<-tα,ν

    [5]

    [6]

    These have a Student′st-distribution withν=m+n-2 degrees of freedom. The TOST [3] is conducted using the ordinary,α=0.05, one-sidedt-test based onTLfor the one-sided hypothesis [3 upper] and the ordinary,α=0.05, one-sidedt-test based onTUfor the one-sided hypothesis [3 lower]. A numerical example is provided in Box 1 and the supporting information.

    Binomial data

    For binomial data there are several alternatives for constructing equivalence intervals and designating equivalence standards, based on the binomial parameter,π. They can be modeled on the arithmetic difference between the test (πi) and control (πc) parameters (πi-πc), the proportional difference in the parameters (πi/πc), or the proportional difference in the odds of a response (πi(1-πc))/((1-πi)πc), which is based on the odds ratios in each treatment. We calculated the equivalence interval for the three models (arithmetic, proportional, and odds ratio), and expressed it as the interval of the test treatment (πi) as a function of the control treatment (πc). The proportional difference model, which was ideal for normal data [2], is asymmetrical across the range ofπc(Fig.2), which is problematic because equivalence will depend on which response was chosen as the focal response. The others are symmetric (Fig. 2), but differ nearπr1=0 orπr1=1. Both can be justified, depending on whether the absolute differences or the difference in odds is critical. Here we provide equivalence tests for arithmetic differences with sufficiently large samples (m,n≥50), because these have a stable Type Ⅰ error rate (Chenetal.,2000). For small samples, exact methods are required (Agresti,1996).

    LetX1, …,Xmdenote the independent binomial responses (m,πi) to the test treatment andC1, …,Cndenote the independent binomial responses (n,πc) to the control treatment, whereπiandπcare the true response probabilities for the test and control treatments, respectively, andmandnare the number of independent observations for each. In addition, letycbe the total number of observed "positive" responses in the control treatment andxibe the number of "positive" responses in the test treatment, so thatn-ycandm-xi, respectively, become the number of "negative" responses in the two treatments.

    For the arithmetic difference in response probabilities, the equivalence hypothesis is

    H0:ΔL≥πi-πcorπi-πc≥ΔU

    Ha:ΔL<πi-πcandπi-πc<ΔU

    [7]

    whereΔLandΔUare equivalence standards determining how closeπiandπcmust be to be considered equivalent. For drug testing, the standards used vary between 10%~20%, but here we set the standards asΔL=-0.2 andΔU=0.2, withπiandπcbounded by the interval [0, 1]. More generally, the equivalence intervals can be adjusted based on the observed values ofπiandπc.

    A TOST for [7] comes from the asymptotic test statistic for the difference between two binomial parameters,πi-πc, and is based on the following two statistics with a standard error estimated by maximum likelihood (Farrington & Manning,1990),

    [8]

    Fπ(p)=πyr(1-π)n-yr(π+Δj)xi(1-π-Δj)m-xi

    Iπ=[max{0,-Δj},min{1,1-Δj}]

    [9]

    zFM,LandzFM,Uareχ2-distributedwith1degreeoffreedom.Thetwotreatmentsareequivalentifbothone-sidedtestsarerejectedatapredeterminedlevelofα,usuallyα=0.05,thatis,if

    zFM,L>3.841andzFM,U>3.841

    [10]

    whicharetheupperandlowerα=0.05tailsofthestandardnormaldistribution.

    Multiplecomparisonstoacommoncontroltreatment

    Inecologicalriskassessment,experimentsfrequentlyhavemorethanonetesttreatmentcomparedtoasinglecontroltreatment,requiringastatisticalprocedureformakingmultiplecomparisons.Thestatisticaldesignisacompletelyrandomizedone-waytreatmentstructure,x=Dβ+ε,wherexisthevectorofmeasuredresponses,Distheknowndesignmatrix,βisavectorofunknownfixedeffects,whichisestimatedbythetreatmentmeans,andεisarandomerrorvectorwithE[ε]=0.Onesolutionistouseequivalencetestsbasedonconfidenceintervalsdesignedformultiplecomparisons(Berger&Hsu,1996a,1996b).

    [11]

    EachoftheseKhypothesescouldbetestedusingaTOST,butitisnotpossibletotestallKhypothesessimultaneouslybecauseanIUTdoesnotallowforthepossibilityofrejectingsomebutnotallofthehypotheses.Inaddition,becauseuptoKhypothesescouldbetrue,itisnecessarytohaveanadjustmentfortestingmultiplecomparisons.AnappropriateapproachistoconstructconfidenceintervalsforeachoftheseKhypotheses.Berger&Hsu(1996a)showthatiftheconfidenceinterval,constructedfromaTOST,isentirelycontainedintheequivalenceinterval[ΔL, ΔU],thetwomeansareequivalent.Theconfidenceintervalforthemultiplecomparisonscanbeconstructedfrom[5]and[6],whichgive

    whereSisestimatedfromthevarianceofε.Thesecanberearrangedtogivethefollowingconfidenceinterval

    [13]

    Torejectthenullhypothesis,theconfidenceintervalmustbeinsidetheequivalenceinterval.Notefirstthattheconfidenceintervalisconstructedwithtα,ν,andnotthestandardtα/2,ν.Second,becausetherearemultiplecomparisonstothesamecontrol,Dunnett′stshouldbeusedinsteadofStudent′stwithν=n+∑imi-(K+1) (Box3andsupportinginformation).Thisresultsinastrictlyconservativetest,andmoreaccuratep=0.05-leveltestsareavailableforbalanceddata(Giani&Straβburger,1994).Bonferronicorrectionsarenotappropriatebecausethetreatmentcomparisonsarecorrelatedbyusingthesamecontrol.

    Equivalencestandardsandtests

    Animportantissueforequivalencetestsisthedeterminationofequivalencestandards.Equivalencestandards, ΔLandΔU(orθLandθU),aredeterminedbyacombinationofregulatory,ecologicalandstatisticalconsiderations.Thestatisticalconsiderationsarerelatedtothesamplesizenecessarytoattainanacceptablepoweroftheequivalencetest.Forexample,totesttheequivalenceofproportions(equation[9]),asamplesizeof50providessuitablepowerforastandardof±20%,butthissamplesizeisinadequateforanequivalencestandardof±10%,whenasamplesize>150wouldbenecessary.

    Ecologicalandregulatoryconsiderationswilldeterminewhatisbiologicallyequivalentandsociallyacceptable.Ingeneral,thereisalargeclassofecologicalproblemsthathashardlybeenaddressedinappliedecology.Whenaretwoecologicalsystemsecologicallyequivalent?Howmuchchangecouldoccurtoanecologicalsystembeforeitshouldbeconsideredecologicallydifferent?Whataretheecologicallyessentialstructuralandfunctionalfeaturesofanecologicalsystem?Howmuchchangecananecologicalsystemtoleratebeforeitsessentialecologicalfeaturesareharmed?Howmuchcancomponentsofanecologicalsystemchangewithoutchangingtheecologicallyessentialfeaturesofthewholesysteminwhichtheyareembedded?

    Wedonotpresumetoanswerthesequestions,becauseitislikelythatconsiderableempiricalecologicalresearchwillbenecessarybeforemeaningfulanswerscanbeformulated.Thereexistformaltheoreticalconditionsunderwhichecologicalsystemsareequivalentornearlyso(Iwasaet al.,1987,1989),buttheseconditionsaresostrictandnarrowthattheycannotbereadilyimplemented,andempiricalcriteriaareneeded.Oneapproachforsettingecologicalequivalencestandardshasbeentousedatafromhistoricalteststhatcanberelatedtopotentiallysignificanteffects(Bertolettiet al.,2007;Phillipset al.,2001).Forexample,cladoceranshavebeenextensivelyusedtoevaluatethetoxicityofaquaticpollutants.Insomecases,thereareasufficientnumberoflaboratorytoxicitybioassaysthathavebeenassociatedwithpotentialecologicaleffectsthatitispossibletoestimatetheleveloftoxicitythatcouldcauseenvironmentalharm(Bertolettiet al.,2007).However,suchdatasetsareuncommon,sothisapproachisoflimitedapplicability.NosuchdatasetsexistforGMOecologicalriskassessment.

    Naturalvariabilityofthecontroltreatmenthasbeenoftenadvocatedasanapproachfordeterminingequivalencestandards(Barrettet al.,2015;EFSA,2010;Honget al.,2014;Kang&Vahl,2014;Vahl&Kang,2016;vanderVoetet al.,2011).Therationaleisthatifthecontrolhashighvariability,thenanytesttreatmentmustbemoredifferent,becausethehighvariabilityrequiresalargerequivalencestandard.Althoughthismaybetrueinfoodsafetyresearch,temporalandspatialcorrelationsinmanyecologicalfactorsmayresultinthecovarianceamongtreatmentandcontrolresponsesbeingasimportantasthevarianceincontrolresponse.Largepositivecovariancewouldimplythatthecontrolvarianceoverestimatestherelevantnaturalvariance,andleavesdoubtastohowtoestimatetherelevantnaturalvariance.Moreimportantly,thepotentialirreversibilityofecologicalchangemightarguefortighterequivalencestandards.Reversibilitymaybeassociatedwithecosystemresilience,whereasecologicalhysteresismaybeindicativeofirreversibility(Biggset al.,2009).Thus,itmaybemoreappropriatetodefineecologicalequivalencestandardsintermsofdegreeofconcern,namelytheminimumecologicaleffectthatissufficienttocauseharm(Perryet al.,2009).

    Thecriteriaforestablishingecologicalequivalencestandardsshouldcenterontheecologicalrisksthatsocietywantstoavoid(Andow,2011).Consequently,humanvalueswillbeanimportantconsiderationinestablishingecologicalequivalencestandards.Forexample,toconstructequivalencestandardstoevaluatetheeffectsofaGMcroponageneralistbiologicalcontrolagent,manyofthemostsignificantsocialvaluesareembeddedinthecrop/yieldlossrelationship.Asthecentralpurposeofbiologicalcontrolofcroppestsistominimizecropyieldloss,thevalueofbiologicalcontrolcanbemeasuredbythereductionincropyieldlossfrompests.Withaquantitativerelationshipbetweenthedensityofabiologicalcontrolagentandthesuppressionofthepestpopulation,thesetworelationshipscanbecombinedsothatachangeinnaturalenemydensitycanberelatedtoachangeincropyieldloss.Thiscombinedrelationshipcanbeusedtoestablishecologicalequivalencestandardsrelatedtoecologicalvalue(Andow,2011).

    Inferencesfromequivalencetests

    Toillustratehowequivalencetestscansupportbiosafetydecisions,weusetheexamplesinBox1-4.WhilethisdiscussionfocusesonGMObiosafety,itshouldbeclearthatwithotherexamples,thediscussioncanbegeneralizedtomanyareasofenvironmentalriskassessment.ManyresearchersstudyingGMOorBttoxicityhavebasedtheirconclusionsofbiosafetyonstandardhypothesistesting(e.g.,Lawoet al.,2009;Lundgren&Wiedenmann,2002;Meissle&Romeis,2009;Romeiset al.,2004;vonBurget al.,2010).Theseresearchersmakeclaimsforbiosafety,butinreality,theyhavecommittedthestatisticalerrorofacceptingthenullhypothesis,byconcludingthattherewerenoharmfuleffects.Here,wedemonstratehowtomakesoundinferencesof"noeffect"basedonequivalencetests.Wehavereanalyzedthedataofeightexamplestoillustratehowequivalencetestsdifferfromstandardhypothesistests(Table1).ThedatawereobtainedfromPaulaet al.(2016),Paula&Andow(2016)andGuoet al.(2008),andaredescribedindetailinBox1-4.Inalleightexamples,thestandardhypothesistestledtotheconclusionthataneffectoftheCrytoxinwasnotdetected(thestandardnullhypothesiswasnotrejected).Theequivalencetests,usingecologicallystrictequivalencestandardsof±20%,allowedustoconcludethatinsixoftheeightexamples,theeffectoftheCrytoxinwasequivalenttotheeffectofthecontrol.Theseresultsenableasoundconclusionof"noeffect"andsupportforabiosafetydeterminationoftheCrytoxinforHarmonia axyridisdevelopmenttime(Cry1F), Cycloneda sanguineadevelopmenttime(Cry1FandcombinedCry1AcandCry1F),andChrysopa pallensdevelopmenttime(GK12,NuCOTN99B,andamixture).Inotherwords,intheserespects,Crytoxinsare"safe"forH. axyridis, C. sanguineaandCh. pallens.ForC. sanguinea,thesamplesizesforthesetestswerequitemodest(n=8andn=10),whichshowsthatequivalencetestsdonotrequirelargesamplesizes.Theremainingtwocaseswerealsorevealing,astheywerestatisticallyindeterminate,neitherrejectingthenullhypothesisforthestandardtestorfortheequivalencetest.DevelopmenttimeofC. sanguineaonCry1Acwasnotequivalenttothecontrol,butthistreatmenthadasmallsamplesize(n=6),andmightbecomeequivalentwithhigherreplication.MortalityofBrevicoryne brassicaeonCry1Ac,hadap-valueof0.105underthestandardhypothesistest,withmortalityonCry1Acestimatedtobe31%comparedto19%onthecontroldiet.Inthiscase,increasedreplicationmightresultindetectionofasignificanteffectofCry1Acandadeterminationofnon-equivalence.Inanyevent,theequivalencetestreturnedtheaccurateresultthatmortalityofB. brassicaeonCry1Acwasnotequivalenttothecontrolandthistestdoesnotsupportabiosafetydecision.Equivalencetestsallowsoundinferenceaboutbiosafety,whilestandardhypothesistestsdonot.

    Burden of proof

    Finally, we note that equivalence statistics have direct and significant bearing on the debates about the burden of proof. Hobbs & Hilborn (2006) stated that the burden of proof has traditionally been on those who argued for regulatory intervention to stop pollution, i.e., pollution is allowed until its harms can be proven. Similarly, for invasive species risk assessment, the potential invader is assumed to be safe until proven to cause environmental harm (Simberloff,2005). Standard hypothesis testing is well-suited for these cases, as it can only establish whether there is a difference, whether there is environmental harm. However, this approach has allowed substantial pollution and the establishment of several harmful invasive species (Simberloff,2005), and as a general approach for environmental management, it has come under considerable criticism (e.g., Diamondetal.,2012; Hanson,2011; Kristofersson & Navrud,2005).

    In risk assessment, demonstration of biosafety is equally important as demonstration of harm. Equivalence tests are one way to establish a burden of proof of biosafety, by requiring demonstration of equivalence. However, equivalence tests are more flexible than this simple application of a "proof of safety" concept might imply. It is possible to consider the equivalence standard as a function of ecological value, and to test equivalence under different standards (ecological value). For example, a risk assessor could assess whether an environmental stressor is likely to reduce biological control of a pest thereby causing 5% more yield loss, i.e., using a 5% equivalence standard. An additional equivalence test could be performed to evaluate if the stressor is likely to be equivalent to the control at 2% or 1% yield loss levels (more stringent equivalence standards). The probability of equivalence will decline as the standard becomes smaller, so thep-values of the tests will increase (less likely to reject the null hypothesis that they are different). If thep-values of these three tests were respectively 0.02, 0.04, and 0.23, the analyst could conclude that if a 5% or 2% yield loss can be tolerated, the stressor and the control are equivalent with respect to their effects on biological control, but they are not equivalent if only 1% yield loss can be tolerated. When the magnitude of an insignificant risk can be differentiated from a significant risk, it will be possible to develop equivalence standards, and these can be used to establish a burden of proof of safety in ecological risk assessment.

    Equivalence tests can support a burden of proof of safety, and this shift does not necessarily create additional assessment costs. The cost of an equivalence test will depend primarily on the sample size and error variation, which depend primarily on the planned equivalence standard. A stricter equivalence standard will require a larger sample size and will have a higher cost than a test with a more lax equivalence standard. Because ecological systems often exhibit functional redundancy (Rosenfeld,2002), and some indirect species interactions attenuate as the pathway lengthens (Abramsetal.,1996), many functionally-based ecological equivalence standards may turn out to be lax. Andow (2011) suggested that an equivalence standard for a generalist biological control agent would probably be larger than the standard ±20%, and consequently, the cost of an equivalence test may be substantially lower than what is currently required under the standard hypothesis testing procedures.

    Acknowledgements: The USDA regional research project NC-205 to DAA and Rockefeller Resident Scholar in Bellagio Fellowships to DAA and GLL partially supported this work.

    Box 1.Equivalence test for two-sample, normal data

    The data originate from Paulaetal. (2016), who used an artificial tritrophic system to test if the toxin Cry1F, which occurs inBtmaize and cotton in Brazil, adversely affected an important biological control agent of agricultural pests, the coccinellid predatorHarmoniaaxyridis. This experiment measured the effect of Cry1F on larval development time of the predator. Aphid prey (Myzuspersicae) were allowed to feed for 24 h on a holidic diet in small cages with and without Cry1F at 20 μg·mL-1diet before being exposed to the predator. Neonate predator larvae were transferred daily into fresh cages to consume the aphids, and development time from neonate to pupa was recorded.

    Step 1.Specify equivalence standards. Values ofΔL=0.80 andΔU=1.25 were specified, which correspond to ±20% similarity.

    Step 2.Enter the data. LetX1, …,Xmdenote the untransformed development times (days) ofH.axyridisexposed to Cry1F viaM.persicae,m=39 (test treatment). LetC1, …,Cndenote development times of controlH.axyridis,n=30 (control treatment). In this example, under standard hypothesis testing, these were not significantly different.

    Step 3.Calculate test statistics as indicated in equation [6].

    We have assumedσX2=σY2. IfσX2≠σY2, Welch′st-test with Welch-Satterthwaite degrees of freedom should be used, although there is no need to round the calculateddfs to an integer as sometimes recommended (USEPA,2010).

    Step 4.Conduct the TOST using equation [5]. For the example, the left tail of thet-distribution withα=0.05 andν=67 istα,ν=1.66792.

    Conclusion: Equivalence. The immature development time of the predator on the Cry1F treatment is equivalent to that in the control treatment.

    Box 2.Equivalence test for two-sample, binomial data

    The data originate from Paula & Andow (2016), who used an artificial holidic diet to test if theBttoxin Cry1Ac adversely affected an important non-target herbivore, the aphidBrevicorynebrassicae. This experiment measured the effect of Cry1Ac on the survival of reproductive apterous aphids during a three-day period. Five equal-sized apterous aphids were allowed to feed continuously on a holidic diet in small cages with and without Cry1Ac at 20 μg·mL-1diet. Twice daily, the number of dead aphids was counted, and the data record the total number that died during the experimental period and the number that survived.

    Step 1.Specify equivalence standards. HereΔL=-0.20 andΔU=0.20.

    Step 2.Enter contingency table data. Number of surviving and dead aphids that fed on a diet with 20 μg·mL-1Cry1Ac (testi) or control diet with no Cry1Ac. Under standard hypothesis testing, these were not significantly different (LRχ2=2.63, 1df,p=0.105).

    Step 4.Conduct the TOST using equation [11], with

    a critical value=3.841. In this case,zFM,L>3.841 andzFM,U<3.841.

    Conclusion: Nonequivalence. The lower one-sided test is rejected, but the upper one-sided test is not rejected. Therefore the two treatments are not equivalent. The survival rate of the aphid feeding on Cry1Ac was not equivalent to the control.

    Box 3.Equivalence test for multiple-sample, normal data

    The data originate from Paulaetal. (2016), who used an artificial tritrophic system to test if theBttoxins Cry1Ac alone, Cry1F alone, or Cry1Ac/Cry1F together adversely affected an important biological control agent, the coccinellid predatorCyclonedasanguinea. This experiment measured the effect on larval development time of the predator from neonate to pupa, and was designed to test if the two toxins interacted with synergistic effects. Aphid prey (Myzuspersicae) were allowed to feed for 24 hours before predator exposure on a holidic diet in small cages with and without Cry1Ac or Cry1F or both together. Neonate predator larvae were transferred daily into fresh cages to consume the aphids.

    Step 1.Specify equivalence standards. Values ofΔL=0.80 andΔU=1.25 were specified, which correspond to ±20% similarity.

    Step 2.Enter data. LetX1i, …,Xmidenote the untransformed measurements on themilarvae in theithtest treatment andC1, …,Cndenote the untransformed measurements on thenlarvae in the control treatment. The data are larval development times ofC.sanguineareared onM.persicaeaphids that fed on an artificial diet with 20 μg·mL-1Cry1Ac (Test 1), 20 μg·mL-1Cry1F (Test 2), or both 20 μg·mL-1Cry1Ac and 20 μg·mL-1Cry1F (Test 3). The control treatment was a control diet with no Cry toxin. There were three test treatments, soK=3, withm1=6,m2=7,m3=12, andn=19. In this example, under standard hypothesis testing, none of the test treatments were significantly different from the control and there was no interaction of the two toxins.

    Step 3.Calculate test statistics [13] and find the appropriate value for the one-tailed Dunnett′st, based onν,Kandα.

    The critical value for Dunnett′stwas calculated forν=41df,K=3 comparisons, andα=0.05, using SAS (see below). The critical value is 2.16217.

    We can also determine if Test 3 is equivalent to Test 1 and Test 2, which evaluates the hypothesis that there is no interaction between the two toxins (all calculations are not shown).

    Step 4.Compare the lower and upper confidence intervals,CILandCIU, with the equivalence interval (0.80, 1.25). If theCIs are entirely within the equivalence interval (0.80, 1.25), then the test treatment mean is equivalent to the control treatment.

    Conclusions: (1) Test 1 is not equivalent to the control, while Test 2 and Test 3 are equivalent to the control. The development time of the predator feeding on aphids exposed to Cry1Ac was not equivalent to the control, while for the Cry1F and the combination of both toxins, they were equivalent. (2) Both Test 1 and Test 2 are not equivalent to Test 3, which implies that the hypothesis of no interaction cannot be rejected, i.e., there might be an interaction.

    Calculation of critical value,x, for one-sided Dunnett′stusing SAS:

    data;

    array lambda{3}; ∥lambda{i}=sqrt (mi/(mi+n))

    x=probmc ("dunnett1", ., 0.95, 41, 3, of lambda 1-lambda 3);

    Box 4.Equivalence test for multiple-sample, normal data with replicated experiments

    The data originate from Guoetal. (2008), who used a plant-based laboratory tritrophic system to test if larval development time (neonate to pupa) of an important biological control agent,Chrysopapallens, differed when feeding on aphids from the cotton varieties Simian 3 (control), GK12 (with Cry1Ab/Ary1Ac fusion protein), NuCOTN 99B (Cry1Ac), or alternately feeding on aphids from the three varieties. Aphid prey (Aphisgossypii) were collected on excised leaves from field plants and given to individual predators in petri dishes. Fresh aphids were supplied daily.

    Step 1.Specify equivalence standards. Values ofΔL=0.80 andΔU=1.25 were specified, which correspond to ±20% similarity.

    Step 2.Enter data. LetX1ir, …,Xmirdenote the untransformed measurements on themirlarvae in theithtest treatment andrthexperimental replicate, andC1r, …,Cnrdenote the untransformed measurements on thenrlarvae in therthexperimental replicate for the control treatment. The data are larval development times (days) ofC.pallensreared onM.persicaeaphids that fed on cotton variety GK12 (Test 1), NCOTN 99B (Test 2), or an alternating mixture of aphids (Test 3). The control treatment was the non-Btvariety Simian 3. There were three test treatments (K=3) and three replications of the experiment (R=3) withm1r=19, 17, and 18,m2r=18, 18, 17,m3r=18, 17, 18, andnr=19, 19, 18. In this example, under standard hypothesis testing, none of the test treatments were significantly different from the control, as indicated in the ANOVA table.

    Step 3.Calculate test statistics [13] and find the appropriate value for the one-tailed Dunnett′st, based onν,Kandα, as in Box 3.

    The critical value for Dunnett′stwas calculated forν=204df,K=3 comparisons, andα=0.05. The critical value is 2.07698.

    Step 4.Compare the lower and upper confidence intervals,CILandCIU, with the equivalence interval (0.80, 1.25). If theCIs are entirely within the equivalence interval (0.80, 1.25), then the test treatment mean is equivalent to the control treatment.

    Conclusion: Equivalence. All three Test treatments are equivalent to the control. The larval development time of the predator feeding on aphids exposed to Cry toxins inBtcotton plants was equivalent to the control plant.

    References

    Abrams P A, Menge B A, Mittelbach G G, Spiller D A and Yodzis P, 1996. The role of indirect effects in food webs∥Polis G A and Winemiller K O.FoodWebs:IntegrationofPatterns&Dynamics. New York: Springer: 371-395.

    Agresti A, 1996.AnIntroductiontoCategoricalDataAnalysis. New York, NY: Wiley.

    Andow D A, 2011. Assessing unintended effects of GM plants on biological species.JournalfürVerbraucherschutzundLebensmittelsicherheit, 6(S1): 119-124.

    Barrett T J, Hille K A, Sharpe R L, Harris K M, Machtans H M and Chapman P M, 2015. Quantifying natural variability as a method to detect environmental change: definitions of the normal range for a single observation and the mean of M observations.EnvironmentalToxicologyandChemistry, 34: 1185-1195.

    Berger R L, 1982. Multiparameter hypothesis testing and acceptance sampling.Technometrics, 24: 295-300.

    Berger R L and Hsu J C, 1996a. Bioequivalence trials, intersection-union tests and equivalence confidence sets.StatisticalScience, 11: 283-303.

    Berger R L and Hsu J C, 1996b. Rejoinder: bioequivalence trials, intersection-union tests and equivalence confidence sets.StatisticalScience, 11: 315-319.

    Bertoletti E, Buratini S V, Prósperi V A, Araújo R P A and Werner L I, 2007. Selection of relevant effect levels for using bioequivalence hypothesis testing.JournaloftheBrazilianSocietyofEcotoxicology, 2: 139-145.

    Biggs R, Carpenter S R and Brock W A, 2009. Turning back from the brink: detecting an impending regime shift in time to avert it.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 106: 826-831.

    Brosi B J and Biber E G, 2009. Statistical inference, Type Ⅱ error, and decision making under the US Endangered Species Act.FrontiersinEcologyandtheEnvironment, 7: 487-494.

    Chen J J, Tsong Y and Kang S H, 2000. Tests for equivalence or noninferiority between two proportions.TherapeuticInnovation&RegulatoryScience, 34: 569-578.

    Diamond J, Denton D, Anderson B and Phillips B, 2012. It is time for changes in the analysis of whole effluenttoxicity data.IntegratedEnvironmentalAssessmentandManagement, 8: 351-358.

    EFSA (European Food Safety Authority), 2010. Scientific opinion on statistical considerations for the safety evaluation of GMOs.EFSAJournal, 8(1): 1250.

    Farrington CP and Manning G, 1990. Test statistics and sample size formulae for comparative binomial trials with null hypothesis of non-zero risk difference or non-unity relative risk.StatisticsinMedicine, 9: 1447-1454.

    Giani G and Straβburger K, 1994. Testing and selecting for equivalence with respect to a control.JournaloftheAmericanStatisticalAssociation, 89: 320-329.

    Guo J Y, Wan F H, Dong L, L?vei G L and Han Z J, 2008. Tri-trophic interactions betweenBtcotton, the herbivoreAphisgossypiiGlover (Homoptera: Aphididae), and the predatorChrysopapallens(Rambur) (Neuroptera: Chrysopidae).EnvironmentalEntomology, 37: 263-270.

    Hanson N, 2011. Using biological data from field studies with multiple reference sites as a basis for environmental management: the risks for false positives and false negatives.JournalofEnvironmentalManagement, 92: 610-619.

    Hobbs N T and Hilborn R, 2006. Alternatives to statistical hypothesis testing in ecology: a guide to self-teaching.EcologicalApplications, 16: 5-19.

    Hoenig J M and Heisley D M, 2001. The abuse of power: the pervasive fallacy of power calculations for data analysis.AmericanStatistician, 55: 19-24.

    Hong B, Fisher T L, Sult T S, Maxwell C A, Mickelson J A, Kishino H and Locke M E H, 2014. Model-based tolerance intervals derived from cumulative historical composition data: application for substantial equivalence assessment of a genetically modified crop.JournalofAgriculturalandFoodChemistry, 62: 9916-9926.

    Iwasa Y, Andreasen V and Levin S A, 1987. Aggregation in model ecosystems. I. Perfect aggregation.EcologicalModelling, 37(3-4): 287-302.

    Iwasa Y, Levin S A and Andreasen V, 1989. Aggregation in model ecosystems II. Approximate aggregation.MathematicalMedicineandBiology, 6: 1-23.

    Kang Q and Vahl C I, 2014. Statistical analysis in the safety evaluation of genetically-modified crops: equivalence tests.CropScience, 54: 2183-2200.

    Kristofersson D and Navrud S, 2005. Validity tests of benefit transfer — are we performing the wrong tests?EnvironmentalandResourceEconomics, 30: 279-286.

    Lawo N C, W?ckers F L and Romeis J, 2009. IndianBtcotton varieties do not affect the performance of cotton aphids.PLoSONE, 4(3): e4804.

    Liu J P and Chow S C, 1996. Comment: Bioequivalence trials, intersection-union tests and equivalence confidence sets.StatisticalScience, 11: 306-312.

    Lundgren J G and Wiedenmann R N, 2002. Coleopteran-specific Cry3Bb toxin from transgenic corn pollen does not affect the fitness of a non-target species,ColeomegillamaculataDeGeer (Coleoptera: Coccinellidae).EnvironmentalEntomology, 31: 1213-1218.

    Meissle M and Romeis J, 2009. The web-building spiderTheridionimpressum(Araneae: Theridiidae) is not adversely affected byBtmaize resistant to corn rootworms.PlantBiotechnologyJournal, 7: 645-656.

    Nakagawa S and Foster T M, 2004. The case against retrospective statistical power analyses with an introduction to power analysis.ActaEthologica, 7: 103-108.

    Patterson S D and Jones B, 2005.BioequivalenceandStatisticsinClinicalPharmacology. Boca Raton, USA: Chapman & Hall/CRC.

    Paula D P and Andow D A, 2016. Differential Cry toxin detection and effect onBrevicorynebrassicaeandMyzuspersicae(Hemiptera: Aphidinae) feeding on artificial diet.EntomologiaExperimentalisetApplicata, 159: 54-60.

    Paula D P, Andow D A, Bellinati A, TimbR V, Souza L M, Pires C S S and Sujii E R, 2016. Limitations in dose-response and surrogate species methodologies for risk assessment of Cry toxins on arthropod natural enemies.Ecotoxicology, 25: 601-607.

    Perry J N, ter Braak C J F, Dixon P M, Duan J J, Hails R S, Huesken A, Lavielle M, Marvier M, Scardi M, Schmidt K, Tothmeresz B, Schaarschmidt F and van der Voet H, 2009. Statistical aspects of environmental risk assessment of GM plants for effects on non-target organisms.EnvironmentalBiosafetyResearch, 8: 65-78.

    Phillips B M, Hunt J W, Anderson B S, Puckett H M, Fairey R, Wilson C J and Tjeerdema R, 2001. Statistical significance of sediment toxicity test results: threshold values derived by the detectable significance approach.EnvironmentalToxicologyandChemistry, 20: 371-373.

    Raybould A, 2010. Reducing uncertainty in regulatory decision-making for transgenic crops: more ecological research or clearer environmental risk assessment?GMCrops, 1: 25-31.

    Romeis J, Dutton A and Bigler F, 2004.Bacillusthuringiensistoxin (Cry1Ab) has no direct effect on larvae of the green lacewingChrysoperlacarnea(Stephens) (Neuroptera: Chrysopidae).JournalofInsectPhysiology, 50: 175-183.

    Romeis J, Hellmich R L, Candolfi M P, Carstens K, De Schrijver A, Gatehouse A M R, Herman R A, Huesing J E, McLean M A, Raybould A, Shelton A M and Waggoner A, 2011. Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants.TransgenicResearch, 20: 1-22.

    Rosenfeld J S, 2002. Functional redundancy in ecology and conservation.Oikos, 98: 156-162.

    Sasabuchi S, 1980. A test of a multivariate normal mean with composite hypotheses determined by linear inequalities.Biometrika, 67: 429-439.

    Schuirmann D J, 1987. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability.JournalofPharmacokineticsandBiopharmaceutics, 15: 657-680.

    Simberloff D, 2005. The politics of assessing risk for biological invasions: the USA as a case study.TrendsinEcologyandEvolution, 20: 216-222.

    Suter G W I I, 2006.EcologicalRiskAssessment. 2 ed. Boca Raton, FL: CRC Press.

    USEPA, 2010.NationalPollutantDischargeEliminationSystemTestofSignificantToxicityImplementationDocument:AnAdditionalWholeEffluentToxicityStatisticalApproachforAnalyzingAcuteandChronicTestData.EPA833-R-10-003. Washington, DC: USEPA.

    Vahl C I and Kang Q, 2016. Equivalence criteria for the safety evaluation of a genetically modified crop: a statistical perspective.TheJournalofAgriculturalScience, 154: 383-406.

    van der Voet H, Perry J N, Amzal B and Paoletti C, 2011. A statistical assessment of differences and equivalences between genetically modified and reference plant varieties.BMCBiotechnology, 11: 15.

    von Burg S, Müller C B and Romeis J, 2010. Transgenic disease-resistant wheat does not affect the clonal performance of the aphidMetopolophiumdirhodumWalker.BasicandAppliedEcology, 11: 257-263.

    Westlake W J, 1981. Response to T.B.L. Kirkwood: bioequivalence testing — a need to rethink.Biometrics, 37: 589-594.

    (責(zé)任編輯:楊郁霞)

    收稿日期(Received):2015-12-15接受日期(Accepted): 2016-02-29

    *通訊作者(Author for correspondence), E-mail: dandow@umn.edu

    DOI:10. 3969/j.issn.2095-1787.2016.02.002

    猜你喜歡
    收稿責(zé)任編輯通訊
    《茶葉通訊》簡介
    茶葉通訊(2022年2期)2022-11-15 08:53:56
    《茶葉通訊》簡介
    茶葉通訊(2022年3期)2022-11-11 08:43:50
    通訊報道
    English Abstracts
    Standardized Manipulations of Heat-sensitive Moxibustion Therapy Specialty Committee of Heat-sensitive Moxibustion of WFCMS
    通訊簡史
    Perspectives on China′s General Medicine Education,Training,Development and Challenges
    English Abstracts
    English Abstracts
    English Abstracts
    免费高清在线观看日韩| 极品人妻少妇av视频| 亚洲美女视频黄频| 黄色怎么调成土黄色| av电影中文网址| 国产日韩欧美视频二区| 秋霞伦理黄片| 永久网站在线| 国产国语露脸激情在线看| 午夜久久久在线观看| av卡一久久| 超碰97精品在线观看| 日韩视频在线欧美| 男女下面插进去视频免费观看| 一区二区av电影网| 最近中文字幕高清免费大全6| 国产黄色视频一区二区在线观看| 国产免费又黄又爽又色| 男女免费视频国产| 七月丁香在线播放| 美国免费a级毛片| 久久久久久久国产电影| 亚洲中文av在线| 国产 一区精品| 丰满迷人的少妇在线观看| 国产老妇伦熟女老妇高清| 欧美成人午夜免费资源| 黄色配什么色好看| 视频区图区小说| 久久久久久久精品精品| 免费黄网站久久成人精品| 99re6热这里在线精品视频| 国产黄色免费在线视频| 黄片播放在线免费| 欧美成人精品欧美一级黄| 国产伦理片在线播放av一区| 91aial.com中文字幕在线观看| 亚洲欧洲精品一区二区精品久久久 | 两性夫妻黄色片| av一本久久久久| 国产黄色视频一区二区在线观看| 亚洲,欧美精品.| 亚洲精品日韩在线中文字幕| 亚洲国产精品一区三区| 亚洲国产欧美日韩在线播放| 日韩熟女老妇一区二区性免费视频| 观看av在线不卡| 国产成人av激情在线播放| 99热全是精品| 不卡视频在线观看欧美| 日韩不卡一区二区三区视频在线| 9191精品国产免费久久| 97在线人人人人妻| 天堂中文最新版在线下载| 国产一区亚洲一区在线观看| 久久久久精品性色| 国产不卡av网站在线观看| a级毛片在线看网站| 2018国产大陆天天弄谢| 侵犯人妻中文字幕一二三四区| 午夜免费观看性视频| 电影成人av| 一级毛片电影观看| 老汉色∧v一级毛片| 亚洲,欧美,日韩| 街头女战士在线观看网站| 久久影院123| 在线观看www视频免费| 黄片小视频在线播放| 久久99精品国语久久久| 国精品久久久久久国模美| 如何舔出高潮| 久久精品aⅴ一区二区三区四区 | 免费高清在线观看视频在线观看| 久久人人爽av亚洲精品天堂| 精品99又大又爽又粗少妇毛片| 黄色配什么色好看| 一本色道久久久久久精品综合| 中文字幕精品免费在线观看视频| 精品一品国产午夜福利视频| 亚洲精品日韩在线中文字幕| 高清不卡的av网站| 国产亚洲av片在线观看秒播厂| 美女脱内裤让男人舔精品视频| 男人添女人高潮全过程视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 99国产综合亚洲精品| 午夜福利网站1000一区二区三区| 伊人亚洲综合成人网| 国产精品 国内视频| 老鸭窝网址在线观看| 免费人妻精品一区二区三区视频| freevideosex欧美| 男人操女人黄网站| 美女主播在线视频| 亚洲精品自拍成人| 午夜av观看不卡| 69精品国产乱码久久久| 26uuu在线亚洲综合色| 日本wwww免费看| 亚洲av.av天堂| 亚洲精品乱久久久久久| 中文字幕最新亚洲高清| 大片免费播放器 马上看| 亚洲欧美日韩另类电影网站| 深夜精品福利| 日日撸夜夜添| 国产成人aa在线观看| 国产不卡av网站在线观看| 欧美精品一区二区免费开放| 亚洲国产最新在线播放| 人妻 亚洲 视频| 91国产中文字幕| 午夜免费鲁丝| 涩涩av久久男人的天堂| 国产福利在线免费观看视频| 久久综合国产亚洲精品| av在线app专区| 成年美女黄网站色视频大全免费| 大片电影免费在线观看免费| 午夜精品国产一区二区电影| 国产精品久久久久久精品古装| av不卡在线播放| 国产精品蜜桃在线观看| 亚洲久久久国产精品| 捣出白浆h1v1| 一级,二级,三级黄色视频| 成人国产av品久久久| 蜜桃国产av成人99| 免费黄频网站在线观看国产| 亚洲av电影在线进入| 少妇人妻 视频| 久久97久久精品| 晚上一个人看的免费电影| 久久精品国产亚洲av涩爱| 少妇被粗大的猛进出69影院| 90打野战视频偷拍视频| 亚洲av中文av极速乱| 两性夫妻黄色片| av免费观看日本| 成人国产麻豆网| 少妇的丰满在线观看| 午夜久久久在线观看| 国产高清国产精品国产三级| 亚洲色图综合在线观看| 久久国产亚洲av麻豆专区| 亚洲一区中文字幕在线| 精品少妇一区二区三区视频日本电影 | 街头女战士在线观看网站| 亚洲精品乱久久久久久| 中文字幕av电影在线播放| 亚洲国产最新在线播放| 一二三四在线观看免费中文在| 免费看av在线观看网站| 日韩制服丝袜自拍偷拍| 亚洲精品一区蜜桃| 日本欧美视频一区| 久久亚洲国产成人精品v| 国产av码专区亚洲av| 久久精品国产亚洲av高清一级| 2022亚洲国产成人精品| 免费观看a级毛片全部| 久久久久视频综合| 亚洲av电影在线观看一区二区三区| 91精品伊人久久大香线蕉| 男人爽女人下面视频在线观看| 亚洲av综合色区一区| 男女午夜视频在线观看| 黄色配什么色好看| 国产精品国产三级专区第一集| 一本—道久久a久久精品蜜桃钙片| 男女高潮啪啪啪动态图| 大片免费播放器 马上看| 日韩中文字幕欧美一区二区 | 少妇人妻精品综合一区二区| 在线 av 中文字幕| 少妇 在线观看| 99热全是精品| 搡女人真爽免费视频火全软件| 国产视频首页在线观看| 春色校园在线视频观看| 亚洲精品国产av蜜桃| 乱人伦中国视频| 久久精品国产亚洲av涩爱| 国产福利在线免费观看视频| 成人黄色视频免费在线看| 十分钟在线观看高清视频www| 色哟哟·www| 亚洲精品久久午夜乱码| 美女国产高潮福利片在线看| 晚上一个人看的免费电影| 天天影视国产精品| 国产精品一区二区在线观看99| 国产一区二区三区av在线| 9色porny在线观看| 中文字幕精品免费在线观看视频| 久久精品国产亚洲av天美| 久久久国产欧美日韩av| 人人妻人人澡人人爽人人夜夜| 人成视频在线观看免费观看| 日本wwww免费看| 亚洲成人手机| 热99久久久久精品小说推荐| 免费播放大片免费观看视频在线观看| 少妇人妻精品综合一区二区| 欧美激情高清一区二区三区 | 黄色毛片三级朝国网站| 亚洲少妇的诱惑av| 久久99蜜桃精品久久| 日日撸夜夜添| 天天躁日日躁夜夜躁夜夜| 国产日韩欧美亚洲二区| 亚洲熟女精品中文字幕| 亚洲精品日本国产第一区| 亚洲精品美女久久久久99蜜臀 | 精品视频人人做人人爽| 国产免费现黄频在线看| 亚洲美女黄色视频免费看| 国产片内射在线| 热re99久久国产66热| 一级黄片播放器| 久久久久久久国产电影| 久久狼人影院| 99精国产麻豆久久婷婷| 国产熟女午夜一区二区三区| 2018国产大陆天天弄谢| 91精品伊人久久大香线蕉| 久久久久国产精品人妻一区二区| 黑人巨大精品欧美一区二区蜜桃| 国产不卡av网站在线观看| 国产av码专区亚洲av| 最黄视频免费看| 亚洲精品国产色婷婷电影| a 毛片基地| 欧美激情极品国产一区二区三区| 男女高潮啪啪啪动态图| 久久国产精品男人的天堂亚洲| 两性夫妻黄色片| 最近手机中文字幕大全| videosex国产| 天美传媒精品一区二区| 18+在线观看网站| 一级毛片 在线播放| 在线观看www视频免费| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品av麻豆狂野| 精品视频人人做人人爽| 亚洲成国产人片在线观看| 美女视频免费永久观看网站| 91午夜精品亚洲一区二区三区| 卡戴珊不雅视频在线播放| h视频一区二区三区| 搡女人真爽免费视频火全软件| 亚洲五月色婷婷综合| 成人亚洲欧美一区二区av| 成人影院久久| 久热这里只有精品99| 人人妻人人澡人人看| 侵犯人妻中文字幕一二三四区| 精品国产露脸久久av麻豆| 人人妻人人添人人爽欧美一区卜| 国产成人午夜福利电影在线观看| 中文精品一卡2卡3卡4更新| 18禁动态无遮挡网站| 亚洲av欧美aⅴ国产| 亚洲国产欧美网| 宅男免费午夜| 国产精品三级大全| 美女午夜性视频免费| 少妇人妻 视频| 韩国高清视频一区二区三区| 久久久久久久久久久久大奶| www日本在线高清视频| 五月开心婷婷网| 久久久精品94久久精品| 美女中出高潮动态图| 国产一区二区在线观看av| 久久久精品区二区三区| 亚洲精品久久久久久婷婷小说| 99久久精品国产国产毛片| 国产在线视频一区二区| 9色porny在线观看| 国产不卡av网站在线观看| 久久久久国产一级毛片高清牌| 天天躁夜夜躁狠狠躁躁| 制服诱惑二区| 麻豆精品久久久久久蜜桃| 成年美女黄网站色视频大全免费| 人妻人人澡人人爽人人| 黑丝袜美女国产一区| 久久青草综合色| 天天影视国产精品| 精品人妻偷拍中文字幕| 色哟哟·www| 最近的中文字幕免费完整| 精品亚洲成a人片在线观看| 大陆偷拍与自拍| 大香蕉久久成人网| 国产精品女同一区二区软件| 侵犯人妻中文字幕一二三四区| 久久久精品免费免费高清| 边亲边吃奶的免费视频| √禁漫天堂资源中文www| 在线观看www视频免费| 在线精品无人区一区二区三| 婷婷色综合大香蕉| 国产成人免费无遮挡视频| 香蕉精品网在线| 五月开心婷婷网| 日韩制服骚丝袜av| 天天躁日日躁夜夜躁夜夜| 欧美人与善性xxx| 国产精品欧美亚洲77777| 日本91视频免费播放| av福利片在线| 女的被弄到高潮叫床怎么办| 日韩中字成人| 三上悠亚av全集在线观看| 街头女战士在线观看网站| 一级a爱视频在线免费观看| 最近最新中文字幕大全免费视频 | 在线观看美女被高潮喷水网站| 80岁老熟妇乱子伦牲交| 国产亚洲午夜精品一区二区久久| 国产色婷婷99| 在线观看三级黄色| 亚洲国产看品久久| 午夜激情久久久久久久| 欧美在线黄色| 在线观看三级黄色| 精品国产一区二区三区四区第35| 777米奇影视久久| 十八禁高潮呻吟视频| 免费在线观看黄色视频的| 国产无遮挡羞羞视频在线观看| 男女边摸边吃奶| 色婷婷久久久亚洲欧美| 肉色欧美久久久久久久蜜桃| 日韩免费高清中文字幕av| 夫妻性生交免费视频一级片| 亚洲欧美一区二区三区久久| 丝袜美腿诱惑在线| 亚洲综合精品二区| 日本-黄色视频高清免费观看| 嫩草影院入口| 欧美最新免费一区二区三区| 精品久久久精品久久久| 国产有黄有色有爽视频| 亚洲精品国产av成人精品| 久久精品人人爽人人爽视色| 国产免费一区二区三区四区乱码| 精品国产一区二区三区久久久樱花| 美女福利国产在线| 女性生殖器流出的白浆| 亚洲成人手机| 国产av码专区亚洲av| av国产久精品久网站免费入址| 国产一区二区激情短视频 | 最近最新中文字幕大全免费视频 | 午夜日韩欧美国产| 99国产综合亚洲精品| 久久国产亚洲av麻豆专区| 岛国毛片在线播放| 啦啦啦视频在线资源免费观看| 亚洲,欧美,日韩| 9色porny在线观看| 亚洲精品美女久久av网站| 久久人人爽av亚洲精品天堂| 国产一区二区三区综合在线观看| 国产精品 欧美亚洲| 韩国精品一区二区三区| 国产熟女欧美一区二区| 亚洲一级一片aⅴ在线观看| 国产老妇伦熟女老妇高清| 一个人免费看片子| 免费人妻精品一区二区三区视频| 国产精品久久久久久av不卡| 99久久人妻综合| 亚洲av日韩在线播放| 中国国产av一级| 免费黄网站久久成人精品| 亚洲欧美一区二区三区黑人 | 久热这里只有精品99| 免费观看a级毛片全部| 夜夜骑夜夜射夜夜干| 熟女av电影| 国产成人91sexporn| 人妻少妇偷人精品九色| 久久精品国产亚洲av涩爱| 日韩三级伦理在线观看| 国产精品一二三区在线看| 叶爱在线成人免费视频播放| 中文字幕色久视频| 日韩精品免费视频一区二区三区| 91久久精品国产一区二区三区| 1024香蕉在线观看| 亚洲精品久久午夜乱码| 亚洲经典国产精华液单| 99久久精品国产国产毛片| 亚洲av日韩在线播放| 下体分泌物呈黄色| 一区二区三区精品91| 婷婷色av中文字幕| 亚洲美女视频黄频| 国产精品麻豆人妻色哟哟久久| 各种免费的搞黄视频| 久久国产精品男人的天堂亚洲| 欧美日韩亚洲国产一区二区在线观看 | 欧美精品av麻豆av| 黄片小视频在线播放| 日韩成人av中文字幕在线观看| 欧美日本中文国产一区发布| 国产免费一区二区三区四区乱码| 制服丝袜香蕉在线| 少妇 在线观看| 大香蕉久久成人网| 18禁观看日本| 久久久久久伊人网av| videos熟女内射| 少妇的丰满在线观看| 国产淫语在线视频| 久久影院123| 不卡视频在线观看欧美| 亚洲婷婷狠狠爱综合网| 在线看a的网站| 亚洲欧美精品综合一区二区三区 | 亚洲欧美中文字幕日韩二区| freevideosex欧美| 女的被弄到高潮叫床怎么办| 七月丁香在线播放| 精品一品国产午夜福利视频| 久久综合国产亚洲精品| 亚洲经典国产精华液单| 免费日韩欧美在线观看| 亚洲人成电影观看| 国产爽快片一区二区三区| 精品一区二区三区四区五区乱码 | 成年人午夜在线观看视频| 男女啪啪激烈高潮av片| 国产成人欧美| 国产97色在线日韩免费| 成年女人在线观看亚洲视频| 两个人看的免费小视频| 伦理电影大哥的女人| 国产在视频线精品| 久久久亚洲精品成人影院| 啦啦啦啦在线视频资源| 精品一区二区免费观看| 精品国产一区二区三区四区第35| av线在线观看网站| 熟女电影av网| 欧美国产精品一级二级三级| 丝瓜视频免费看黄片| av在线观看视频网站免费| 99久久精品国产国产毛片| 看十八女毛片水多多多| 久久综合国产亚洲精品| 秋霞伦理黄片| 亚洲成国产人片在线观看| 免费黄网站久久成人精品| 青草久久国产| 水蜜桃什么品种好| 日本-黄色视频高清免费观看| 免费久久久久久久精品成人欧美视频| 麻豆乱淫一区二区| 你懂的网址亚洲精品在线观看| 中文字幕av电影在线播放| 国产精品不卡视频一区二区| 视频区图区小说| 春色校园在线视频观看| 久久鲁丝午夜福利片| 国产av国产精品国产| a级片在线免费高清观看视频| 欧美日韩亚洲国产一区二区在线观看 | 午夜免费鲁丝| 人体艺术视频欧美日本| 水蜜桃什么品种好| 看非洲黑人一级黄片| tube8黄色片| 久久ye,这里只有精品| 老汉色av国产亚洲站长工具| 又黄又粗又硬又大视频| 视频在线观看一区二区三区| 久久久久久人妻| 日韩三级伦理在线观看| 国产伦理片在线播放av一区| 好男人视频免费观看在线| 人成视频在线观看免费观看| 黄色 视频免费看| 色婷婷av一区二区三区视频| 在线观看免费视频网站a站| 观看美女的网站| 99国产综合亚洲精品| 九色亚洲精品在线播放| 日韩伦理黄色片| 在线观看一区二区三区激情| 久久久久人妻精品一区果冻| 女性生殖器流出的白浆| 丝袜脚勾引网站| 男人操女人黄网站| 欧美精品高潮呻吟av久久| 青春草亚洲视频在线观看| 亚洲成色77777| 丝袜脚勾引网站| 欧美人与性动交α欧美精品济南到 | 国产免费现黄频在线看| 人妻少妇偷人精品九色| 26uuu在线亚洲综合色| 欧美97在线视频| 在线观看美女被高潮喷水网站| 美女脱内裤让男人舔精品视频| 日韩 亚洲 欧美在线| 26uuu在线亚洲综合色| 男人添女人高潮全过程视频| 久久青草综合色| 亚洲欧美精品自产自拍| 蜜桃国产av成人99| av又黄又爽大尺度在线免费看| 亚洲国产精品999| 咕卡用的链子| 2022亚洲国产成人精品| 男女午夜视频在线观看| 亚洲国产精品一区三区| 国产精品av久久久久免费| 一级a爱视频在线免费观看| 日韩伦理黄色片| 久久精品熟女亚洲av麻豆精品| xxxhd国产人妻xxx| 国产免费福利视频在线观看| 国产精品久久久久久久久免| 一级片'在线观看视频| 国产探花极品一区二区| 中文乱码字字幕精品一区二区三区| 日本色播在线视频| 在线观看一区二区三区激情| 日本爱情动作片www.在线观看| 寂寞人妻少妇视频99o| 美女视频免费永久观看网站| 午夜激情久久久久久久| 岛国毛片在线播放| 亚洲精品,欧美精品| 国产野战对白在线观看| 9色porny在线观看| 午夜福利在线观看免费完整高清在| 欧美精品亚洲一区二区| 免费人妻精品一区二区三区视频| 国产一级毛片在线| 午夜av观看不卡| 久久久久久久国产电影| 日韩精品有码人妻一区| 极品少妇高潮喷水抽搐| 中国三级夫妇交换| 精品亚洲乱码少妇综合久久| 极品人妻少妇av视频| 国产亚洲精品第一综合不卡| av片东京热男人的天堂| 国产成人精品一,二区| 国产精品人妻久久久影院| 青春草视频在线免费观看| 亚洲欧洲精品一区二区精品久久久 | 王馨瑶露胸无遮挡在线观看| 国产av精品麻豆| 免费日韩欧美在线观看| 老鸭窝网址在线观看| 韩国高清视频一区二区三区| 最黄视频免费看| 乱人伦中国视频| 日韩中文字幕视频在线看片| h视频一区二区三区| 久久影院123| 国产欧美亚洲国产| 咕卡用的链子| 国产成人精品无人区| 亚洲五月色婷婷综合| 亚洲色图 男人天堂 中文字幕| 亚洲精品在线美女| 又大又黄又爽视频免费| 91成人精品电影| 啦啦啦在线观看免费高清www| 一区二区日韩欧美中文字幕| 国产av国产精品国产| 男女边摸边吃奶| 老女人水多毛片| 久久99热这里只频精品6学生| 亚洲av欧美aⅴ国产| 伊人久久国产一区二区| 亚洲情色 制服丝袜| 成年美女黄网站色视频大全免费| 久久久久久人人人人人| 国产精品三级大全| 人体艺术视频欧美日本| 秋霞在线观看毛片| 日韩精品有码人妻一区| 免费少妇av软件| 久久久久久久久免费视频了| 亚洲国产精品一区二区三区在线| 成年av动漫网址| 青春草亚洲视频在线观看| 男女免费视频国产| 久久久久久人妻| 丰满乱子伦码专区| 高清视频免费观看一区二区| 精品国产国语对白av| 日韩av不卡免费在线播放| 国产野战对白在线观看| 亚洲精品久久午夜乱码| 香蕉丝袜av| 一边摸一边做爽爽视频免费| 日韩不卡一区二区三区视频在线| a级片在线免费高清观看视频| 五月天丁香电影| 国产一区二区在线观看av| 中文字幕人妻丝袜一区二区 | av视频免费观看在线观看| 婷婷色综合www|