• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Equivalence tests to support environmental biosafety decisions:theory and examples

    2016-06-02 09:21:44DavidANDOWGborVEIboraPiresPAULA
    生物安全學(xué)報 2016年2期
    關(guān)鍵詞:收稿責(zé)任編輯通訊

    David A. ANDOW, Gbor L. L?VEI, Débora Pires PAULA

    1DepartmentofEntomology,UniversityofMinnesota,St.Paul,MN55108,USA;2DepartmentofAgroecology,AarhusUniversity,FlakkebjergResearchCentre,DK-4200Slagelse,Denmark;3EmbrapaGeneticResourcesandBiotechnology,ParqueEsta??oBiológica,W5Norte,P.O.Box02372,Brasília,DF, 70770-917,Brazil

    ?

    Equivalence tests to support environmental biosafety decisions:theory and examples

    David A. ANDOW1*, Gbor L. L?VEI2, Débora Pires PAULA3

    1DepartmentofEntomology,UniversityofMinnesota,St.Paul,MN55108,USA;2DepartmentofAgroecology,AarhusUniversity,FlakkebjergResearchCentre,DK-4200Slagelse,Denmark;3EmbrapaGeneticResourcesandBiotechnology,ParqueEsta??oBiológica,W5Norte,P.O.Box02372,Brasília,DF, 70770-917,Brazil

    Abstract:A major role of ecological risk assessment (ERA) has been to provide scientific guidance on whether a future human activity will cause ecological harm, including such activities as release of a genetically modified organism (GMO), exotic species, or chemical pollutant into the environment. This requires the determination of the likelihoods that the activity: would cause a harm, and would not cause a harm. In the first case, the focus is on demonstrating the presence of a harm and developing appropriate management to mitigate such harm. This is usually evaluated using standard hypothesis analysis. In the second case, the focus is on demonstrating the absence of a harm and supporting a decision of biosafety. While most ERA researchers have focused on finding presence of harm, and some have wrongly associated the lack of detection of harm with biosafety, a novel approach in ERA would be to focus on demonstrating directly the safety of the activity. Although, some researchers have suggested that retrospective power analysis can be used to infer absence of harm, it actually provides inaccurate information about biosafety. A decision of biosafety can only be supported in a statistically sound manner by equivalence tests, described here. Using a 20% ecological equivalence standard in GMO examples, we illustrated the use of equivalence tests for two-samples with normal or binomial data and multi-sample normal data, and provided a spreadsheet calculator for each. In six of the eight examples, the effects of Cry toxins on a non-target organism were equivalent to a control, supporting a decision of biosafety. These examples also showed that demonstration of equivalence does not require large sample sizes. Although more relevant ecological equivalence standards should be developed to enable equivalence tests to become the main method to support biosafety decision making, we advocate their use for evaluating biosafety for non-target organisms because of their direct and accurate inference regarding safety.

    Key words:GM crops; average bioequivalence; environmental impact; ERA; statistical methods

    Introduction

    A major role of ecological risk assessment (ERA) has been to provide scientific guidance on whether a future human activity will cause ecological harm (Suter,2006). These activities may include land use changes, such as rural and suburban development, agricultural expansion, or deforestation, the release of organic and inorganic chemicals, such as CO2, NOX, pesticides and other toxic chemicals, and the release of biological organisms, such as biological control organisms, exotic species, and genetically modified organisms (GMOs). The logic of all of these ERAs directs the assessments to determine the likelihood that the activity would cause an adverse environmental change, and at the same time the likelihood that the activity will not cause an adverse environmental effect. A risk assessor is interested in both the probability that there will be an adverse effect(s) and the probability that there will be no adverse effect(s). The first of these can be determined by standard statistical hypothesis tests. In the case of "no harm", the assessor must be able to conclude that a test treatment has similar risk or effect as the control treatment, i.e. the two are equivalent, and this requires the use of equivalence tests, described here.

    Under standard experimental design and statistical hypothesis testing, the null hypothesis is that the responses to the test and control treatments are the same. Rejecting the null hypothesis (that they are the same) will lead to the conclusion that they are different. In other words, it allows a conclusion that there is a difference between the two treatments, but it does not allow a conclusion that they are the same or similar. Equating the lack of statistical significance with "no difference" or biosafety is a serious logical flaw, because the lack of significance can be related to low replication and/or high error variation, not because there is truly no effect. Inability to reject the null hypothesis can lead to a Type Ⅱ error (= not rejecting the null hypothesis when in fact the treatments are different). For any given estimated difference between the treatments, as the estimated standard error of the difference increases from 0, the result will eventually change from an inference of significant difference to one of equivalence, which is the opposite of what is desired for equivalence testing. For the most part, this problem — that the null hypothesis cannot be proved with standard hypothesis testing — is recognized, but because alternatives are not recognized it is largely ignored (e.g., Raybould,2010).

    In recent decades, however, a new branch of statistical theory, equivalence testing, has been developed to address these problems. An equivalence test inverts the null and alternative hypotheses, so that the null hypothesis is that the treatments are different and the alternative hypothesis is that they are equivalent. Thus the rejection of the null hypothesis enables a sound statistical inference that the treatments are equivalent. Equivalence tests have gained widespread use for supporting regulatory decisions about new generic drugs, and there are now textbooks for conducting such tests (e.g., Patterson & Jones,2005). In this paper, we summarize the statistical theory underlying equivalence tests, compare this approach with standard hypothesis testing and power analysis, illustrate how to conduct these statistical tests with examples from ecological risk analysis experiments for testing the safety of GM crops, and suggest that equivalence testing is superior to standard hypothesis testing for assessing ecological safety. We use GM crops because we have conducted research in this area. A spreadsheet calculator for the equivalence tests described in this paper is provided in the supplementary material. Even though the examples are solely related to GMOs, the potential scope of application of equivalence tests in ecological risk assessment and environmental policy is quite broad (Diamondetal.,2012; Hanson,2011; Kristofersson & Navrud,2005).

    Statistical theory for equivalence tests

    There are three kinds of equivalence tests: average equivalence, population equivalence and individual equivalence (Liu & Chow,1996). Average equivalence evaluates the similarity in the average response between a test and control treatment. Population equivalence evaluates the similarity in the entire statistical distribution (average, variance, skew, kurtosis, etc) of the responses to the treatments. Population equivalence is a more rigorous similarity standard than average equivalence because the average, variance, and possibly higher statistical moments all must be similar. Individual equivalence tests examine the similarity in the responses to the treatments within the same individuals. This last is often used in drug testing, where each individual is exposed to both treatments with a suitable re-equilibration period between treatments (a so-called two-period crossover design), and also includes other designs, such as repeated measures, and paired designs. From such a design it is possible to evaluate equivalence individual by individual.

    For ecological risk assessment, average equivalence is the more generally applicable of the three. Individual equivalence testing will be limited because it is often be difficult to expose individuals to more than one treatment, especially in a toxicity assay. Population equivalence testing will also be limited because it is usually not possible to have sufficiently high replication to test for equivalence in variance, skewness, etc.

    Equivalences tests can be understood by contrasting them with standard hypothesis tests (Fig.1). If the average response of some biological entity to a test treatmentiis denotedμiand the average response to the control treatment (negative control) isμc, a standard hypothesis for normally distributed data is

    H0:μi/μc=1Ha:μi/μc<1 orμi/μc>1

    [1]

    whereH0is the null hypothesis andHais the alternative hypothesis. The null hypothesis is that the two populations have the same mean, and the alternative hypothesis is that they do not.

    An equivalence hypothesis reverses the null and alternative hypotheses. Using the same notation, the analogous equivalence hypothesis is

    [2]

    wherethevaluesΔLandΔUareequivalencestandardssetaccordingtoregulatory,statisticalandbiologicalconsiderationsthatdefinehowclosethemeansmustbetobeconsideredequivalent.Thenullhypothesisstatesthattheratiooftheaveragesiseitherlessthanthelowerorgreaterthantheupperequivalencestandard,andthealternativehypothesisisthatthevalueoftheratioisbetweenthetwostandards.Notethatthehypothesisthattheaveragesarethesame,isnowapartofthealternativehypothesis.Theequationsin[2]aretypicallyreformulatedas:

    H01: 0≥μi-ΔLμcversusHa1: 0<μi-ΔLμc

    H02: 0≤μi-ΔUμcversusHa2: 0>μi-ΔUμc

    [3]

    Thenullhypothesisin[2]isrejectedandthemeansareequivalentifandonlyifbothnullhypotheses[3]arerejected.Forsomeregulatoryprocedures, ±20%isacommonlyusedequivalencestandard(ΔL=0.80andΔU=1.25).

    Whenequation[2]islog-transformed,linearhypothesesareproduced:

    H0: θL≥ηi-ηcorηi-ηc≥θU

    Ha: θL<ηi-ηcandηi-ηc<θU

    [4]

    whereη=ln(μ)andθ=ln(Δ).IntheUSandEurope,thevalueθU=-θL=0.223144isrequiredformostgenericdrugtests,whichisthesameas±20%ontheuntransformedscale.

    Hypotheses[2]~[4]arecalledintersection-unionhypotheses(Berger&Hsu,1996a).Thenullhypothesisistheintersectionoftwoone-sidedhypotheses,andthealternativehypothesisistheunionoftwoone-sidedhypotheses.Atestofanintersection-unionhypothesisiscalledanintersection-uniontest(IUT)andisoftenformulatedasatestoftwoone-sidedhypotheses,whichiscalledatwoone-sidedtest(TOST).TheformulationofanequivalencetestasanIUTallowstheapplicationofsomegeneralmathematicaltheoremstodeterminetheTypeⅠerrorrateforthetest(Berger,1982;Berger&Hsu,1996a).AlthoughitmightbethoughtthattheTypeⅠerrorrateforthetwotestswouldneedtobeadjustedbecausetherearemultipletestswiththesamedata,thetheoremsprovethatsuchcorrectionsarenotneededforanyofthetestsdiscussedinthispaper(Berger,1982;Berger&Hsu,1996a).

    Anothertheorem(Theorem4,Berger&Hsu,1996a)providesconditionsforconstructingconfidenceintervals(orregions)onthestatisticalparameter(s)sothatconfidenceintervals(orregions)canbeusedtotestequivalenceinlieuofhypothesistesting.IfandonlyifanIUTrejectsthenullhypothesiswithaTypeⅠerrorof0.05,the95%confidenceintervalaroundηi-ηrwillbeentirelycontainedintheinterval[θL, θU],whichiscalledtheequivalenceregionorinterval.Thisdemonstratestheidentitybetweenhypothesistestingandinterpretationofconfidenceintervalsandregions.Wewillusethistheoremtotesttheequivalenceofmultipletesttreatmentstoasinglecontroltreatment.

    Comparisonwithretrospective(observed)power

    AretrospectiveanalysisofthestatisticalpowerofanexperimenthasbeenproposedtoaddresstheproblemofTypeⅡerrorinGMOecologicalriskassessment(e.g.,Romeiset al.,2011).ThepowerofanexperimentaldesignisanestimateoftheprobabilityofnotmakingaTypeⅡerror(notrejectingthenullhypothesis,wheninfactitshouldhavebeenrejected).Therearetwokindsofpoweranalysis:prospectiveandretrospective.Prospectivepoweranalysisusesinformationfrompreviousexperimentstooptimizethedesignofexperimentsyettobeconducted,andisalegitimateandusefulstatisticaltool(Hoenig&Heisley,2001).Itcanalsobeusedtooptimizeequivalencetests.

    Hoenig&Heisley(2001)provideadeepcritiqueofretrospectivepoweranalysis.RetrospectivepoweranalysisaimstoprovideanindependentestimateoftheprobabilityofnotmakingaTypeⅡerrorbasedonthedesignanddataofanexperimentthathasalreadybeencompleted,andreliesonastatisticcalled"observedpower".AdvocatesforretrospectivepoweranalysisarguethathighobservedpowerindicatesalowTypeⅡerrorrateandthereforethenullhypothesisismorelikelytobetruewhenitisnotrejectedandthereishighobservedpower(e.g.,Romeiset al.,2011).TheseargumentsandinferencesarelogicallyflawedbecauseretrospectivepoweranalysisdoesnotprovideanindependentestimateoftheprobabilityofnotmakingaTypeⅡerror(Brosi&Biber,2009;Nakagawa&Foster,2004;Perryet al.,2009).

    Hoenig&Heisley(2001)providedaspecificexampletoillustratethisseriouslogicalflawintheuseofobservedpower.Supposetwosimilarexperimentsareconducted,andneitherrejectsthenullhypothesis,buttheobservedpowerinthefirstexperimentwaslargerthantheobservedpowerinthesecondone.Advocatesoftheuseofobservedpowermaywishtoinferthatthefirstexperimentgivesstrongersupportfavoringthenullhypothesisthanthesecond.However,thisleadstoafatallogicalcontradiction.Supposetheexperimentsweretestedwithaone-sidedt-test.Lettp1andtp2betheobservedteststatisticsfromtherespectiveexperiments.Becausetheobservedpowerwashigherinthefirstexperiment,thisimpliesthattp1>tp2,becauseobservedpowerisanincreasingfunctionofthetpstatistic.Butiftp1>tp2,thenthep-valuesfromtheexperimentswouldhavep1

    Conductingequivalencetests

    Equivalencetestscanbeconductedformanydifferentexperimentaldesigns,andoneareaofactiveresearchisextendingtheiruseformorecomplexdesigns.Hereweprovideabasicintroductiontoequivalencetestsforsomecommonandsimpleexperimentaldesigns:twoindependenttreatmentsandnormaldata,twoindependenttreatmentsandbinomialdata,multipleindependenttreatmentsandnormaldata,andreplicationofexperimentswithmultipleindependenttreatmentsandnormaldata.WeuseexamplesforGMObiosafetytestingbecausewehavebeenconductingresearchinthisareaandcanuserealdatatoillustratetheuseofequivalencetests.Theseexamplesincludeonlyoneswherenosignificantdifferencewasdetectedusingstandardhypothesistests,andareusedtoillustratewhenitispossibletoconcludethatthereisstatisticalequivalencesupportingabiosafetydecisionandwhenthisisnotpossible.

    Normaldata

    TL>tα,νandTU<-tα,ν

    [5]

    [6]

    These have a Student′st-distribution withν=m+n-2 degrees of freedom. The TOST [3] is conducted using the ordinary,α=0.05, one-sidedt-test based onTLfor the one-sided hypothesis [3 upper] and the ordinary,α=0.05, one-sidedt-test based onTUfor the one-sided hypothesis [3 lower]. A numerical example is provided in Box 1 and the supporting information.

    Binomial data

    For binomial data there are several alternatives for constructing equivalence intervals and designating equivalence standards, based on the binomial parameter,π. They can be modeled on the arithmetic difference between the test (πi) and control (πc) parameters (πi-πc), the proportional difference in the parameters (πi/πc), or the proportional difference in the odds of a response (πi(1-πc))/((1-πi)πc), which is based on the odds ratios in each treatment. We calculated the equivalence interval for the three models (arithmetic, proportional, and odds ratio), and expressed it as the interval of the test treatment (πi) as a function of the control treatment (πc). The proportional difference model, which was ideal for normal data [2], is asymmetrical across the range ofπc(Fig.2), which is problematic because equivalence will depend on which response was chosen as the focal response. The others are symmetric (Fig. 2), but differ nearπr1=0 orπr1=1. Both can be justified, depending on whether the absolute differences or the difference in odds is critical. Here we provide equivalence tests for arithmetic differences with sufficiently large samples (m,n≥50), because these have a stable Type Ⅰ error rate (Chenetal.,2000). For small samples, exact methods are required (Agresti,1996).

    LetX1, …,Xmdenote the independent binomial responses (m,πi) to the test treatment andC1, …,Cndenote the independent binomial responses (n,πc) to the control treatment, whereπiandπcare the true response probabilities for the test and control treatments, respectively, andmandnare the number of independent observations for each. In addition, letycbe the total number of observed "positive" responses in the control treatment andxibe the number of "positive" responses in the test treatment, so thatn-ycandm-xi, respectively, become the number of "negative" responses in the two treatments.

    For the arithmetic difference in response probabilities, the equivalence hypothesis is

    H0:ΔL≥πi-πcorπi-πc≥ΔU

    Ha:ΔL<πi-πcandπi-πc<ΔU

    [7]

    whereΔLandΔUare equivalence standards determining how closeπiandπcmust be to be considered equivalent. For drug testing, the standards used vary between 10%~20%, but here we set the standards asΔL=-0.2 andΔU=0.2, withπiandπcbounded by the interval [0, 1]. More generally, the equivalence intervals can be adjusted based on the observed values ofπiandπc.

    A TOST for [7] comes from the asymptotic test statistic for the difference between two binomial parameters,πi-πc, and is based on the following two statistics with a standard error estimated by maximum likelihood (Farrington & Manning,1990),

    [8]

    Fπ(p)=πyr(1-π)n-yr(π+Δj)xi(1-π-Δj)m-xi

    Iπ=[max{0,-Δj},min{1,1-Δj}]

    [9]

    zFM,LandzFM,Uareχ2-distributedwith1degreeoffreedom.Thetwotreatmentsareequivalentifbothone-sidedtestsarerejectedatapredeterminedlevelofα,usuallyα=0.05,thatis,if

    zFM,L>3.841andzFM,U>3.841

    [10]

    whicharetheupperandlowerα=0.05tailsofthestandardnormaldistribution.

    Multiplecomparisonstoacommoncontroltreatment

    Inecologicalriskassessment,experimentsfrequentlyhavemorethanonetesttreatmentcomparedtoasinglecontroltreatment,requiringastatisticalprocedureformakingmultiplecomparisons.Thestatisticaldesignisacompletelyrandomizedone-waytreatmentstructure,x=Dβ+ε,wherexisthevectorofmeasuredresponses,Distheknowndesignmatrix,βisavectorofunknownfixedeffects,whichisestimatedbythetreatmentmeans,andεisarandomerrorvectorwithE[ε]=0.Onesolutionistouseequivalencetestsbasedonconfidenceintervalsdesignedformultiplecomparisons(Berger&Hsu,1996a,1996b).

    [11]

    EachoftheseKhypothesescouldbetestedusingaTOST,butitisnotpossibletotestallKhypothesessimultaneouslybecauseanIUTdoesnotallowforthepossibilityofrejectingsomebutnotallofthehypotheses.Inaddition,becauseuptoKhypothesescouldbetrue,itisnecessarytohaveanadjustmentfortestingmultiplecomparisons.AnappropriateapproachistoconstructconfidenceintervalsforeachoftheseKhypotheses.Berger&Hsu(1996a)showthatiftheconfidenceinterval,constructedfromaTOST,isentirelycontainedintheequivalenceinterval[ΔL, ΔU],thetwomeansareequivalent.Theconfidenceintervalforthemultiplecomparisonscanbeconstructedfrom[5]and[6],whichgive

    whereSisestimatedfromthevarianceofε.Thesecanberearrangedtogivethefollowingconfidenceinterval

    [13]

    Torejectthenullhypothesis,theconfidenceintervalmustbeinsidetheequivalenceinterval.Notefirstthattheconfidenceintervalisconstructedwithtα,ν,andnotthestandardtα/2,ν.Second,becausetherearemultiplecomparisonstothesamecontrol,Dunnett′stshouldbeusedinsteadofStudent′stwithν=n+∑imi-(K+1) (Box3andsupportinginformation).Thisresultsinastrictlyconservativetest,andmoreaccuratep=0.05-leveltestsareavailableforbalanceddata(Giani&Straβburger,1994).Bonferronicorrectionsarenotappropriatebecausethetreatmentcomparisonsarecorrelatedbyusingthesamecontrol.

    Equivalencestandardsandtests

    Animportantissueforequivalencetestsisthedeterminationofequivalencestandards.Equivalencestandards, ΔLandΔU(orθLandθU),aredeterminedbyacombinationofregulatory,ecologicalandstatisticalconsiderations.Thestatisticalconsiderationsarerelatedtothesamplesizenecessarytoattainanacceptablepoweroftheequivalencetest.Forexample,totesttheequivalenceofproportions(equation[9]),asamplesizeof50providessuitablepowerforastandardof±20%,butthissamplesizeisinadequateforanequivalencestandardof±10%,whenasamplesize>150wouldbenecessary.

    Ecologicalandregulatoryconsiderationswilldeterminewhatisbiologicallyequivalentandsociallyacceptable.Ingeneral,thereisalargeclassofecologicalproblemsthathashardlybeenaddressedinappliedecology.Whenaretwoecologicalsystemsecologicallyequivalent?Howmuchchangecouldoccurtoanecologicalsystembeforeitshouldbeconsideredecologicallydifferent?Whataretheecologicallyessentialstructuralandfunctionalfeaturesofanecologicalsystem?Howmuchchangecananecologicalsystemtoleratebeforeitsessentialecologicalfeaturesareharmed?Howmuchcancomponentsofanecologicalsystemchangewithoutchangingtheecologicallyessentialfeaturesofthewholesysteminwhichtheyareembedded?

    Wedonotpresumetoanswerthesequestions,becauseitislikelythatconsiderableempiricalecologicalresearchwillbenecessarybeforemeaningfulanswerscanbeformulated.Thereexistformaltheoreticalconditionsunderwhichecologicalsystemsareequivalentornearlyso(Iwasaet al.,1987,1989),buttheseconditionsaresostrictandnarrowthattheycannotbereadilyimplemented,andempiricalcriteriaareneeded.Oneapproachforsettingecologicalequivalencestandardshasbeentousedatafromhistoricalteststhatcanberelatedtopotentiallysignificanteffects(Bertolettiet al.,2007;Phillipset al.,2001).Forexample,cladoceranshavebeenextensivelyusedtoevaluatethetoxicityofaquaticpollutants.Insomecases,thereareasufficientnumberoflaboratorytoxicitybioassaysthathavebeenassociatedwithpotentialecologicaleffectsthatitispossibletoestimatetheleveloftoxicitythatcouldcauseenvironmentalharm(Bertolettiet al.,2007).However,suchdatasetsareuncommon,sothisapproachisoflimitedapplicability.NosuchdatasetsexistforGMOecologicalriskassessment.

    Naturalvariabilityofthecontroltreatmenthasbeenoftenadvocatedasanapproachfordeterminingequivalencestandards(Barrettet al.,2015;EFSA,2010;Honget al.,2014;Kang&Vahl,2014;Vahl&Kang,2016;vanderVoetet al.,2011).Therationaleisthatifthecontrolhashighvariability,thenanytesttreatmentmustbemoredifferent,becausethehighvariabilityrequiresalargerequivalencestandard.Althoughthismaybetrueinfoodsafetyresearch,temporalandspatialcorrelationsinmanyecologicalfactorsmayresultinthecovarianceamongtreatmentandcontrolresponsesbeingasimportantasthevarianceincontrolresponse.Largepositivecovariancewouldimplythatthecontrolvarianceoverestimatestherelevantnaturalvariance,andleavesdoubtastohowtoestimatetherelevantnaturalvariance.Moreimportantly,thepotentialirreversibilityofecologicalchangemightarguefortighterequivalencestandards.Reversibilitymaybeassociatedwithecosystemresilience,whereasecologicalhysteresismaybeindicativeofirreversibility(Biggset al.,2009).Thus,itmaybemoreappropriatetodefineecologicalequivalencestandardsintermsofdegreeofconcern,namelytheminimumecologicaleffectthatissufficienttocauseharm(Perryet al.,2009).

    Thecriteriaforestablishingecologicalequivalencestandardsshouldcenterontheecologicalrisksthatsocietywantstoavoid(Andow,2011).Consequently,humanvalueswillbeanimportantconsiderationinestablishingecologicalequivalencestandards.Forexample,toconstructequivalencestandardstoevaluatetheeffectsofaGMcroponageneralistbiologicalcontrolagent,manyofthemostsignificantsocialvaluesareembeddedinthecrop/yieldlossrelationship.Asthecentralpurposeofbiologicalcontrolofcroppestsistominimizecropyieldloss,thevalueofbiologicalcontrolcanbemeasuredbythereductionincropyieldlossfrompests.Withaquantitativerelationshipbetweenthedensityofabiologicalcontrolagentandthesuppressionofthepestpopulation,thesetworelationshipscanbecombinedsothatachangeinnaturalenemydensitycanberelatedtoachangeincropyieldloss.Thiscombinedrelationshipcanbeusedtoestablishecologicalequivalencestandardsrelatedtoecologicalvalue(Andow,2011).

    Inferencesfromequivalencetests

    Toillustratehowequivalencetestscansupportbiosafetydecisions,weusetheexamplesinBox1-4.WhilethisdiscussionfocusesonGMObiosafety,itshouldbeclearthatwithotherexamples,thediscussioncanbegeneralizedtomanyareasofenvironmentalriskassessment.ManyresearchersstudyingGMOorBttoxicityhavebasedtheirconclusionsofbiosafetyonstandardhypothesistesting(e.g.,Lawoet al.,2009;Lundgren&Wiedenmann,2002;Meissle&Romeis,2009;Romeiset al.,2004;vonBurget al.,2010).Theseresearchersmakeclaimsforbiosafety,butinreality,theyhavecommittedthestatisticalerrorofacceptingthenullhypothesis,byconcludingthattherewerenoharmfuleffects.Here,wedemonstratehowtomakesoundinferencesof"noeffect"basedonequivalencetests.Wehavereanalyzedthedataofeightexamplestoillustratehowequivalencetestsdifferfromstandardhypothesistests(Table1).ThedatawereobtainedfromPaulaet al.(2016),Paula&Andow(2016)andGuoet al.(2008),andaredescribedindetailinBox1-4.Inalleightexamples,thestandardhypothesistestledtotheconclusionthataneffectoftheCrytoxinwasnotdetected(thestandardnullhypothesiswasnotrejected).Theequivalencetests,usingecologicallystrictequivalencestandardsof±20%,allowedustoconcludethatinsixoftheeightexamples,theeffectoftheCrytoxinwasequivalenttotheeffectofthecontrol.Theseresultsenableasoundconclusionof"noeffect"andsupportforabiosafetydeterminationoftheCrytoxinforHarmonia axyridisdevelopmenttime(Cry1F), Cycloneda sanguineadevelopmenttime(Cry1FandcombinedCry1AcandCry1F),andChrysopa pallensdevelopmenttime(GK12,NuCOTN99B,andamixture).Inotherwords,intheserespects,Crytoxinsare"safe"forH. axyridis, C. sanguineaandCh. pallens.ForC. sanguinea,thesamplesizesforthesetestswerequitemodest(n=8andn=10),whichshowsthatequivalencetestsdonotrequirelargesamplesizes.Theremainingtwocaseswerealsorevealing,astheywerestatisticallyindeterminate,neitherrejectingthenullhypothesisforthestandardtestorfortheequivalencetest.DevelopmenttimeofC. sanguineaonCry1Acwasnotequivalenttothecontrol,butthistreatmenthadasmallsamplesize(n=6),andmightbecomeequivalentwithhigherreplication.MortalityofBrevicoryne brassicaeonCry1Ac,hadap-valueof0.105underthestandardhypothesistest,withmortalityonCry1Acestimatedtobe31%comparedto19%onthecontroldiet.Inthiscase,increasedreplicationmightresultindetectionofasignificanteffectofCry1Acandadeterminationofnon-equivalence.Inanyevent,theequivalencetestreturnedtheaccurateresultthatmortalityofB. brassicaeonCry1Acwasnotequivalenttothecontrolandthistestdoesnotsupportabiosafetydecision.Equivalencetestsallowsoundinferenceaboutbiosafety,whilestandardhypothesistestsdonot.

    Burden of proof

    Finally, we note that equivalence statistics have direct and significant bearing on the debates about the burden of proof. Hobbs & Hilborn (2006) stated that the burden of proof has traditionally been on those who argued for regulatory intervention to stop pollution, i.e., pollution is allowed until its harms can be proven. Similarly, for invasive species risk assessment, the potential invader is assumed to be safe until proven to cause environmental harm (Simberloff,2005). Standard hypothesis testing is well-suited for these cases, as it can only establish whether there is a difference, whether there is environmental harm. However, this approach has allowed substantial pollution and the establishment of several harmful invasive species (Simberloff,2005), and as a general approach for environmental management, it has come under considerable criticism (e.g., Diamondetal.,2012; Hanson,2011; Kristofersson & Navrud,2005).

    In risk assessment, demonstration of biosafety is equally important as demonstration of harm. Equivalence tests are one way to establish a burden of proof of biosafety, by requiring demonstration of equivalence. However, equivalence tests are more flexible than this simple application of a "proof of safety" concept might imply. It is possible to consider the equivalence standard as a function of ecological value, and to test equivalence under different standards (ecological value). For example, a risk assessor could assess whether an environmental stressor is likely to reduce biological control of a pest thereby causing 5% more yield loss, i.e., using a 5% equivalence standard. An additional equivalence test could be performed to evaluate if the stressor is likely to be equivalent to the control at 2% or 1% yield loss levels (more stringent equivalence standards). The probability of equivalence will decline as the standard becomes smaller, so thep-values of the tests will increase (less likely to reject the null hypothesis that they are different). If thep-values of these three tests were respectively 0.02, 0.04, and 0.23, the analyst could conclude that if a 5% or 2% yield loss can be tolerated, the stressor and the control are equivalent with respect to their effects on biological control, but they are not equivalent if only 1% yield loss can be tolerated. When the magnitude of an insignificant risk can be differentiated from a significant risk, it will be possible to develop equivalence standards, and these can be used to establish a burden of proof of safety in ecological risk assessment.

    Equivalence tests can support a burden of proof of safety, and this shift does not necessarily create additional assessment costs. The cost of an equivalence test will depend primarily on the sample size and error variation, which depend primarily on the planned equivalence standard. A stricter equivalence standard will require a larger sample size and will have a higher cost than a test with a more lax equivalence standard. Because ecological systems often exhibit functional redundancy (Rosenfeld,2002), and some indirect species interactions attenuate as the pathway lengthens (Abramsetal.,1996), many functionally-based ecological equivalence standards may turn out to be lax. Andow (2011) suggested that an equivalence standard for a generalist biological control agent would probably be larger than the standard ±20%, and consequently, the cost of an equivalence test may be substantially lower than what is currently required under the standard hypothesis testing procedures.

    Acknowledgements: The USDA regional research project NC-205 to DAA and Rockefeller Resident Scholar in Bellagio Fellowships to DAA and GLL partially supported this work.

    Box 1.Equivalence test for two-sample, normal data

    The data originate from Paulaetal. (2016), who used an artificial tritrophic system to test if the toxin Cry1F, which occurs inBtmaize and cotton in Brazil, adversely affected an important biological control agent of agricultural pests, the coccinellid predatorHarmoniaaxyridis. This experiment measured the effect of Cry1F on larval development time of the predator. Aphid prey (Myzuspersicae) were allowed to feed for 24 h on a holidic diet in small cages with and without Cry1F at 20 μg·mL-1diet before being exposed to the predator. Neonate predator larvae were transferred daily into fresh cages to consume the aphids, and development time from neonate to pupa was recorded.

    Step 1.Specify equivalence standards. Values ofΔL=0.80 andΔU=1.25 were specified, which correspond to ±20% similarity.

    Step 2.Enter the data. LetX1, …,Xmdenote the untransformed development times (days) ofH.axyridisexposed to Cry1F viaM.persicae,m=39 (test treatment). LetC1, …,Cndenote development times of controlH.axyridis,n=30 (control treatment). In this example, under standard hypothesis testing, these were not significantly different.

    Step 3.Calculate test statistics as indicated in equation [6].

    We have assumedσX2=σY2. IfσX2≠σY2, Welch′st-test with Welch-Satterthwaite degrees of freedom should be used, although there is no need to round the calculateddfs to an integer as sometimes recommended (USEPA,2010).

    Step 4.Conduct the TOST using equation [5]. For the example, the left tail of thet-distribution withα=0.05 andν=67 istα,ν=1.66792.

    Conclusion: Equivalence. The immature development time of the predator on the Cry1F treatment is equivalent to that in the control treatment.

    Box 2.Equivalence test for two-sample, binomial data

    The data originate from Paula & Andow (2016), who used an artificial holidic diet to test if theBttoxin Cry1Ac adversely affected an important non-target herbivore, the aphidBrevicorynebrassicae. This experiment measured the effect of Cry1Ac on the survival of reproductive apterous aphids during a three-day period. Five equal-sized apterous aphids were allowed to feed continuously on a holidic diet in small cages with and without Cry1Ac at 20 μg·mL-1diet. Twice daily, the number of dead aphids was counted, and the data record the total number that died during the experimental period and the number that survived.

    Step 1.Specify equivalence standards. HereΔL=-0.20 andΔU=0.20.

    Step 2.Enter contingency table data. Number of surviving and dead aphids that fed on a diet with 20 μg·mL-1Cry1Ac (testi) or control diet with no Cry1Ac. Under standard hypothesis testing, these were not significantly different (LRχ2=2.63, 1df,p=0.105).

    Step 4.Conduct the TOST using equation [11], with

    a critical value=3.841. In this case,zFM,L>3.841 andzFM,U<3.841.

    Conclusion: Nonequivalence. The lower one-sided test is rejected, but the upper one-sided test is not rejected. Therefore the two treatments are not equivalent. The survival rate of the aphid feeding on Cry1Ac was not equivalent to the control.

    Box 3.Equivalence test for multiple-sample, normal data

    The data originate from Paulaetal. (2016), who used an artificial tritrophic system to test if theBttoxins Cry1Ac alone, Cry1F alone, or Cry1Ac/Cry1F together adversely affected an important biological control agent, the coccinellid predatorCyclonedasanguinea. This experiment measured the effect on larval development time of the predator from neonate to pupa, and was designed to test if the two toxins interacted with synergistic effects. Aphid prey (Myzuspersicae) were allowed to feed for 24 hours before predator exposure on a holidic diet in small cages with and without Cry1Ac or Cry1F or both together. Neonate predator larvae were transferred daily into fresh cages to consume the aphids.

    Step 1.Specify equivalence standards. Values ofΔL=0.80 andΔU=1.25 were specified, which correspond to ±20% similarity.

    Step 2.Enter data. LetX1i, …,Xmidenote the untransformed measurements on themilarvae in theithtest treatment andC1, …,Cndenote the untransformed measurements on thenlarvae in the control treatment. The data are larval development times ofC.sanguineareared onM.persicaeaphids that fed on an artificial diet with 20 μg·mL-1Cry1Ac (Test 1), 20 μg·mL-1Cry1F (Test 2), or both 20 μg·mL-1Cry1Ac and 20 μg·mL-1Cry1F (Test 3). The control treatment was a control diet with no Cry toxin. There were three test treatments, soK=3, withm1=6,m2=7,m3=12, andn=19. In this example, under standard hypothesis testing, none of the test treatments were significantly different from the control and there was no interaction of the two toxins.

    Step 3.Calculate test statistics [13] and find the appropriate value for the one-tailed Dunnett′st, based onν,Kandα.

    The critical value for Dunnett′stwas calculated forν=41df,K=3 comparisons, andα=0.05, using SAS (see below). The critical value is 2.16217.

    We can also determine if Test 3 is equivalent to Test 1 and Test 2, which evaluates the hypothesis that there is no interaction between the two toxins (all calculations are not shown).

    Step 4.Compare the lower and upper confidence intervals,CILandCIU, with the equivalence interval (0.80, 1.25). If theCIs are entirely within the equivalence interval (0.80, 1.25), then the test treatment mean is equivalent to the control treatment.

    Conclusions: (1) Test 1 is not equivalent to the control, while Test 2 and Test 3 are equivalent to the control. The development time of the predator feeding on aphids exposed to Cry1Ac was not equivalent to the control, while for the Cry1F and the combination of both toxins, they were equivalent. (2) Both Test 1 and Test 2 are not equivalent to Test 3, which implies that the hypothesis of no interaction cannot be rejected, i.e., there might be an interaction.

    Calculation of critical value,x, for one-sided Dunnett′stusing SAS:

    data;

    array lambda{3}; ∥lambda{i}=sqrt (mi/(mi+n))

    x=probmc ("dunnett1", ., 0.95, 41, 3, of lambda 1-lambda 3);

    Box 4.Equivalence test for multiple-sample, normal data with replicated experiments

    The data originate from Guoetal. (2008), who used a plant-based laboratory tritrophic system to test if larval development time (neonate to pupa) of an important biological control agent,Chrysopapallens, differed when feeding on aphids from the cotton varieties Simian 3 (control), GK12 (with Cry1Ab/Ary1Ac fusion protein), NuCOTN 99B (Cry1Ac), or alternately feeding on aphids from the three varieties. Aphid prey (Aphisgossypii) were collected on excised leaves from field plants and given to individual predators in petri dishes. Fresh aphids were supplied daily.

    Step 1.Specify equivalence standards. Values ofΔL=0.80 andΔU=1.25 were specified, which correspond to ±20% similarity.

    Step 2.Enter data. LetX1ir, …,Xmirdenote the untransformed measurements on themirlarvae in theithtest treatment andrthexperimental replicate, andC1r, …,Cnrdenote the untransformed measurements on thenrlarvae in therthexperimental replicate for the control treatment. The data are larval development times (days) ofC.pallensreared onM.persicaeaphids that fed on cotton variety GK12 (Test 1), NCOTN 99B (Test 2), or an alternating mixture of aphids (Test 3). The control treatment was the non-Btvariety Simian 3. There were three test treatments (K=3) and three replications of the experiment (R=3) withm1r=19, 17, and 18,m2r=18, 18, 17,m3r=18, 17, 18, andnr=19, 19, 18. In this example, under standard hypothesis testing, none of the test treatments were significantly different from the control, as indicated in the ANOVA table.

    Step 3.Calculate test statistics [13] and find the appropriate value for the one-tailed Dunnett′st, based onν,Kandα, as in Box 3.

    The critical value for Dunnett′stwas calculated forν=204df,K=3 comparisons, andα=0.05. The critical value is 2.07698.

    Step 4.Compare the lower and upper confidence intervals,CILandCIU, with the equivalence interval (0.80, 1.25). If theCIs are entirely within the equivalence interval (0.80, 1.25), then the test treatment mean is equivalent to the control treatment.

    Conclusion: Equivalence. All three Test treatments are equivalent to the control. The larval development time of the predator feeding on aphids exposed to Cry toxins inBtcotton plants was equivalent to the control plant.

    References

    Abrams P A, Menge B A, Mittelbach G G, Spiller D A and Yodzis P, 1996. The role of indirect effects in food webs∥Polis G A and Winemiller K O.FoodWebs:IntegrationofPatterns&Dynamics. New York: Springer: 371-395.

    Agresti A, 1996.AnIntroductiontoCategoricalDataAnalysis. New York, NY: Wiley.

    Andow D A, 2011. Assessing unintended effects of GM plants on biological species.JournalfürVerbraucherschutzundLebensmittelsicherheit, 6(S1): 119-124.

    Barrett T J, Hille K A, Sharpe R L, Harris K M, Machtans H M and Chapman P M, 2015. Quantifying natural variability as a method to detect environmental change: definitions of the normal range for a single observation and the mean of M observations.EnvironmentalToxicologyandChemistry, 34: 1185-1195.

    Berger R L, 1982. Multiparameter hypothesis testing and acceptance sampling.Technometrics, 24: 295-300.

    Berger R L and Hsu J C, 1996a. Bioequivalence trials, intersection-union tests and equivalence confidence sets.StatisticalScience, 11: 283-303.

    Berger R L and Hsu J C, 1996b. Rejoinder: bioequivalence trials, intersection-union tests and equivalence confidence sets.StatisticalScience, 11: 315-319.

    Bertoletti E, Buratini S V, Prósperi V A, Araújo R P A and Werner L I, 2007. Selection of relevant effect levels for using bioequivalence hypothesis testing.JournaloftheBrazilianSocietyofEcotoxicology, 2: 139-145.

    Biggs R, Carpenter S R and Brock W A, 2009. Turning back from the brink: detecting an impending regime shift in time to avert it.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 106: 826-831.

    Brosi B J and Biber E G, 2009. Statistical inference, Type Ⅱ error, and decision making under the US Endangered Species Act.FrontiersinEcologyandtheEnvironment, 7: 487-494.

    Chen J J, Tsong Y and Kang S H, 2000. Tests for equivalence or noninferiority between two proportions.TherapeuticInnovation&RegulatoryScience, 34: 569-578.

    Diamond J, Denton D, Anderson B and Phillips B, 2012. It is time for changes in the analysis of whole effluenttoxicity data.IntegratedEnvironmentalAssessmentandManagement, 8: 351-358.

    EFSA (European Food Safety Authority), 2010. Scientific opinion on statistical considerations for the safety evaluation of GMOs.EFSAJournal, 8(1): 1250.

    Farrington CP and Manning G, 1990. Test statistics and sample size formulae for comparative binomial trials with null hypothesis of non-zero risk difference or non-unity relative risk.StatisticsinMedicine, 9: 1447-1454.

    Giani G and Straβburger K, 1994. Testing and selecting for equivalence with respect to a control.JournaloftheAmericanStatisticalAssociation, 89: 320-329.

    Guo J Y, Wan F H, Dong L, L?vei G L and Han Z J, 2008. Tri-trophic interactions betweenBtcotton, the herbivoreAphisgossypiiGlover (Homoptera: Aphididae), and the predatorChrysopapallens(Rambur) (Neuroptera: Chrysopidae).EnvironmentalEntomology, 37: 263-270.

    Hanson N, 2011. Using biological data from field studies with multiple reference sites as a basis for environmental management: the risks for false positives and false negatives.JournalofEnvironmentalManagement, 92: 610-619.

    Hobbs N T and Hilborn R, 2006. Alternatives to statistical hypothesis testing in ecology: a guide to self-teaching.EcologicalApplications, 16: 5-19.

    Hoenig J M and Heisley D M, 2001. The abuse of power: the pervasive fallacy of power calculations for data analysis.AmericanStatistician, 55: 19-24.

    Hong B, Fisher T L, Sult T S, Maxwell C A, Mickelson J A, Kishino H and Locke M E H, 2014. Model-based tolerance intervals derived from cumulative historical composition data: application for substantial equivalence assessment of a genetically modified crop.JournalofAgriculturalandFoodChemistry, 62: 9916-9926.

    Iwasa Y, Andreasen V and Levin S A, 1987. Aggregation in model ecosystems. I. Perfect aggregation.EcologicalModelling, 37(3-4): 287-302.

    Iwasa Y, Levin S A and Andreasen V, 1989. Aggregation in model ecosystems II. Approximate aggregation.MathematicalMedicineandBiology, 6: 1-23.

    Kang Q and Vahl C I, 2014. Statistical analysis in the safety evaluation of genetically-modified crops: equivalence tests.CropScience, 54: 2183-2200.

    Kristofersson D and Navrud S, 2005. Validity tests of benefit transfer — are we performing the wrong tests?EnvironmentalandResourceEconomics, 30: 279-286.

    Lawo N C, W?ckers F L and Romeis J, 2009. IndianBtcotton varieties do not affect the performance of cotton aphids.PLoSONE, 4(3): e4804.

    Liu J P and Chow S C, 1996. Comment: Bioequivalence trials, intersection-union tests and equivalence confidence sets.StatisticalScience, 11: 306-312.

    Lundgren J G and Wiedenmann R N, 2002. Coleopteran-specific Cry3Bb toxin from transgenic corn pollen does not affect the fitness of a non-target species,ColeomegillamaculataDeGeer (Coleoptera: Coccinellidae).EnvironmentalEntomology, 31: 1213-1218.

    Meissle M and Romeis J, 2009. The web-building spiderTheridionimpressum(Araneae: Theridiidae) is not adversely affected byBtmaize resistant to corn rootworms.PlantBiotechnologyJournal, 7: 645-656.

    Nakagawa S and Foster T M, 2004. The case against retrospective statistical power analyses with an introduction to power analysis.ActaEthologica, 7: 103-108.

    Patterson S D and Jones B, 2005.BioequivalenceandStatisticsinClinicalPharmacology. Boca Raton, USA: Chapman & Hall/CRC.

    Paula D P and Andow D A, 2016. Differential Cry toxin detection and effect onBrevicorynebrassicaeandMyzuspersicae(Hemiptera: Aphidinae) feeding on artificial diet.EntomologiaExperimentalisetApplicata, 159: 54-60.

    Paula D P, Andow D A, Bellinati A, TimbR V, Souza L M, Pires C S S and Sujii E R, 2016. Limitations in dose-response and surrogate species methodologies for risk assessment of Cry toxins on arthropod natural enemies.Ecotoxicology, 25: 601-607.

    Perry J N, ter Braak C J F, Dixon P M, Duan J J, Hails R S, Huesken A, Lavielle M, Marvier M, Scardi M, Schmidt K, Tothmeresz B, Schaarschmidt F and van der Voet H, 2009. Statistical aspects of environmental risk assessment of GM plants for effects on non-target organisms.EnvironmentalBiosafetyResearch, 8: 65-78.

    Phillips B M, Hunt J W, Anderson B S, Puckett H M, Fairey R, Wilson C J and Tjeerdema R, 2001. Statistical significance of sediment toxicity test results: threshold values derived by the detectable significance approach.EnvironmentalToxicologyandChemistry, 20: 371-373.

    Raybould A, 2010. Reducing uncertainty in regulatory decision-making for transgenic crops: more ecological research or clearer environmental risk assessment?GMCrops, 1: 25-31.

    Romeis J, Dutton A and Bigler F, 2004.Bacillusthuringiensistoxin (Cry1Ab) has no direct effect on larvae of the green lacewingChrysoperlacarnea(Stephens) (Neuroptera: Chrysopidae).JournalofInsectPhysiology, 50: 175-183.

    Romeis J, Hellmich R L, Candolfi M P, Carstens K, De Schrijver A, Gatehouse A M R, Herman R A, Huesing J E, McLean M A, Raybould A, Shelton A M and Waggoner A, 2011. Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants.TransgenicResearch, 20: 1-22.

    Rosenfeld J S, 2002. Functional redundancy in ecology and conservation.Oikos, 98: 156-162.

    Sasabuchi S, 1980. A test of a multivariate normal mean with composite hypotheses determined by linear inequalities.Biometrika, 67: 429-439.

    Schuirmann D J, 1987. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability.JournalofPharmacokineticsandBiopharmaceutics, 15: 657-680.

    Simberloff D, 2005. The politics of assessing risk for biological invasions: the USA as a case study.TrendsinEcologyandEvolution, 20: 216-222.

    Suter G W I I, 2006.EcologicalRiskAssessment. 2 ed. Boca Raton, FL: CRC Press.

    USEPA, 2010.NationalPollutantDischargeEliminationSystemTestofSignificantToxicityImplementationDocument:AnAdditionalWholeEffluentToxicityStatisticalApproachforAnalyzingAcuteandChronicTestData.EPA833-R-10-003. Washington, DC: USEPA.

    Vahl C I and Kang Q, 2016. Equivalence criteria for the safety evaluation of a genetically modified crop: a statistical perspective.TheJournalofAgriculturalScience, 154: 383-406.

    van der Voet H, Perry J N, Amzal B and Paoletti C, 2011. A statistical assessment of differences and equivalences between genetically modified and reference plant varieties.BMCBiotechnology, 11: 15.

    von Burg S, Müller C B and Romeis J, 2010. Transgenic disease-resistant wheat does not affect the clonal performance of the aphidMetopolophiumdirhodumWalker.BasicandAppliedEcology, 11: 257-263.

    Westlake W J, 1981. Response to T.B.L. Kirkwood: bioequivalence testing — a need to rethink.Biometrics, 37: 589-594.

    (責(zé)任編輯:楊郁霞)

    收稿日期(Received):2015-12-15接受日期(Accepted): 2016-02-29

    *通訊作者(Author for correspondence), E-mail: dandow@umn.edu

    DOI:10. 3969/j.issn.2095-1787.2016.02.002

    猜你喜歡
    收稿責(zé)任編輯通訊
    《茶葉通訊》簡介
    茶葉通訊(2022年2期)2022-11-15 08:53:56
    《茶葉通訊》簡介
    茶葉通訊(2022年3期)2022-11-11 08:43:50
    通訊報道
    English Abstracts
    Standardized Manipulations of Heat-sensitive Moxibustion Therapy Specialty Committee of Heat-sensitive Moxibustion of WFCMS
    通訊簡史
    Perspectives on China′s General Medicine Education,Training,Development and Challenges
    English Abstracts
    English Abstracts
    English Abstracts
    99国产极品粉嫩在线观看| 免费不卡黄色视频| 50天的宝宝边吃奶边哭怎么回事| 在线十欧美十亚洲十日本专区| 亚洲国产欧美日韩在线播放| 精品人妻熟女毛片av久久网站| 啪啪无遮挡十八禁网站| 老司机福利观看| 搡老熟女国产l中国老女人| 91字幕亚洲| 精品人妻熟女毛片av久久网站| 大香蕉久久成人网| 黄色a级毛片大全视频| 又紧又爽又黄一区二区| 宅男免费午夜| 电影成人av| 婷婷丁香在线五月| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲人成电影观看| 久久久精品94久久精品| 水蜜桃什么品种好| kizo精华| 男人操女人黄网站| 91精品伊人久久大香线蕉| 欧美 日韩 精品 国产| 美女高潮喷水抽搐中文字幕| 制服诱惑二区| 久久国产精品人妻蜜桃| 国产在视频线精品| 热re99久久精品国产66热6| 国产淫语在线视频| 久久久久国内视频| 人人妻人人添人人爽欧美一区卜| 亚洲精品中文字幕在线视频| 大香蕉久久网| 日韩一卡2卡3卡4卡2021年| 啦啦啦视频在线资源免费观看| 国产一级毛片在线| 国产精品一区二区在线观看99| 一进一出抽搐动态| 一本大道久久a久久精品| 精品亚洲成a人片在线观看| 精品久久久久久久毛片微露脸 | 一级黄色大片毛片| 热99久久久久精品小说推荐| 成年人黄色毛片网站| 欧美久久黑人一区二区| 黄色 视频免费看| 深夜精品福利| 国产成人av教育| 少妇猛男粗大的猛烈进出视频| 少妇粗大呻吟视频| 十八禁网站免费在线| 亚洲美女黄色视频免费看| 9色porny在线观看| 国产欧美日韩一区二区三区在线| 黄色视频,在线免费观看| 精品一区二区三区四区五区乱码| 不卡av一区二区三区| 丝袜喷水一区| 中亚洲国语对白在线视频| 欧美国产精品一级二级三级| 妹子高潮喷水视频| 视频区欧美日本亚洲| 久9热在线精品视频| 淫妇啪啪啪对白视频 | 亚洲av欧美aⅴ国产| 国产精品免费大片| 日韩中文字幕欧美一区二区| 波多野结衣av一区二区av| 国产免费av片在线观看野外av| 久久亚洲国产成人精品v| 五月开心婷婷网| 黄频高清免费视频| 嫁个100分男人电影在线观看| 欧美日韩福利视频一区二区| 一进一出抽搐动态| 99久久精品国产亚洲精品| www.熟女人妻精品国产| 久久人人爽av亚洲精品天堂| 看免费av毛片| 丰满少妇做爰视频| 亚洲专区国产一区二区| 免费黄频网站在线观看国产| 免费在线观看完整版高清| 十八禁网站免费在线| 日本av免费视频播放| 啦啦啦在线免费观看视频4| 国产精品国产三级国产专区5o| 亚洲久久久国产精品| 美女主播在线视频| 亚洲自偷自拍图片 自拍| 青春草视频在线免费观看| 久久久久久久久久久久大奶| 色视频在线一区二区三区| 亚洲国产成人一精品久久久| 亚洲性夜色夜夜综合| 久久久久久亚洲精品国产蜜桃av| 一边摸一边抽搐一进一出视频| 人妻 亚洲 视频| 又大又爽又粗| 免费一级毛片在线播放高清视频 | 亚洲中文av在线| 亚洲伊人久久精品综合| 手机成人av网站| 午夜福利一区二区在线看| 超色免费av| 午夜免费鲁丝| av在线老鸭窝| 亚洲国产欧美一区二区综合| 9色porny在线观看| av在线app专区| 亚洲国产精品一区二区三区在线| 久久影院123| 亚洲精品中文字幕在线视频| 香蕉丝袜av| av网站在线播放免费| 一级a爱视频在线免费观看| 亚洲国产精品999| 别揉我奶头~嗯~啊~动态视频 | 满18在线观看网站| 亚洲av男天堂| 男女国产视频网站| 国产精品九九99| 欧美日韩一级在线毛片| 91大片在线观看| 欧美国产精品va在线观看不卡| 无遮挡黄片免费观看| 国产精品av久久久久免费| 女警被强在线播放| 男女高潮啪啪啪动态图| 岛国在线观看网站| 亚洲国产毛片av蜜桃av| 十八禁网站免费在线| 亚洲一区二区三区欧美精品| 国产激情久久老熟女| 高清欧美精品videossex| 老熟女久久久| 免费高清在线观看日韩| 国产男女超爽视频在线观看| 久9热在线精品视频| 欧美黄色淫秽网站| 欧美大码av| 老汉色∧v一级毛片| 1024香蕉在线观看| 欧美精品一区二区大全| 久久香蕉激情| 欧美大码av| 999精品在线视频| 久久久欧美国产精品| 欧美精品人与动牲交sv欧美| 免费高清在线观看视频在线观看| 天堂8中文在线网| 免费日韩欧美在线观看| 国产精品影院久久| 亚洲久久久国产精品| 免费高清在线观看日韩| 黄色片一级片一级黄色片| 亚洲精品av麻豆狂野| 亚洲熟女毛片儿| 久久久精品免费免费高清| 国内毛片毛片毛片毛片毛片| 国产麻豆69| 啦啦啦中文免费视频观看日本| 纯流量卡能插随身wifi吗| h视频一区二区三区| 欧美激情高清一区二区三区| 日本一区二区免费在线视频| 中国国产av一级| 无限看片的www在线观看| 亚洲精品一区蜜桃| 精品少妇黑人巨大在线播放| 国产欧美日韩综合在线一区二区| 亚洲国产精品一区三区| 亚洲欧美激情在线| 国产精品久久久人人做人人爽| 久久女婷五月综合色啪小说| 精品国产一区二区久久| 国产av国产精品国产| 性色av一级| 国产日韩欧美在线精品| 五月开心婷婷网| 久久精品成人免费网站| 午夜免费鲁丝| 水蜜桃什么品种好| 在线观看免费视频网站a站| 性色av乱码一区二区三区2| bbb黄色大片| 精品少妇久久久久久888优播| 欧美性长视频在线观看| 丝瓜视频免费看黄片| 亚洲av欧美aⅴ国产| 啦啦啦中文免费视频观看日本| 性色av一级| 久久久国产欧美日韩av| 国产精品九九99| 亚洲精品中文字幕在线视频| 19禁男女啪啪无遮挡网站| 亚洲免费av在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 99国产精品99久久久久| 国产精品久久久久久精品古装| 亚洲av日韩精品久久久久久密| 可以免费在线观看a视频的电影网站| 水蜜桃什么品种好| 精品少妇黑人巨大在线播放| 亚洲av男天堂| 久久国产精品影院| 久久久水蜜桃国产精品网| 久久久精品国产亚洲av高清涩受| 美女福利国产在线| www.自偷自拍.com| 亚洲欧美一区二区三区黑人| 国产精品一区二区在线不卡| 成年av动漫网址| 男女下面插进去视频免费观看| 久久午夜综合久久蜜桃| 亚洲 国产 在线| cao死你这个sao货| 欧美精品av麻豆av| 亚洲全国av大片| 五月开心婷婷网| 十分钟在线观看高清视频www| 亚洲精品av麻豆狂野| 国产成人系列免费观看| 亚洲av国产av综合av卡| 日日摸夜夜添夜夜添小说| 波多野结衣av一区二区av| 电影成人av| 熟女少妇亚洲综合色aaa.| 国产精品久久久久久精品电影小说| 深夜精品福利| 亚洲欧美成人综合另类久久久| 中文字幕高清在线视频| 涩涩av久久男人的天堂| 亚洲一区二区三区欧美精品| 亚洲 欧美一区二区三区| 亚洲精品中文字幕在线视频| a级片在线免费高清观看视频| 精品福利永久在线观看| 天堂8中文在线网| 丝袜喷水一区| 久久九九热精品免费| 亚洲欧美一区二区三区久久| 亚洲成人免费av在线播放| 免费观看av网站的网址| 亚洲国产中文字幕在线视频| 啦啦啦在线免费观看视频4| 日本五十路高清| 亚洲精品中文字幕一二三四区 | 夜夜骑夜夜射夜夜干| 国产不卡av网站在线观看| 国产精品秋霞免费鲁丝片| 久久久久网色| 精品少妇黑人巨大在线播放| 成人国语在线视频| 亚洲va日本ⅴa欧美va伊人久久 | 一区在线观看完整版| 50天的宝宝边吃奶边哭怎么回事| 一边摸一边抽搐一进一出视频| 精品人妻一区二区三区麻豆| av网站免费在线观看视频| 老司机福利观看| 中文字幕精品免费在线观看视频| 精品一区二区三卡| 欧美在线一区亚洲| 亚洲情色 制服丝袜| 欧美日韩精品网址| 国产又色又爽无遮挡免| 国产欧美日韩综合在线一区二区| 亚洲精品国产av成人精品| 欧美激情 高清一区二区三区| 国产97色在线日韩免费| 黑人巨大精品欧美一区二区mp4| 国产欧美日韩一区二区三 | 免费一级毛片在线播放高清视频 | 日日爽夜夜爽网站| 国产无遮挡羞羞视频在线观看| 久久亚洲国产成人精品v| 青草久久国产| 啦啦啦中文免费视频观看日本| 好男人电影高清在线观看| 性色av乱码一区二区三区2| 亚洲欧洲日产国产| 乱人伦中国视频| 日韩,欧美,国产一区二区三区| tocl精华| 中文字幕av电影在线播放| 国产亚洲av片在线观看秒播厂| 母亲3免费完整高清在线观看| 亚洲国产欧美在线一区| 九色亚洲精品在线播放| 99精品欧美一区二区三区四区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲免费av在线视频| 午夜视频精品福利| 欧美精品一区二区免费开放| 国产亚洲一区二区精品| 亚洲人成电影观看| 亚洲三区欧美一区| 十八禁人妻一区二区| 曰老女人黄片| 中文字幕另类日韩欧美亚洲嫩草| 久久 成人 亚洲| 人人妻人人爽人人添夜夜欢视频| 成人影院久久| 亚洲精品一二三| 国产激情久久老熟女| 成人国产一区最新在线观看| cao死你这个sao货| 国产片内射在线| 黄网站色视频无遮挡免费观看| 日韩熟女老妇一区二区性免费视频| 一区二区av电影网| 精品福利观看| 国产一区二区三区综合在线观看| 国产一区二区在线观看av| 亚洲一区中文字幕在线| 蜜桃在线观看..| 久久精品久久久久久噜噜老黄| 在线十欧美十亚洲十日本专区| 一本一本久久a久久精品综合妖精| 国产精品秋霞免费鲁丝片| 久久精品国产综合久久久| 欧美日韩国产mv在线观看视频| 伦理电影免费视频| 91成人精品电影| 香蕉国产在线看| www日本在线高清视频| 国产精品.久久久| 免费av中文字幕在线| 国产精品影院久久| 久久性视频一级片| 女人爽到高潮嗷嗷叫在线视频| 1024香蕉在线观看| 亚洲国产av影院在线观看| 99九九在线精品视频| 少妇被粗大的猛进出69影院| 精品国产一区二区久久| 麻豆乱淫一区二区| 久久中文字幕一级| 免费不卡黄色视频| 国产精品秋霞免费鲁丝片| 久久久久国产精品人妻一区二区| 大陆偷拍与自拍| 亚洲精品久久午夜乱码| 国产又爽黄色视频| 久9热在线精品视频| 777久久人妻少妇嫩草av网站| 亚洲人成77777在线视频| 久久国产精品人妻蜜桃| 在线观看人妻少妇| 一个人免费在线观看的高清视频 | 国产精品 欧美亚洲| 亚洲国产成人一精品久久久| 亚洲黑人精品在线| 久久久国产一区二区| 97精品久久久久久久久久精品| 视频区欧美日本亚洲| 少妇的丰满在线观看| 韩国高清视频一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品亚洲av一区麻豆| 老司机影院成人| 亚洲熟女毛片儿| 精品人妻熟女毛片av久久网站| 一级片'在线观看视频| 国产精品一二三区在线看| 成年人免费黄色播放视频| 十八禁人妻一区二区| 黄片播放在线免费| 久久精品国产a三级三级三级| 亚洲欧美精品自产自拍| 最新在线观看一区二区三区| 亚洲va日本ⅴa欧美va伊人久久 | 黄片大片在线免费观看| 9色porny在线观看| 午夜精品国产一区二区电影| 在线看a的网站| 人人妻人人添人人爽欧美一区卜| 男女午夜视频在线观看| 亚洲七黄色美女视频| 成人18禁高潮啪啪吃奶动态图| 亚洲国产毛片av蜜桃av| 国产精品久久久久久人妻精品电影 | 久久天堂一区二区三区四区| 成年人黄色毛片网站| 久久99热这里只频精品6学生| 在线观看人妻少妇| 人人妻人人澡人人看| 黄网站色视频无遮挡免费观看| 国产精品av久久久久免费| 淫妇啪啪啪对白视频 | 欧美激情高清一区二区三区| 日本av手机在线免费观看| 啦啦啦免费观看视频1| 国产极品粉嫩免费观看在线| 又紧又爽又黄一区二区| 肉色欧美久久久久久久蜜桃| 国产亚洲欧美精品永久| 欧美少妇被猛烈插入视频| 狂野欧美激情性bbbbbb| 一二三四社区在线视频社区8| 日本撒尿小便嘘嘘汇集6| 国产视频一区二区在线看| 国产亚洲精品久久久久5区| 中文字幕av电影在线播放| 欧美午夜高清在线| 亚洲第一欧美日韩一区二区三区 | 精品一区二区三区av网在线观看 | 黄色视频不卡| 9191精品国产免费久久| 亚洲九九香蕉| 777久久人妻少妇嫩草av网站| 国产黄色免费在线视频| 另类精品久久| 国产麻豆69| 波多野结衣av一区二区av| 色综合欧美亚洲国产小说| 欧美午夜高清在线| 精品国内亚洲2022精品成人 | 日韩欧美国产一区二区入口| 成人国语在线视频| 考比视频在线观看| 免费在线观看日本一区| 大陆偷拍与自拍| 热99国产精品久久久久久7| 老鸭窝网址在线观看| 国产精品国产三级国产专区5o| 男人操女人黄网站| 亚洲精品一区蜜桃| 免费久久久久久久精品成人欧美视频| a级片在线免费高清观看视频| 精品国产乱子伦一区二区三区 | 国产老妇伦熟女老妇高清| 1024视频免费在线观看| 欧美日韩亚洲高清精品| 成人国语在线视频| 在线永久观看黄色视频| 久久久久久久精品精品| 国产精品一区二区在线观看99| 欧美 亚洲 国产 日韩一| 交换朋友夫妻互换小说| 欧美日韩黄片免| 精品国产一区二区久久| 国产成人系列免费观看| 制服人妻中文乱码| 国产免费av片在线观看野外av| 中文精品一卡2卡3卡4更新| 精品亚洲成a人片在线观看| 国产国语露脸激情在线看| 婷婷色av中文字幕| 大香蕉久久成人网| 一二三四在线观看免费中文在| 高清黄色对白视频在线免费看| 欧美老熟妇乱子伦牲交| 另类亚洲欧美激情| svipshipincom国产片| av天堂在线播放| 亚洲国产av新网站| 久久久久久久大尺度免费视频| 久久九九热精品免费| 精品国产超薄肉色丝袜足j| 嫁个100分男人电影在线观看| 国产精品一二三区在线看| 十八禁人妻一区二区| 亚洲三区欧美一区| 男人操女人黄网站| 亚洲精品国产区一区二| 国产精品偷伦视频观看了| 超碰成人久久| 欧美精品一区二区大全| 一级a爱视频在线免费观看| 最新的欧美精品一区二区| 亚洲熟女毛片儿| 久久九九热精品免费| 国产精品一二三区在线看| 这个男人来自地球电影免费观看| 97人妻天天添夜夜摸| 交换朋友夫妻互换小说| 九色亚洲精品在线播放| 18在线观看网站| 欧美日韩黄片免| 别揉我奶头~嗯~啊~动态视频 | 大陆偷拍与自拍| 一本大道久久a久久精品| 一个人免费在线观看的高清视频 | 国产淫语在线视频| 亚洲avbb在线观看| avwww免费| 伦理电影免费视频| 日本精品一区二区三区蜜桃| av在线播放精品| 五月开心婷婷网| 精品国产国语对白av| 狠狠婷婷综合久久久久久88av| 老司机亚洲免费影院| 男女下面插进去视频免费观看| 午夜激情av网站| 国产黄色免费在线视频| 国产日韩欧美视频二区| 一级,二级,三级黄色视频| 精品少妇一区二区三区视频日本电影| 亚洲精品日韩在线中文字幕| 激情视频va一区二区三区| 欧美日韩视频精品一区| 老汉色∧v一级毛片| 欧美日韩福利视频一区二区| 欧美+亚洲+日韩+国产| 日韩大片免费观看网站| 日本欧美视频一区| 精品欧美一区二区三区在线| 啦啦啦免费观看视频1| 熟女少妇亚洲综合色aaa.| 在线永久观看黄色视频| 久久午夜综合久久蜜桃| 精品少妇黑人巨大在线播放| 亚洲色图综合在线观看| 五月开心婷婷网| 午夜91福利影院| 久久人妻熟女aⅴ| 岛国在线观看网站| 国产黄色免费在线视频| 亚洲国产精品成人久久小说| 日本a在线网址| 我要看黄色一级片免费的| 亚洲国产欧美网| 首页视频小说图片口味搜索| 在线观看一区二区三区激情| 99热网站在线观看| 亚洲成人免费av在线播放| 少妇的丰满在线观看| 波多野结衣av一区二区av| 人妻久久中文字幕网| 亚洲欧洲日产国产| 国产91精品成人一区二区三区 | av又黄又爽大尺度在线免费看| 丁香六月天网| 精品一区二区三区四区五区乱码| 天天躁狠狠躁夜夜躁狠狠躁| 日韩大片免费观看网站| 午夜福利视频在线观看免费| 首页视频小说图片口味搜索| 欧美av亚洲av综合av国产av| 中文精品一卡2卡3卡4更新| 在线观看免费视频网站a站| 国产高清videossex| 人妻一区二区av| 啦啦啦视频在线资源免费观看| 啦啦啦 在线观看视频| 亚洲 欧美一区二区三区| 女人久久www免费人成看片| 王馨瑶露胸无遮挡在线观看| 欧美日本中文国产一区发布| 精品国内亚洲2022精品成人 | 50天的宝宝边吃奶边哭怎么回事| 国产欧美亚洲国产| 99久久综合免费| 久久99一区二区三区| 97精品久久久久久久久久精品| 中文欧美无线码| 狠狠精品人妻久久久久久综合| 久久久精品国产亚洲av高清涩受| 欧美精品高潮呻吟av久久| 成人三级做爰电影| 1024香蕉在线观看| 黄色毛片三级朝国网站| 国产精品av久久久久免费| 国产精品久久久久久精品电影小说| 一区二区三区精品91| 亚洲国产成人一精品久久久| 少妇人妻久久综合中文| 国产xxxxx性猛交| 正在播放国产对白刺激| 国产在线视频一区二区| 午夜91福利影院| 大型av网站在线播放| 麻豆乱淫一区二区| 日韩有码中文字幕| 国产日韩欧美亚洲二区| 色综合欧美亚洲国产小说| 国产又色又爽无遮挡免| 亚洲 欧美一区二区三区| 国内毛片毛片毛片毛片毛片| 下体分泌物呈黄色| tocl精华| 国产激情久久老熟女| 国产av一区二区精品久久| xxxhd国产人妻xxx| 一个人免费在线观看的高清视频 | 男女无遮挡免费网站观看| 成人18禁高潮啪啪吃奶动态图| 欧美日本中文国产一区发布| 99国产精品99久久久久| 日本a在线网址| 精品少妇一区二区三区视频日本电影| 这个男人来自地球电影免费观看| 精品国产超薄肉色丝袜足j| 亚洲人成电影免费在线| 狠狠精品人妻久久久久久综合| 久9热在线精品视频| 妹子高潮喷水视频| 亚洲一卡2卡3卡4卡5卡精品中文| 性色av一级| 视频在线观看一区二区三区| 精品少妇一区二区三区视频日本电影| 别揉我奶头~嗯~啊~动态视频 | e午夜精品久久久久久久| 天天影视国产精品| 欧美精品av麻豆av| 亚洲av日韩精品久久久久久密| 不卡av一区二区三区| 色精品久久人妻99蜜桃| 欧美日韩黄片免| 成人国语在线视频|