• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Long Non-coding RNAs in the Cytoplasm

    2016-06-02 01:29:11FarooqRashidAbdullahShahGeShan
    Genomics,Proteomics & Bioinformatics 2016年2期

    Farooq Rashid,Abdullah Shah,Ge Shan

    ?

    Long Non-coding RNAs in the Cytoplasm

    Farooq Rashid#,a,Abdullah Shah#,b,Ge Shan*,c

    CAS Key Laboratory of Innate Immunity and Chronic Disease,CAS Center for Excellence in Molecular Cell Science,School of Life Sciences,University of Science and Technology of China,Hefei 230027,China

    Received 8 January 2016;revised 3 February 2016;accepted 2 March 2016 Available online 6 May 2016

    Handled by Er-Wei Song

    KEYWORDS

    lncRNA;

    mRNA stability;

    mRNA translation;

    ceRNA;

    MicroRNA

    Abstract An enormous amount of long non-coding RNAs(lncRNAs)transcribed from eukaryotic genome are important regulators in different aspects of cellular events. Cytoplasm is the residence and the site of action for many lncRNAs. The cytoplasmic lncRNAs play indispensable roles with multiple molecular mechanisms in animal and human cells. In this review,we mainly talk about functions and the underlying mechanisms of lncRNAs in the cytoplasm. We highlight relatively well-studied examples of cytoplasmic lncRNAs for their roles in modulating mRNA stability,regulating mRNA translation,serving as competing endogenous RNAs,functioning as precursors of microRNAs,and mediating protein modifications. We also elaborate the perspectives of cytoplasmic lncRNA studies.

    E-mail: shange@ustc.edu.cn(Shan G).

    #Equal contribution.

    aORCID: 0000-0003-1017-7769.

    bORCID: 0000-0003-0130-9133.

    cORCID: 0000-0002-3561-2088.

    Peer review under responsibility of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    http://dx.doi.org/10.1016/j.gpb.2016.03.005

    1672-0229?2016 The Authors. Production and hosting by Elsevier B.V. on behalf of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    Introduction

    Mammalian genome is pervasively transcribed into many different complex families of RNA. However,less than 2% of mammalian genome is transcribed into mRNA to encode proteins,whereas a major portion of the genome is transcribed into interweaved and overlapping transcripts that include thousands of non-coding RNA(ncRNA)transcripts[1,2]. ncRNAs more than 200 nucleotides in length are called long ncRNAs(lncRNAs),which are often transcribed by RNA polymerase II[3,4]. These lncRNAs are usually devoid of open reading frames(ORFs),with or without the 3'polyadenylation [5-8]. Interestingly,expression of lncRNA is more tissuespecific than that of mRNA[9].

    In the last several years,a large number of nuclear lncRNAs have been discovered. These lncRNAs play diverse roles in the nucleus through various mechanisms[10]. For example,nuclear lncRNAs control the epigenetic state of particular genes[11],participate in transcriptional regulation[12],get involved in alternative splicing and constitute subnuclear compartments[13,14].

    Although for most if not all of the lncRNAs,nucleus is the place of biogenesis and processing,cytoplasm is the final residence and site of action for some lncRNAs. Biogenesis of lncRNAs is quite complicated and share many features of protein-coding RNAs. Within the nucleus,they occupy the chromatin fraction. 17%of lncRNAs vs. 15%of mRNAs are enriched in the nucleus,whereas 4%vs. 26%,respectively,are enriched in the cytoplasm[6]. Many lncRNA-mediated mechanisms of gene regulation have been identified in thecytoplasm[8,15,16]. In the last decade or so,thousands of cytoplasmic lncRNAs have been discovered,indicating their importance for multiple cellular activities. In this review we highlight the functions and underlying mechanisms of some important cytoplasmic lncRNAs that are responsible for posttranscriptional regulations such as on mRNA stability and translational control.

    Modulation of mRNA stability

    In the cytoplasm,several lncRNAs target mRNA transcripts and modulate mRNA stability. Some lncRNAs such as half-STAU1-binding site RNAs(1/2-sbsRNAs)and growth arrested DNA-damage inducible gene 7(gadd7)decrease the stability of mRNA,while others such as antisense transcript for β-secretase 1(BACE1-AS)and the terminal differentiation-induced ncRNA(TINCR)increase mRNA stability.

    1/2-sbsRNAs

    mRNAs can be degraded via staufen 1(STAU1)-mediated mRNA decay(SMD),when their 3'untranslated region(3'UTR)binds to STAU1[17]. STAU1 is a double-stranded RNA(dsRNA)-binding protein,which binds within 3'UTR of translationally-active mRNA[14,18]. STAU1 binds to a complex structure of 19-bp stem with 100 nt apex within the mRNA encoding ADP ribosylation factor 1(ARF1)[18]. This stem region is conserved in 3'UTRs of ARF1 mRNA of mouse and rat[6]. However,such stem structures were not identified in other STAU1 targets[18]. STAU1-binding sites can be formed by imperfect base-pairing between an Alu element in the 3'UTR of an SMD target and another Alu element in a cytoplasmic,polyadenylated lncRNA[18]. These lncRNAs transactivate the binding of STAU1 to mRNA as only STAU1 could be immunoprecipitated with lncRNAs called 1/2-sbsRNAs,thus unveiling a pivotal strategy of recruiting proteins to mRNAs and mediating the mRNA decay(Figure 1A). However,not all mRNAs containing Alu element in their 3'UTR are targeted for SMD,despite the presence of complementary 1/2-sbsRNAs that target other mRNA for SMD [17]. One of the 378 identified 1/2-sbsRNAs in humans,1/2-sbsRNA1 contains a single Alu element that base pairs with the Alu element in the 3'UTR of plasminogen activator inhibitor type 1(SERPINE1)and FLJ21870. 1/2-sbsRNA1 is present in the cytoplasm but absent in the nucleus of HeLa cells[18]and only STAU1 can be immunoprecipitated with 1/2-sbsRNA1. Two isoforms of 1/2-sbsRNA1,including 1/2- sbsRNA1(S)(short form)and 1/2-sbsRNA1(L)(long form),have been reported. Both isoforms contain the Alu element and 3’UTR with poly(A)tail,although they differ at the 5'end. Knocking down 1/2-sbsRNA1(S)increased the level of SERPINE1 and FLJ21870 mRNAs by 2-4.5-folds above normal. Other 1/2-sbsRNA members such as 1/2-sbsRNA2,1/2-sbsRNA3,and 1/2-sbsRNA4 are largely cytoplasmic and polyadenylated as well,containing a single Alu element. Knocking down these 1/2-sbsRNAs led to upregulation of their mRNA targets[17]. Functional studies showed that 1/2-sbsRNA1 contributed to the reduced cell migration by targeting SERPINE1 and RAB11-family-interacing protein 1 (RAB11FIP1)mRNAs for SMD as confirmed by scarp injury repair assay[17].

    gadd7

    gadd7 is a 754-nt polyadenylated lncRNA isolated from Chinese hamster ovary(CHO)cells[15,16]. Expression of gadd7 is induced by several types of DNA damage and growth arrest signals[19,20],and gadd7 plays a pivotal role in regulating G1/S checkpoint post DNA damage. gadd7 also regulates lipid-induced oxidative and endoplasmic reticulum(ER)stress [21]. lncRNAs are known to bind to and regulate the functions of proteins. One such example is the binding of gadd7 with TAR DNA-binding protein(TDP-43),and this interaction is strengthened upon UV exposure[22-24]. TDP-43 is a member of the heterogeneous nuclear ribonucleoprotein(hnRNP)family. HnRNP family members are RNA/DNA binding proteins involved in transcription,splicing,mRNA transport,and mRNA stability[25,26]. TDP-43 is known to repress the expression of cyclin-dependent kinase 6(Cdk6)mRNA in Hela cells,which is important for G1-phase progression[27,28]. Nonetheless,Cdk6 expression is found to be activated by TDP-43 in CHO cells[24]. UV-induced gadd7 directly interacts with TDP-43,thus leading to the decreased interaction between TDP-43 and Cdk6 mRNA. This results in Cdk6 mRNA degradation,and finally inhibition of cell cycle progression[24]. gadd7 is not highly conserved at the nucleotide level[29,30]. Since the structure or the functional motif of lncRNAs may be more important,and thus would be more conserved than their nucleotide sequence[9],it remains possible to identify a functional gadd7 ortholog in humans. This may be important for unveiling the pathogenesis of diseases such as frontotemporal lobar degeneration(FTLD)and amyotrophic lateral sclerosis(ALS),as dominant mutations in TDP-43 are causative of these two important neurodegenerative diseases[24,31,32].

    BACE1-AS

    Expression of the conserved non-coding BACE1-AS increases BACE1 mRNA stability when HEK-SW cells are exposed to cellular stressors like amyloid-β1-42(Aβ1-42)[33]. BACE1-AS renders BACE1 mRNA stability by masking the binding site of miR-485-5p(Figure 1A). BACE1-AS and miR-485-5p compete for binding in the sixth exon of BACE1 mRNA. The sense-antisense RNA duplex between BACE1 and BACE1-AS in the cytoplasm potentially perturb the interaction between miR-485-5p and BACE1 mRNA,which to some extent,explains the mRNA stabilization by BACE1-AS transcript[34].

    TINCR

    The TINCR gene resides on chromosome 19 in humans and encodes a predominantly cytoplasmic 3.7-kb lncRNA. TINCR regulates human epidermal differentiation by post transcriptional mechanism[35]. Previously found as an uncharacterized lncRNA,TINCR is now believed to be the most highlyinduced lncRNA during epidermal differentiation[35,36]. TINCR binds to mRNA through a 25-nt‘TINCR box’motif,which is robustly enriched in the interacted mRNAs. TINCR RNA has a strong affinity for STAU1 protein[17,35,37,38]. TINCR-STAU1 complex mediates the stabilization of differentiation-related mRNAs,such as KRT80 encodingkeratin 80 in an ultraviolet protection factor 1/2(UPF1/2)-independent manner,however the exact mechanism remains obscure[39].

    Figure 1 Known working models of cytoplasmic lncRNA function

    Modulation of translation

    Gene expression control at translational level plays a crucial role in multiple biological systems and provides valuable means for the spatiotemporal management of complex protein dynamics in eukaryotic cells[40-42]. Some lncRNAs also get involved in such regulation at the translational level,which can either repress(as exemplified for lincRNA-p21 below)or promote(as exemplified for AS Uchl1 below)translation.

    lincRNA-p21

    The human lincRNA-p21 is also known as tumor protein p53 pathway corepressor 1(Trp53cor1). lincRNA-p21 is~3.0 kb in length,and the encoding gene is located~15 kb upstream of p21/cdkn1a gene[23]. It is more abundant in cytoplasm compared to nucleus,known to co-distribute with ribosomes [43]. As a post-transcriptional modulator,lincRNA-p21 can negatively regulate the translation of CTNNB1(β-catenin)and JUNB transcripts by imperfectly base pairing at different sites in the coding and untranslated regions(both 5'and 3'UTRs)of CTNNB1(15 sites)and JUNB mRNAs(8 sites). When the level of Hu antigen R(HuR),a ubiquitous RNA binding protein,reduces,lincRNA-p21 becomes stable and interacts with its target transcripts including CTNNB1 and JUNB mRNAs. The resulting lincRNA-p21-mRNA complex can enhance the interaction between mRNAs and the translational repressors RCK as well as Fragile X mental retardation protein(FMRP). Consequently,translation of the target transcripts is repressed through reduced polysome sizes and ribosome drop-off(Figure 1B)[43,44].

    AS Uchl1

    A recent study reported the discovery of a spliced nuclearenriched antisense transcript(AS Uchl1)complementary to the mRNA that encodes mouse ubiquitin carboxy terminal hydrolase L1(Uchl1)[45]. Uchl1 is an enzyme specifically expressed in dopaminergic neurons[24,46,47]. The activity of the AS Uchl1 depends on the presence of a 73-nt overlapping sequence complementary with 5'end of Uchl1 mRNA andan embedded inverted SINEB2 repetitive element(Figure 1B)[45]. Under normal physiological conditions,AS Uchl1 is enriched in the nucleus,and upon rapamycin treatment,inhibition of mTORC1 triggers the transport of AS Uchl1 to the cytoplasm,which then targets the overlapping Uchl1 mRNA to active polysomes for cap-independent translation. Exact molecular mechanism as to how AS Uchl1 promotes the translation of Uchl1 mRNA under stress conditions is still elusive.

    Competing endogenous RNAs

    Coding and non-coding RNAs can regulate each other through their ability to compete for miRNA binding. lncRNAs harboring multiple binding sites of identical miRNA are called competing endogenous RNAs(ceRNAs)[48]. ceRNA can sequester miRNAs and therefore protect their target mRNAs from repression[49-53]. This activity was first discovered in Arabidopsis thaliana and later in mammals[53,54]. Multiple ceRNAs have been identified,and we present some as examples below.

    HULC

    Hepatocellular carcinoma(HCC)is one of the most fatal cancers[55]. Recent studies have indicated that a large number of lncRNAs are functionally deregulated in HCC[56-59]. Among these,highly up-regulated in liver cancer(HULC)is a novel mRNA-like ncRNA. It is present in the cytoplasm,spliced,polyadenylated,and resembles the mammalian LTR transposon 1A[60]. As reflected by its name,HULC is highly upregulated in HCC,and it is also detected in gastric cancer and colorectal carcinomas that metastasize to the liver[60-62]. The HULC gene resides on chromosome 6p24.3 in humans and is conserved in primates. It is about 1.6 kb in length and contains two exons. Expression of HULC gene in Hep3B cells can be up-regulated by the transcription factor cAMP responsive element binding protein(CREB). HULC acts as endogenous sponge of miR-372[63]. HULC binding to miR-372 reduces miRNA-mediated translational repression of protein kinase cAMP-activated catalytic subunit beta(PRKACB),one of the target genes of miR-372[63]. PRKACB can induce phosphorylation of CREB,which in turn stimulates HULC expression,thus forming a feedforward loop[63].

    linc-MD1

    linc-MD1 is a muscle-specific lncRNA,which is indispensable for the timing of muscle differentiation and plays an important role in myogenesis[64]. linc-MD1 acts as a natural decoy for two muscle-specific miRNAs,miR-133 and miR-135 (Figure 1C)[64]. Expression of mastermind-like-1(MAML1)is controlled by miR-133,and myocyte-specific enhancer factor 2C(MEF2C)is the target of miR-135[64]. MAML1 and MEF2C are important myogenic factors required for activation of muscle-specific genes. MEF2C binds to the promoter region of cardiac muscle genes and positively regulates the differentiation of muscle cells[65,66],while MAML1 acts as a transcription coactivator in some signal transduction pathways (such as Notch signaling)related to muscle differentiation[67]. With the depletion of linc-MD1,expression of both MAML1 and MEF2C is repressed,whereas over expression of linc-MD1 resulted in high levels of MAML1 and MEF2C. These observations argue for a direct competition between linc-MD1 and mRNAs for miRNA binding[64].

    linc-RoR

    The lncRNA regulator of reprogramming(linc-RoR)functions as microRNA(miRNA)sponge against miR-145. Interaction between linc-RoR and miR-145 prevents mRNA of some important transcription factors(TFs)like Oct4,sox2,and Nanog in human embryonic stem cells(hESCs)from miRNA-mediated regulation[68,69]. The expression of linc-RoR is positively correlated with the undifferentiated state of hESCs[69].

    CDR1as and circSry

    Recently,additional examples of ceRNA were found in circular RNAs(circRNAs),which represent a newly identified large class of lncRNAs[70-72]. circRNAs can be formed by backsplicing of the 5'end of an upstream exon with the 3'end of the same exon or a downstream exon. Although some circRNAs such as EIciRNAs are predominantly localized in the nucleus,circRNAs are generally cytoplasmic. circRNAs appear to be non-coding and lack the association with polysomes[71,73]. Two cytoplasmic circRNAs have been reported to act as miRNA sponge. The first one is the cerebellar degeneration-related protein 1 antisense transcript(CDR1as,also called ciRS-7),which is a sponge for miR-7(Figure 1C). CDR1as contains 74 miR-7 seed matches,out of which 63 are conserved in mammals[72]. The other one is a testisspecific circRNA encoded by the gene sex-determining region Y(circSry),which contains 16 putative binding sites for miR-138[71,72,74]. These two circRNAs may be special cases,and it may not be a general phenomenon for circRNAs to function as miRNA sponges[75].

    Precursor of miRNAs

    A genome-wide survey predicted that nearly 100 lncRNAs encode miRNAs[76]. These lncRNAs may not be predominantly cytoplasmic,but they may be processed in the nucleus and cytoplasm to give rise to functional miRNAs.

    H19

    H19 is one of the best known imprinting genes expressed from the maternal allele and required for proper muscle differentiation and muscle regeneration[77-79]. The H19 gene is present on chromosomes 11 and 7 in humans and mice,respectively [80,81]. There is no conserved ORF sequence in H19 RNA between mice and human. Although the H19 gene is imprinted paternally,the H19 RNA itself does not take part in imprinting mechanism[82]. Studies based on structure prediction suggest that H19 is a ncRNA,2.3-kb long,capped,spliced,and polyadenylated[82,83]. It is reported that H19 lncRNA acts as a molecular sponge for let-7 family of miRNAs in a HEK293 cell line[84]. Depleting H19 causes accelerated muscle differentiation,which can be recapitulated by let-7overexpression[84]. In the cytoplasm of undifferentiated multipotent mesenchymal C2C12 cells,H19 interacts with the K homology-type splicing regulatory protein(KSRP). Such binding favors KSRP-mediated destabilization of myogenin transcripts[85].

    Besides the aforementioned roles of H19,exon 1 of H19 also gives rise to miR-675-3p and miR-675-5p(Figure 1D). miR-675-3p targets the gene encoding the anti-differentiation TFs smad1 and smad5,which are crucial components of the bone morphogenetic protein(BMP)pathway[86],whereas miR-675-5p targets the gene encoding DNA replication initiation factor Cdc6[86]. In this regard,H19 has a prodifferentiation function in primary myoblasts and regenerating skeletal muscles due to the resulting miR-675-3p and miR-675-5p[86,87]. H19 is also found to regulate placenta growth. Insulin like growth factor 2(Igf2),which is also targeted by miR-675-3p,is an important regulator of growth and is upregulated in H19-deficient placenta[88]. H19 is also found to modulate gastric cancer cell proliferation through miR-675,by targeting the gene encoding the tumor suppressor runt domain transcription factor1(RUNX1). Thus H19/miR-675 regulates the expression of RUNX1 to modulate gastric cancer[89].

    linc-MD1(again)

    We discussed linc-MD1 as a ceRNA before. However,linc-MD1 primary transcript also harbors the pri-miR-133b sequence. If cleaved by Drosha in the nucleus,linc-MD1 can give rise to a miRNA precursor. Recently,HuR protein is described as another component of linc-MD1 regulatory circuitry[90]. HuR is known to contribute to muscle differentiation[91]. HuR interacts with many coding and non-coding RNAs,indicating its pleiotropic RNA binding activity [92,93]. HuR binds to and favors linc-MD1 accumulation at the expense of miR-133 biogenesis. HuR also recruits miR-133 onto linc-MD1 in the cytoplasm,thereby reinforcing this regulatory circuitry. There is an inverse correlation between levels of HuR and miR-133b. HuR binds the base of the primiR-133b stem loop,and physically interferes with microprocessor activity[90]. Further investigations have to be carried out to answer how the processing and function of linc-MD1 are regulated either as the pri-miR-133b in the nucleus or as sponge for miR-133b when exported to the cytoplasm as an unprocessed transcript.

    Regulation of protein modification

    In the recent years,several lncRNAs are identified to modulate modifications of cytoplasmic proteins such as ubiquitination/ deubiquitination or phosphorylation/dephosphorylation.

    lnc-DC

    Expression of lnc-DC is almost exclusive to human conventional dendritic cells(DCs)[94]. lnc-DC could help activate STAT3 by binding to it in the cytoplasm,thus promoting the phosphorylation and preventing dephosphorylation of STAT3. Knockdown of lnc-DC inhibited the differentiation to the DC lineage as well as the functions of DCs[94].

    NKILA

    NF-κB interacting lncRNA(NKILA)binds directly to IκB and blocks IKK-induced IκB phosphorylation,thus inhibiting NF-κB activation(Figure 1E)[95]. The expression of NKILA is also upregulated by NF-κB. NKILA interacts with the NF-κB/IκB complex,and seems to keep the NF-κB pathway from over-activation and to suppress cancer metastasis[95].

    Another role of lincRNA-p21

    lincRNA-p21 was reported to regulate the ubiquitination of HIF-1α,a transcription factor crucial to hypoxia-induced effects such as Warburg effect[96]. lincRNA-p21 is induced by HIF-1α under hypoxia condition,and binds to both HIF-1α and von Hippel-Lindau tumor suppressor(VHL)protein. Such binding blocks the interaction between VHL and HIF-1α,thus inhibiting VHL-mediated ubiquitination of HIF-1α. This positive feedback loop between HIF-1α and lincRNA-p21 promotes glycolysis under hypoxia[96].

    Perspectives

    lncRNAs are recognized as major regulators in life events such as gene expression,cell differentiation,and tumorigenesis. In this article,we summarized the roles of some lncRNAs in the cytoplasm. lncRNAs can function in the posttranscriptional gene expression such as mRNA stability and translation. Through RNA-protein or RNA-RNA interaction,cytoplasmic lncRNAs could also serve as ceRNAs,miRNA precursors,or modulators of protein phosphorylation.

    Recent findings have shown that certain transcripts previously-annotated as lncRNAs in fact can be translated to produce small bioactive peptides[97-100]. For instance,the conserved micropeptide myoregulin(MLN)was found to be encoded by a skeletal muscle-specific RNA,a previously putative lncRNA[100]. MLN shows structural and functional similarity with SERCA inhibitors,phospholamban and sarcolipin. Interacting directly with SERCA,MLN disrupts the Ca2+uptake into the sarcoplasmic reticulum[100]. Similarly,the endogenous 34-amino acid micropeptide dwarf open reading frame(DWORF)is encoded by another putative musclespecific lncRNA. DWORF enhances muscle performance by physically interacting with SERCA inhibitors such as phospholamban,sarcolipin,and MLN[100]. These examples demonstrated that some(although maybe limited in numbers)transcripts that are previously annotated as lncRNAs are actually coding,and thus should be considered as mRNAs. Given the vast amount of lncRNAs identified,and many of them are associated with noncoding functions,it is no doubt that more functions and functional working mechanisms are yet to be explored for the large number of cytoplasmic lncRNAs.

    Regulation of lncRNA localization is important to coordinate their functions in the nucleus or in the cytoplasm. There should exist machinery either directly or indirectly to transport specific lncRNAs into the cytoplasm,and maybe further to special subcellular locations or complexes. The final localization,concentration,and functions of a specific lncRNA have to be fine tuned by the RNA biogenesis,transportation,degradation,and maybe even modifications. Substantial efforts are required to investigate these aspects.

    A single lncRNA can have multiple roles. For example,both H19 and linc-MD1 can function as ceRNAs as well as precursors for miRNAs. How these different roles of the same lncRNA are coordinated remains to be addressed. On the other hand,there are undoubtedly more roles and functional mechanisms remain unknown for cytoplasmic lncRNAs. With the extensive investigations of the eukaryotic transcriptome by means of RNA sequencing,most of the lncRNAs including cytoplasmic ones may have already been described. Further studies on these lncRNAs may help to classify them into subclasses based on their biogenesis and functions.

    Competing interests

    The authors declare no competing interests.

    Acknowledgments

    This work is supported by the National Basic Research Program of China(973 Program;Grant No. 2015CB943000),the National Natural Science Foundation of China(Grant Nos. 91519333 and 31471225),and the Fundamental Research FundsfortheCentral Universities(GrantNo. WK2070000034).

    References

    [1]Mercer TR,Dinger ME,Mattick JS. Long noncoding RNAs: insights into functions. Nat Rev Genet 2009;10:155-9.

    [2]Wilusz JE,Sunwoo H,Spector DL. Long noncoding RNAs: functional surprises fromthe RNA world. Genes Dev 2009;23:1494-504.

    [3]Geisler S,Coller J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 2013;14:699-712.

    [4]Hu S,Wu J,Chen L,Shan G. Signals from noncoding RNAs: unconventional roles for conventional pol III transcripts. Int J Biochem Cell Biol 2012;44:1847-51.

    [5]Ramskold D,Wang ET,Burge CB,Sandberg R. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput Biol 2009;5:e1000598.

    [6]Derrien T,Johnson R,Bussotti G,Tanzer A,Djebali S,Tilgner H,et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure,evolution,and expression. Genome Res 2012;22:1775-89.

    [7]Moran VA,Perera RJ,Khalil AM. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res 2012;40:6391-400.

    [8]Batista PJ,Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell 2013;152:1298-307.

    [9]Mercer TR,Dinger ME,Sunkin SM,Mehler MF,Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 2008;105:716-21.

    [10]Wilusz JE. Long noncoding RNAs: Re-writing dogmas of RNA processing and stability. Biochim Biophys Acta 2016;1859: 128-38.

    [11]Zhao J,Sun BK,Erwin JA,Song JJ,Lee JT. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 2008;322:750-6.

    [12]Hung T,Wang Y,Lin MF,Koegel AK,Kotake Y,et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 2011;43:621-9.

    [13]Tripathi V,Ellis JD,Shen Z,Song DY,Pan Q,Watt AT,et al. The nuclear-retained non-coding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 2010;39:925-38.

    [14]Bernard D,Prasanth KV,Tripathi V,Colasse S,Nakamura T,Xuan Z,et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 2010;29:3082-93.

    [15]Ingolia NT,Lareau LF,Weissman JS. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 2011;147:789-802.

    [16]Montes M,Nielsen MM,Maglieri G,Jacobsen A,Hojfeldt J,Agrawal-Singh S,et al. The lncRNA MIR31HG regulates p16INK4A expression to modulate senescence. Nat Commun 2015;6:6967.

    [17]Gong C,Maquat LE. LncRNAs transactivate STAU1- mediated mRNA decay by duplexing with 39 UTRs via Alu elements. Nature 2011;470:284-8.

    [18]Kim YK,F(xiàn)uric L,Parisien M,Major F,DesGroseillers L,Maquat LE,et al. Staufen1 regulates diverse classes of mammalian transcripts. EMBO J 2007;26:2670-81.

    [19]Hollander MC,Alamo I,F(xiàn)ornace Jr AJ. A novel DNA damage inducible transcript,gadd7,inhibits cell growth,but lacks a protein product. Nucleic Acids Res 1996;24:1589-93.

    [20]Fornace Jr AJ,Alamo Jr I,Hollander MC. DNA damage inducible transcripts in mammalian cells. Proc Natl Acad Sci U S A 1988;85:8800-4.

    [21]Brookheart RT,Michel CI,Listenberger LL,Ory DS,Schaffer JE. The non-coding RNA gadd7 is a regulator of lipid-induced oxidative and endoplasmic reticulum stress. J Biol Chem 2009;284:7446-54.

    [22]Rinn JL,Kertesz M,Wang JK,Squazzo SL,Xu X,Brugmann SA,et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007;129:1311-23.

    [23]Huarte M,Guttman M,F(xiàn)eldser D,Garber M,Koziol MJ,Kenzelmann-Broz D,et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 2010;142:409-19.

    [24]Liu H,Wei L,Tao Q,Deng H,Ming M,Xu P,et al. Decreased NURR1 and PITX3 gene expression in Chinese patients with Parkinson’s disease. Eur J Neurol 2012;19:870-5.

    [25]Buratti E,Baralle FE. Multiple roles of TDP-43 in gene expression,splicing regulation,and human disease. Front Biosci 2008;13:867-78.

    [26]Cohen TJ,Lee VM,Trojanowski JQ. TDP-43 functions and pathogenic mechanisms implicated in TDP-43 proteinopathies. Trends Mol Med 2011;17:659-67.

    [27]Lee MH,Yang HY. Regulators of G1 cyclin-dependent kinases and cancers. Cancer Metastasis Rev 2003;22:435-49.

    [28]Ayala YM,Misteli T,Baralle FE. TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin dependent kinase 6 expression. Proc Natl Acad Sci U S A 2008;105:3785-9.

    [29]Pang KC,F(xiàn)rith MC,Mattick JS. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet 2006;22:1-5.

    [30]Hellwig S,Bass BL. A starvation-induced noncoding RNA modulates expression of Dicer-regulated genes. Proc Natl Acad Sci U S A 2008;105:12897-902.

    [31]Kabashi E,Valdmanis PN,Dion P,Spiegelman D,McConkey BJ,Velde CV. TARDBP mutations in individuals with sporadic andfamilial amyotrophic lateral sclerosis. Nat Genet 2008;40:572-4.

    [32]Sreedharan J,Blair IP,Tripathi VB,Hu X,Vance C,Rogelj B,et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008;319:1668-72.

    [33]Faghihi MA,Modarresi F,Khalil AM,Wood DE,Sahagan BG,Morgan TE. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 2008;14:723-30.

    [34]Faghihi MA,Ming Z,Jia H,F(xiàn)arzaneh M,Van der Brug MP,Michael AN,et al. Evidence for natural antisense transcriptmediated inhibition of microRNA function. Genome Biol 2010;11:R56.

    [35]Kretz M,Siprashvili Z,Chu C,Webster DE,Zehnder A,Qu K,et al. Control of somatic tissue differentiation by the long noncoding RNA TINCR. Nature 2013;493:231-5.

    [36]Wan D,Gong Y,Qin W,Zhang P,Li J,Wei L,et al. Large-scale cDNA transfection screening for genes related to cancer development and progression. Proc Natl Acad Sci US A 2004;101:15724-9.

    [37]Kiebler MA,Hemraj I,Verkadi P,Kohrmann M,F(xiàn)ortes P,Marion RM,et al. The mammalian staufen protein localizes to the somatodendritic domain of cultured hippocampal neurons: implications for its involvement in mRNA transport. J Neurosci 1999;19:288-97.

    [38]Dugre′-Brisson S,Elvira G,Boulay K,Chatel-Chaix L,Mouland AJ,DesGroseillers L. Interaction of Staufen1 with the 5'end of mRNA facilitates translation of these RNAs. Nucleic Acids Res 2005;33:4797-812.

    [39]Kretz M. TINCR,staufen1,and cellular differentiation. RNA Biol 2013;10:1597-601.

    [40]Gray NK,Wickens M. Control of translation initiation in animals. Annu Rev Cell Dev Biol 1998;14:399-458.

    [41]Sonenberg N,Hershey JWB,Mathews MB. Translational control of gene expression. Cold Spring Harbor,New York: Cold Spring Harbor Laboratory Press;2000. p. 1020.

    [42]Gebauer F,Hentze MW. Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 2004;5:827-35.

    [43]Yoon JH,Abdelmohsen K,Srikantan S,Yang X,Martindale JL,De S,et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell 2012;47:648-55.

    [44]Chu CY,Rana TM. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 2006;4:e210.

    [45]Carrieri C,Cimatti L,Biagioli M,Beugnet A,Zucchelli S,F(xiàn)edele S,et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 2012;491:454-7.

    [46]Liu Y,F(xiàn)allon L,Lashuel HA,Liu Z,Lansbury Jr PT. The UCHL1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 2002;111:209-18.

    [47]Setsuie R,Wada K. The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochem Int 2007;51:105-11.

    [48]Salmena L,Poliseno L,Tay Y,Pandolfi PP. The ceRNA hypothesis: the Rosetta stone of a hidden RNA language. Cell 2011;146:353-8.

    [49]Karreth FA,Tay Y,Perna D,Ala U,Tan SM,Rust AG,et al. In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 2011;147:382-95.

    [50]Tay Y,Kats L,Salmena L,Weiss D,Tan SM,Ala U,et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 2011;147:344-57.

    [51]Peng W,Si S,Zhang Q,Li C,Zhao F,Wang F,et al. Long noncoding RNA MEG3 functions as a competing endogenous RNA to regulate gastric cancer progression. J Exp Clin Cancer Res 2015;34:79-89.

    [52]Chen MT,Lin HS,Shen C,Ma YN,Wang F,Zhao HL,et al. PU.1-regulated long noncoding RNA lnc-MC controls human monocyte/macrophage differentiation through interaction with microRNA 199a-5p. Mol Cell Biol 2015;35:3212-24.

    [53]Franco-Zorrilla JM,Valli A,Todesco M,Mateos I,Puga MI,Rubio-Somoza I,et al. Target mimicry provides a new mechanismfor regulation of microRNAactivity. Nat Genet 2007;39:1033-7.

    [54]Poliseno L,Salmena L,Zhang J,Carver J,Haveman J,Pandolfi PP,et al. A coding-independent function of gene and pseudogene mRNAs regulates tumor biology. Nature 2010;465:1033-8.

    [55]Bosch FX,Ribes J,Cle′ries R,Diaz M. Epidemiology of hepatocellular carcinoma. Clin Liver Dis 2005;9:191-211.

    [56]Matouk IJ,DeGroot N,Mezan S,Ayesh S,Abu-lail R,Hochberg A,et al. The H19 non-coding RNA is essential for human tumor growth. PLoS One 2007;9:e845.

    [57]Tsang WP,Kwok TT. Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells. Oncogene 2007;26:4877-81.

    [58]Ventura A,Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell 2009;136:586-91.

    [59]Qin R,Chen Z,Ding Y,Hao J,Hu J,Guo F. Long non-coding RNA MEG3 inhibits the proliferation of cervical carcinoma cells through the induction of cell cycle arrest and apoptosis. Neoplasma 2013;60:486-92.

    [60]Panzitt K,Tschernatsch MM,Guelly C,Moustafa T,Stradner M,Strohmaier HM,et al. Characterization of HULC,a novel gene with striking up-regulation in hepatocellular carcinoma,as noncoding RNA. Gastroenterology 2007;132:330-42.

    [61]Matouk IJ,Abbasi I,Hochberg A,Galun E,Dweik H,Akkawi M. Highly upregulated in liver cancer noncoding RNA is overexpressed in hepatic colorectal metastasis. Eur J Gastroenterol Hepatol 2009;21:688-92.

    [62]Zhao Y,Guo Q,Chen J,Hu J,Wang S,Sun Y. Role of long non-coding RNA HULC in cell proliferation,apoptosis and tumor metastasis of gastric cancer: a clinical and in vitro investigation. Oncol Rep 2014;31:358-64.

    [63]Wang J,Liu X,Wu H,Ni P,Gu Z,Qiao Y,et al. CREB upregulates long non-coding RNA,HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 2010;38:5366-83.

    [64]Cesana M,Cacchiarelli D,Legnini I,Santini T,Sthandier O,Chinappi M,et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011;147:358-69.

    [65]Lilly B,Zhao B,Ranganayakulu G,Paterson BM,Schulz RA,Olson EN. Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. Science 1995;267:688-93.

    [66]Lin Q,Schwarz J,Bucana C,Olson EN. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 1997;276:1404-7.

    [67]Shen H,McElhinny AS,Cao Y,Gao P,Liu J,Bronson R,et al. The Notch coactivator,MAML1,functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis. Genes Dev 2006;20:675-88.

    [68]Loewer S,Cabili MN,Guttman M,Loh YH,Thomas K,Park IH. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 2010;42:1113-7.

    [69]Wang Y,Xu Z,Jiang J,Xu C,Kang J,Xiao L,et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4,Nanog,and Sox2 in human embryonic stem cell self-renewal. Dev Cell 2013;25:69-80.

    [70]Salzman J,Gawad C,Wang PL,Lacayo N,Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 2012;7:e30733.

    [71]Hansen TB,Jensen TI,Clausen BH,Bramsen JB,F(xiàn)insen B,Damgaard KC,et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013;495:384-8.

    [72]Memczak S,Jens M,Elefsinioti A,Torti F,Krueger J,Rybak A. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013;495:333-8.

    [73]Li Z,Huang C,Bao C,Chen L,Lin M,Wang X,et al. Exonintron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015;22:256-64.

    [74]Capel B,Swain A,Nicolis S,Hacker A,Walter M,Koopman P,et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 1993;73:1019-30.

    [75]Guo JU,Agarwal V,Guo H,Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol 2014;15:409.

    [76]He S,Su H,Liu C,Skogerbo G,He H,He D,et al. MicroRNA-encoding long non-coding RNAs. BMC Genomics 2008;9:236.

    [77]Pachnis V,Belayew A,Tilghman SM. Locus unlinked to afetoprotein under the control of the murine raf and Rif genes. Proc Natl Acad Sci U S A 1984;81:5523-7.

    [78]Poirier F,Chan CT,Timmons PM,Robertson EJ,Evans MJ,Rigby PW. The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. Development 1991;113:1105-14.

    [79]Davis RL,Weintraub H,Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 1987;51:987-1000.

    [80]Bartolomei MS,Zemel S,Tilghman SM. Parental imprinting of the mouse H19 gene. Nature 1991;351:153-5.

    [81]Zhang Y,Tycko B. Monoallelic expression of the human H19 gene. Nat Genet 1992;1:40-4.

    [82]Brannan CI,Dees EC,Ingram RS,Tilghman SM. The product of the H19 gene may function as an RNA. Mol Cell Biol 1990;10:28-36.

    [83]Juan V,Crain C,Wilson C. Evidence for evolutionarily conserved secondary structure in the H19 tumor suppressor RNA. Nucleic Acids Res 2000;28:1221-7.

    [84]Kallen AN,Zhou XB,Xu J,Qiao C,Ma J,Yan L,et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell 2013;52:101-12.

    [85]Giovarellia M,Bucci G,Ramos A,Bordo D,Wilusz CJ,Chen CY,et al. H19 long noncoding RNA controls the mRNA decay promoting function of KSRP. Proc Natl Acad Sci U S A 2014;111:E5023-8.

    [86]Dey BK,Karl P,Anindya D. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev 2014;28:491-501.

    [87]Cai X,Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 2007;13:313-6.

    [88]Keniry A,Oxley D,Monnier P,Kyba M,Dandolo L,Smits G,et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 2012;14:659-65.

    [89]Zhuang M,Gao W,Xu J,Wang P,Shu Y. The long non-coding RNA H19 derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1. Biochem Biophys Res Commun 2014;448:315-22.

    [90]Legnini I,Morlando M,Mangiavacchi A,F(xiàn)atica A,Bozzoni I. A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis. Mol Cell 2014;53:506-14.

    [91]Von Roretz C,Beauchamp P,Di Marco S,Gallouzi IE. HuR and myogenesis: being in the right place at the right time. Biochim Biophys Acta 2011;1813:1663-7.

    [92]Lebedeva S,Jens M,Theil K,Schwanha¨usser B,Selbach M,Landthaler M,et al. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 2011;43:340-52.

    [93]Mukherjee N,Corcoran DL,Nusbaum JD,Reid DW,Georgiev S,Hafner M,et al. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol Cell 2011;43:327-39.

    [94]Wang P,Xue Y,Han Y,Lin L,Wu C,Xu S,et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 2014;344:310-3.

    [95]Liu B,Sun L,Liu Q,Gong C,Yao Y,Lv X,et al. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 2015;27:370-81.

    [96]Yang F,Zhang H,Mei Y,Wu M. Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect. Mol Cell 2014;53:88-100.

    [97]Kondo T,Plaza S,Zanet J,Benrabah E,Valenti P,Hashimoto Y,et al. Small peptides switch the transcriptional activity of ShavenbabyduringDrosophilaembryogenesis. Science 2010;329:336-9.

    [98]Andrews SJ,Rothnagel JA. Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 2014;15:193-204.

    [99]Anderson DM,Anderson KM,Chang CL,Makarewich CA,Nelson BR,McAnally JR,et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 2015;160:595-606.

    [100]Nelson BR,Makarewich CA,Anderson DM,Winders BR,Troupes CD,Wu F,et al. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 2016;351:271-5.

    ORIGINAL RESEARCH

    *Corresponding author.

    精品午夜福利在线看| 国产精品秋霞免费鲁丝片| 最近2019中文字幕mv第一页| 国产一区二区在线观看av| 97精品久久久久久久久久精品| 高清av免费在线| 日韩一区二区视频免费看| 亚洲精品成人av观看孕妇| 狂野欧美白嫩少妇大欣赏| 下体分泌物呈黄色| 18禁在线播放成人免费| 亚洲av福利一区| 国产成人免费观看mmmm| 在线观看av片永久免费下载| 老熟女久久久| 狠狠精品人妻久久久久久综合| 亚洲精品日本国产第一区| 日本av手机在线免费观看| 一本色道久久久久久精品综合| 汤姆久久久久久久影院中文字幕| 午夜激情福利司机影院| 免费高清在线观看视频在线观看| 久久婷婷青草| 免费在线观看成人毛片| 天堂8中文在线网| 日韩不卡一区二区三区视频在线| 男女啪啪激烈高潮av片| 一区二区av电影网| 五月玫瑰六月丁香| 最黄视频免费看| 亚洲精品日韩在线中文字幕| 美女脱内裤让男人舔精品视频| 人妻制服诱惑在线中文字幕| 国产伦精品一区二区三区四那| 在线免费观看不下载黄p国产| 国产精品熟女久久久久浪| 国内精品宾馆在线| 我的女老师完整版在线观看| 午夜福利在线观看免费完整高清在| 99re6热这里在线精品视频| 久久狼人影院| 国产爽快片一区二区三区| 蜜桃在线观看..| av国产久精品久网站免费入址| 久久ye,这里只有精品| 国产一区亚洲一区在线观看| 视频区图区小说| 国产精品无大码| 狂野欧美白嫩少妇大欣赏| 久久精品久久精品一区二区三区| av天堂久久9| 有码 亚洲区| 国产精品免费大片| 国产男女内射视频| 午夜91福利影院| 国产乱来视频区| 亚洲国产欧美日韩在线播放 | 日韩一本色道免费dvd| 精品一品国产午夜福利视频| 中文字幕制服av| 精品少妇内射三级| 免费久久久久久久精品成人欧美视频 | 亚洲婷婷狠狠爱综合网| av卡一久久| 久久韩国三级中文字幕| 少妇人妻久久综合中文| freevideosex欧美| 亚洲欧美精品自产自拍| 2022亚洲国产成人精品| 91aial.com中文字幕在线观看| 国产真实伦视频高清在线观看| 精品久久久久久电影网| 欧美国产精品一级二级三级 | 精品亚洲成a人片在线观看| 另类亚洲欧美激情| av有码第一页| 日本免费在线观看一区| 自拍偷自拍亚洲精品老妇| 亚洲国产精品专区欧美| 免费av中文字幕在线| 菩萨蛮人人尽说江南好唐韦庄| 国产一区二区三区av在线| 亚洲欧美精品专区久久| 街头女战士在线观看网站| 亚洲精品日韩av片在线观看| 狂野欧美激情性xxxx在线观看| 中文精品一卡2卡3卡4更新| 高清不卡的av网站| 男人狂女人下面高潮的视频| 黄色欧美视频在线观看| 老司机影院毛片| 国产精品无大码| 99久久精品热视频| 看非洲黑人一级黄片| 欧美精品一区二区大全| 日本黄色日本黄色录像| 三级经典国产精品| 性高湖久久久久久久久免费观看| 一个人看视频在线观看www免费| 午夜精品国产一区二区电影| 性高湖久久久久久久久免费观看| 欧美精品高潮呻吟av久久| 在线观看www视频免费| 春色校园在线视频观看| 亚洲国产欧美日韩在线播放 | 久久久国产一区二区| 国产极品天堂在线| 日日啪夜夜撸| 天天躁夜夜躁狠狠久久av| 日韩精品有码人妻一区| 成人黄色视频免费在线看| 国产精品一区二区三区四区免费观看| 久久久久久久久久久丰满| 热re99久久精品国产66热6| 国产精品久久久久久精品电影小说| 黄色视频在线播放观看不卡| av女优亚洲男人天堂| 亚洲精品国产av成人精品| 久久国内精品自在自线图片| 中文字幕av电影在线播放| 偷拍熟女少妇极品色| 亚洲精品日韩av片在线观看| 老司机影院毛片| 久久久a久久爽久久v久久| 亚洲美女搞黄在线观看| 18+在线观看网站| 免费黄频网站在线观看国产| 成年av动漫网址| av天堂久久9| 黄色怎么调成土黄色| 一级毛片久久久久久久久女| 精品少妇内射三级| 一本一本综合久久| 国产乱来视频区| 伊人久久国产一区二区| 日韩欧美一区视频在线观看 | av在线老鸭窝| 国精品久久久久久国模美| 精品国产国语对白av| 亚洲四区av| 久久精品久久久久久久性| 久久99热6这里只有精品| 色视频www国产| 韩国av在线不卡| 中文字幕亚洲精品专区| 精品99又大又爽又粗少妇毛片| 国产在线一区二区三区精| 亚洲美女搞黄在线观看| 在线观看一区二区三区激情| 国产在线男女| 久久鲁丝午夜福利片| 精品熟女少妇av免费看| 街头女战士在线观看网站| 欧美亚洲 丝袜 人妻 在线| 天天躁夜夜躁狠狠久久av| 汤姆久久久久久久影院中文字幕| 人人妻人人澡人人爽人人夜夜| 91精品一卡2卡3卡4卡| 亚洲在久久综合| 久久久久久久久久人人人人人人| 五月开心婷婷网| 插逼视频在线观看| 免费av不卡在线播放| 国产欧美亚洲国产| 人妻 亚洲 视频| 欧美高清成人免费视频www| 又黄又爽又刺激的免费视频.| 国产亚洲av片在线观看秒播厂| av在线app专区| 性色av一级| 亚洲av综合色区一区| 免费少妇av软件| 欧美+日韩+精品| 精品熟女少妇av免费看| 国产熟女欧美一区二区| 成人毛片a级毛片在线播放| 美女脱内裤让男人舔精品视频| 这个男人来自地球电影免费观看 | 老熟女久久久| 99久久精品一区二区三区| 色5月婷婷丁香| 免费大片黄手机在线观看| 精品国产露脸久久av麻豆| 成人毛片60女人毛片免费| av.在线天堂| 只有这里有精品99| 日韩伦理黄色片| 大陆偷拍与自拍| 国产黄色免费在线视频| 22中文网久久字幕| 国产一区二区在线观看av| 亚洲怡红院男人天堂| 少妇精品久久久久久久| 国产精品.久久久| 亚洲国产欧美在线一区| 国产一级毛片在线| 91久久精品电影网| 91精品国产国语对白视频| 国产高清三级在线| 最新中文字幕久久久久| 三级国产精品片| 人体艺术视频欧美日本| 日韩成人av中文字幕在线观看| 精品人妻一区二区三区麻豆| 国产真实伦视频高清在线观看| 99久久精品国产国产毛片| 国产伦理片在线播放av一区| 女人精品久久久久毛片| 嘟嘟电影网在线观看| 亚洲国产日韩一区二区| 最黄视频免费看| 久久国产亚洲av麻豆专区| 久久久久久久国产电影| 国产高清三级在线| 内射极品少妇av片p| a级毛片在线看网站| 色婷婷av一区二区三区视频| 一区二区三区四区激情视频| 国产精品久久久久久精品电影小说| 国产一区有黄有色的免费视频| 伦精品一区二区三区| 街头女战士在线观看网站| 亚洲内射少妇av| 能在线免费看毛片的网站| 高清毛片免费看| 成人午夜精彩视频在线观看| 欧美xxⅹ黑人| 搡女人真爽免费视频火全软件| 亚洲欧美日韩卡通动漫| 丝瓜视频免费看黄片| 热re99久久精品国产66热6| 亚洲精华国产精华液的使用体验| 亚洲电影在线观看av| 亚洲精品色激情综合| 美女福利国产在线| 久久精品久久久久久久性| 亚洲久久久国产精品| 亚洲av中文av极速乱| 国产一区二区三区av在线| 国产高清国产精品国产三级| 香蕉精品网在线| 22中文网久久字幕| videossex国产| 久久狼人影院| 日韩中文字幕视频在线看片| 91精品国产九色| 美女大奶头黄色视频| 在线观看美女被高潮喷水网站| 99热这里只有是精品50| 国产永久视频网站| 久久久久网色| 黄色一级大片看看| 日韩强制内射视频| 在线观看免费视频网站a站| 如日韩欧美国产精品一区二区三区 | 一级,二级,三级黄色视频| 久久精品久久精品一区二区三区| 亚洲精品一二三| 99久久精品热视频| 久热久热在线精品观看| 肉色欧美久久久久久久蜜桃| 国产免费视频播放在线视频| 免费看不卡的av| 一本—道久久a久久精品蜜桃钙片| 97精品久久久久久久久久精品| 久久久久久久久久人人人人人人| av一本久久久久| 亚洲国产精品国产精品| 天天躁夜夜躁狠狠久久av| 亚洲va在线va天堂va国产| 精品少妇黑人巨大在线播放| 久久久久视频综合| 国产日韩欧美亚洲二区| 草草在线视频免费看| 欧美日韩av久久| 麻豆成人av视频| 2022亚洲国产成人精品| 久久久久精品久久久久真实原创| 色吧在线观看| 嫩草影院入口| 国产精品麻豆人妻色哟哟久久| 五月开心婷婷网| 我的女老师完整版在线观看| 亚洲色图综合在线观看| 中文字幕人妻熟人妻熟丝袜美| 肉色欧美久久久久久久蜜桃| 色哟哟·www| 午夜激情福利司机影院| 日韩在线高清观看一区二区三区| 成人亚洲精品一区在线观看| 男女啪啪激烈高潮av片| 大片电影免费在线观看免费| 婷婷色综合www| 老熟女久久久| 在线看a的网站| 成人国产麻豆网| 成人影院久久| 国产精品一区www在线观看| 欧美97在线视频| 国产极品天堂在线| 久久午夜综合久久蜜桃| 男女边吃奶边做爰视频| 少妇人妻精品综合一区二区| 97超碰精品成人国产| 欧美日韩精品成人综合77777| 日本欧美国产在线视频| 日本免费在线观看一区| 啦啦啦中文免费视频观看日本| 久久久欧美国产精品| 国产成人91sexporn| 最近的中文字幕免费完整| 欧美人与善性xxx| 精品一区在线观看国产| 亚洲不卡免费看| 国产真实伦视频高清在线观看| 97精品久久久久久久久久精品| av天堂中文字幕网| 91久久精品国产一区二区成人| 成人美女网站在线观看视频| 日韩三级伦理在线观看| 高清毛片免费看| 最黄视频免费看| 婷婷色av中文字幕| 亚洲一区二区三区欧美精品| 欧美xxxx性猛交bbbb| 成人毛片60女人毛片免费| 久久韩国三级中文字幕| 国产一区二区三区综合在线观看 | 亚洲av中文av极速乱| 国产淫片久久久久久久久| 国产白丝娇喘喷水9色精品| 国产黄片视频在线免费观看| 人妻 亚洲 视频| 2018国产大陆天天弄谢| 男人添女人高潮全过程视频| 久久国产乱子免费精品| 18禁动态无遮挡网站| 日本av免费视频播放| 亚洲综合精品二区| 国产有黄有色有爽视频| 亚洲国产精品一区三区| 在线观看免费视频网站a站| 亚洲av福利一区| 亚洲av成人精品一区久久| 国产一区二区在线观看日韩| 九九爱精品视频在线观看| 日韩伦理黄色片| 少妇熟女欧美另类| 欧美精品一区二区免费开放| 超碰97精品在线观看| 日本黄大片高清| 夜夜骑夜夜射夜夜干| 夫妻性生交免费视频一级片| 国产日韩一区二区三区精品不卡 | 国产伦理片在线播放av一区| 国产精品女同一区二区软件| 中文资源天堂在线| 国产精品三级大全| 亚洲精品一二三| 狂野欧美激情性xxxx在线观看| 中文在线观看免费www的网站| 男女啪啪激烈高潮av片| 国产精品久久久久久av不卡| 色网站视频免费| a级毛片免费高清观看在线播放| 久久99热6这里只有精品| 久久99精品国语久久久| 曰老女人黄片| 日韩av不卡免费在线播放| 国产精品99久久99久久久不卡 | 亚洲国产精品一区二区三区在线| 精品少妇内射三级| 欧美最新免费一区二区三区| 啦啦啦视频在线资源免费观看| 日韩,欧美,国产一区二区三区| 伦理电影免费视频| 亚洲无线观看免费| 亚洲av电影在线观看一区二区三区| 亚洲人成网站在线观看播放| 久久人人爽人人爽人人片va| 日韩欧美一区视频在线观看 | 国产又色又爽无遮挡免| 欧美精品国产亚洲| 亚洲丝袜综合中文字幕| 国产精品人妻久久久影院| 夜夜爽夜夜爽视频| 黑人高潮一二区| 日韩视频在线欧美| 国产精品人妻久久久影院| 国产日韩欧美在线精品| 一本色道久久久久久精品综合| 免费黄频网站在线观看国产| 成人黄色视频免费在线看| 国产日韩欧美视频二区| 91aial.com中文字幕在线观看| 最近2019中文字幕mv第一页| 国产精品成人在线| 99热这里只有是精品在线观看| 亚洲欧美精品专区久久| 青春草国产在线视频| 只有这里有精品99| 99热6这里只有精品| 国产精品偷伦视频观看了| 亚洲人与动物交配视频| 欧美亚洲 丝袜 人妻 在线| 精品人妻熟女av久视频| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久精品电影小说| 欧美精品人与动牲交sv欧美| av女优亚洲男人天堂| 一级,二级,三级黄色视频| 亚洲精品日本国产第一区| av网站免费在线观看视频| 免费观看的影片在线观看| 日本黄大片高清| 亚洲综合精品二区| 中文天堂在线官网| 黄色视频在线播放观看不卡| 在线观看免费日韩欧美大片 | 热re99久久精品国产66热6| 成人黄色视频免费在线看| 欧美xxxx性猛交bbbb| 国产精品偷伦视频观看了| 超碰97精品在线观看| 亚洲一区二区三区欧美精品| 曰老女人黄片| av播播在线观看一区| 晚上一个人看的免费电影| 中文欧美无线码| 亚洲精品第二区| 少妇人妻一区二区三区视频| 97精品久久久久久久久久精品| 久久99一区二区三区| 大香蕉97超碰在线| 全区人妻精品视频| 最后的刺客免费高清国语| 成人免费观看视频高清| 精品少妇内射三级| 亚洲第一区二区三区不卡| 精品一区二区三区视频在线| 22中文网久久字幕| 久热久热在线精品观看| 美女主播在线视频| av在线老鸭窝| xxx大片免费视频| 久热这里只有精品99| 亚洲天堂av无毛| 国产一区二区三区综合在线观看 | 少妇人妻一区二区三区视频| 亚洲精品乱码久久久v下载方式| 精品久久久久久久久亚洲| 亚洲不卡免费看| 视频区图区小说| 欧美精品高潮呻吟av久久| 精品久久久久久电影网| 美女中出高潮动态图| 欧美精品国产亚洲| 人人妻人人看人人澡| av又黄又爽大尺度在线免费看| 日本欧美视频一区| 亚洲欧洲精品一区二区精品久久久 | 久久久久久久精品精品| 国产精品99久久久久久久久| 午夜91福利影院| 亚洲性久久影院| 卡戴珊不雅视频在线播放| 国产精品久久久久久久电影| 中文字幕精品免费在线观看视频 | 王馨瑶露胸无遮挡在线观看| 秋霞伦理黄片| 自拍欧美九色日韩亚洲蝌蚪91 | 黑丝袜美女国产一区| 一级二级三级毛片免费看| videos熟女内射| 亚洲av中文av极速乱| 简卡轻食公司| 黑丝袜美女国产一区| 18禁裸乳无遮挡动漫免费视频| 日韩大片免费观看网站| 狂野欧美激情性bbbbbb| 亚洲,欧美,日韩| 丰满人妻一区二区三区视频av| 狂野欧美白嫩少妇大欣赏| 久久久久国产网址| 中国国产av一级| 中文在线观看免费www的网站| 国产熟女午夜一区二区三区 | 成人漫画全彩无遮挡| 成年av动漫网址| 亚洲一区二区三区欧美精品| 国产片特级美女逼逼视频| 国产成人一区二区在线| 99久久中文字幕三级久久日本| 国产亚洲精品久久久com| 国产精品99久久久久久久久| 日韩强制内射视频| tube8黄色片| 在线观看av片永久免费下载| 热99国产精品久久久久久7| 人人妻人人爽人人添夜夜欢视频 | 老司机影院成人| 天天操日日干夜夜撸| 一级毛片我不卡| 婷婷色麻豆天堂久久| 免费看av在线观看网站| 亚洲欧洲国产日韩| 成年av动漫网址| 十分钟在线观看高清视频www | 亚洲精品自拍成人| 欧美3d第一页| 一本色道久久久久久精品综合| 久久久欧美国产精品| 观看美女的网站| 欧美三级亚洲精品| 国产精品一区www在线观看| 3wmmmm亚洲av在线观看| 又黄又爽又刺激的免费视频.| 亚洲国产精品一区三区| 国产熟女欧美一区二区| 久久精品久久久久久久性| 桃花免费在线播放| 国产精品不卡视频一区二区| 精品国产国语对白av| 亚洲精品视频女| 如何舔出高潮| 九色成人免费人妻av| 内射极品少妇av片p| 99久国产av精品国产电影| 国产午夜精品久久久久久一区二区三区| 欧美日韩视频高清一区二区三区二| 看十八女毛片水多多多| 丝袜脚勾引网站| 99热国产这里只有精品6| 日韩电影二区| 亚洲欧美日韩卡通动漫| av网站免费在线观看视频| 亚洲精品国产av蜜桃| 一级a做视频免费观看| 国产成人精品福利久久| 欧美精品亚洲一区二区| 亚洲欧洲国产日韩| 国产精品国产av在线观看| 一区二区三区免费毛片| av在线观看视频网站免费| 新久久久久国产一级毛片| 成人漫画全彩无遮挡| 全区人妻精品视频| 丰满饥渴人妻一区二区三| 成人国产av品久久久| 久久久亚洲精品成人影院| 午夜91福利影院| 国产精品久久久久久久电影| 99久久综合免费| 人人妻人人澡人人爽人人夜夜| 亚洲久久久国产精品| 精品久久久久久电影网| 一级黄片播放器| 不卡视频在线观看欧美| 免费不卡的大黄色大毛片视频在线观看| 日韩精品免费视频一区二区三区 | 内地一区二区视频在线| 精品国产一区二区久久| 高清毛片免费看| 丰满人妻一区二区三区视频av| 亚洲不卡免费看| 亚洲av中文av极速乱| 国产中年淑女户外野战色| 国产永久视频网站| 婷婷色综合www| 欧美日韩综合久久久久久| 午夜免费鲁丝| 伦精品一区二区三区| 夫妻午夜视频| 午夜免费观看性视频| 色婷婷av一区二区三区视频| 99热全是精品| 亚洲激情五月婷婷啪啪| 99九九在线精品视频 | 久久久久久久久大av| 久久99热6这里只有精品| 国产成人精品无人区| 夜夜骑夜夜射夜夜干| 看免费成人av毛片| 狂野欧美激情性xxxx在线观看| 国产成人一区二区在线| 多毛熟女@视频| 日日啪夜夜爽| 美女国产视频在线观看| 如何舔出高潮| 精品人妻偷拍中文字幕| 2021少妇久久久久久久久久久| 亚洲欧美日韩东京热| 丰满乱子伦码专区| 两个人免费观看高清视频 | 欧美日韩av久久| 中文天堂在线官网| 插阴视频在线观看视频| 亚洲在久久综合| 日韩成人av中文字幕在线观看| 国产av一区二区精品久久| 日韩三级伦理在线观看| 欧美日韩亚洲高清精品| 视频区图区小说| 久热久热在线精品观看| 最新的欧美精品一区二区| 少妇熟女欧美另类| 成人亚洲精品一区在线观看| 亚洲av电影在线观看一区二区三区| 久久久a久久爽久久v久久| av网站免费在线观看视频| 国产成人aa在线观看| 寂寞人妻少妇视频99o| 插阴视频在线观看视频| 亚洲电影在线观看av| 王馨瑶露胸无遮挡在线观看|