• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ligand assisted copper-catalyzed Ullmann cross coupling reaction of bromaminic acid with amines☆

    2016-06-01 03:00:42BeibeiShaoHongyingDuXinyuHaoRongwenLuYiLuoShufenZhang

    Beibei Shao,Hongying Du,Xinyu Hao,Rongwen Lu,Yi Luo,Shufen Zhang

    State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian 116024,China

    1.Introduction

    Copper-catalyzed Ullmann-type coupling reaction has been known for more than a century as one of the mostusefuland practical methods for the formation ofC(aryl)-Nbond[1].Such copper-mediated coupling reactions have been involved in numerous industry applications[2].Ullmann cross coupling reaction could not be used to its full potential until2000.The main bottlenecks were the limited range of suitable substrates,harsh reaction conditions,and the moderate yield[3].

    In 2001,Buchwald[4]and Taillefer[5,6]discovered a versatile and efficient new copper/ligand system which applied a catalytic amount of metal under mild conditions,allowing a wide variety of Ullmann cross coupling reaction.The ligands not only accelerated the reactions but also made them more reproducible and inherently safer[3].The reports from Sha firet al.[7]and other groups[8,9]demonstrated the impact of ligands on the products:the existence of aminoalcohol performed as a chelating ligand and promoted the reaction ofN-arylation.Further,Jiaoet al.[10]reported that ligands containing hydroxyl groups could facilitate theN-arylation reaction.

    N-arylation reaction of bromaminic acid(1-amino-4-bromo anthraquinone-2-sulfonic acid)plays an important role in dye and pharmaceuticalindustry[11].However,itsuffers from reduced synthetic scope due to the poor tolerance of cuprous catalyst in aqueous solution,the unfavorable efficiency of catalysis and a lot of byproducts.In fact,water in the reaction system processes the disproportionation of cuprous ion to cupric ion and elemental copper and hydrolysis of bromaminic acid,leading to the decrease of cataly stactivity and the formation of byproducts[12].A sterically hydrophobic ligand is highly effective in inhibiting contact between bromaminic acid and water and protecting cuprous catalyst,thus enhancing the reactivity of the catalyst and increasing the yield ofN-arylation products.

    Bidentate chelating ligand such as 1,10-phenanthroline was usually regarded as the most efficient ligand in copper-catalyzedN-arylation reaction in organic phase[13].Likewise,the good hydrophobicity and ideal steric effect of bidentate chelating ligands could be considered as a good choice for the reaction of bromaminic acid and amines in aqueous solution.Furthermore,to discover a more be fitting and general ligand for the reaction,it is assumed that complexes of metal ions with synthetic macrocycles can be helpful owing to the controlled geometry.

    The macrocyclic ligands are nearly planer shaped.The spatial structure of these ligands is distorted when they coordinate with metal ions.Distortion of the structure enhances the steric hindrance of these complexes[14].It has been reported that Schiff-base is able to coordinate and stabilize various oxidation states of transition metals in organic phase[15,16].Meanwhile,the attraction of Schiff-base is growing for the reason that a series of changeable structures and widely diverse properties of Schiff-base ligands are easily prepared by changing the substituents of aldehyde,ketone and amine.Hence,macrocyclic Schiff-base displays a rather important role in the ligand-catalyst system[17].

    Based on the above discussion,we focused on probing the generality of the ligands mentioned previously.We also explored their utility for theN-arylation reaction of bromaminic acid in aqueous solution.The aim of this study was to enhance the stability of cuprous ion and decrease the hydrolysis byproducts of bromaminic acid.Thus,a series of ligands were screened extensively based on the reactivity and selectivity of copper catalysts.In addition,we have investigated the coordination ability between copper and ligands by UV-Vis,CV and analyzed their structures by FT-IR.

    2.Experimental

    2.1.Preparation of ligands

    Fig.1.Chemical structures of ligands L1-L13.

    Fig.2.Reaction of bromaminic acid and m-aminoacetanilide.

    Ligands L1-L5 were purchased and used withoutany purification.L6,L7 and L8 were prepared by a traditionalcondensation reaction between glyoxal(2.90 g,0.02 mol)and triethylenetetramine(2.92 g,0.02 mol),diethylenetriamine(2.06 g,0.02 mol),tetraethylenepentamine(3.79 g,0.02 mol)respectively[18].L9 and L10 were synthesized in accordance with the same method of the condensation between dibenzoyl(2.10 g,0.01 mol)and diethylenetriamine(1.03 g,0.01 mol),triethylenetetramine(1.46 g,0.01 mol)respectively.The condensation between ethylenediamine(0.60 g,0.01 mol)and salicylaldehyde(1.22 g,0.01 mol)was used to prepare L11.Besides,L11 was sulfonated by chlorosulfonic acid to synthesize L12.L13 was obtained by the reduction of ligand L11 with NaBH4(see Fig.1).

    2.2.Preparation of catalysts

    The ligand(2 mmol)was added dropwise to the solution of Cu(CH3COO)2(0.20 g,1 mmol)in a mixture of aqueous solution(3 ml)and DMSO(2 ml)with stirring at room temperature.Then sodium ascorbate(0.20 g,1 mmol)was added to the solution and the system turned yellow immediately.

    2.3.N-arylation reaction

    The coupling reaction between bromaminic acid andm-aminoacetanilide was employed as a model reaction(Fig.2)to examine the catalytic activity of the as-prepared catalyst.Initially,bromaminic acid(5.14 g,0.01 mol),m-aminoacetanilide(1.69 g,0.012 mol),NaHCO3(2.5 g,0.03 mol)and aqueous solution(20 ml)was added to flask successively and the mixed solution was dispersed by mechanicalagitation when temperature reached 75°C.Then the as-prepared cuprous catalyst was added dropwise to the solution.The mixture was heated at 75°C for 5 h.

    2.4.Ligand and catalyst characterization

    The mass spectra were recorded on a HP 1100,UPLC/Q-TofMicro instrument using solutions in ethanol or acetonitrile.The UV-Vis absorption analysis was carried on a HP 8453 UV-Vis spectrophotometer.The CV analyses of copper complexes were performed on a BAS 100B electrochemical analyzer.The FT-IR analysis was carried on a EQUINOX55infrared spectrometer.The XPS analysis of complex was performed on ESCALAB250 photoelectron spectroscopy instrument.

    Table 1influence ofdifferentligands on the yield of the reaction between bromaminic acid and maminoacetanilide and the conversion of bromaminic acid

    3.Results and Discussion

    3.1.Activity of ligand assisted copper catalyst

    3.1.1.Bidentate chelating ligands

    Considering the efficiency of bidentate ligands in copper-catalyzedN-arylation reaction in organic phase, five bidentate ligands(L1-L5)(Fig.1)were utilized to validate their effect on the reactivity of the reaction between bromaminic acid and amines in aqueous solution.

    As shown in Table 1,Entry 2,in the case of ligand L2,the yield of the reaction was 76%and the conversion of bromaminic was 99.6%,a possible explanation for the satisfactory result was that the steric effects of the alkyl substituents on 2,9-dimethyl-1,10-phenanthroline hindered the flattening of the two ligands of the tetrahedral complexes formed by L2 and copper(I),disfavoring the formation of the fivecoordinated copper(II)species then enhancing the stability of copper(I)complex[19,20].While,main products were seldom obtained when L1,L3 and L4(Table 1,Entries 1,3,and 4)were employed.This finding might be as a result of the fact that the tetrahedral complexes with smaller steric hindrance formed by L1,L3,L4(para-methyl substituents)and copper(I)behaved as a strong reducing agent,being oxidized to the five-coordinated copper(II)complex at a somewhat more negative potential.The oxidation of copper(I)to copper(II)brings a prominent change in the stereochemistry.For example,two phenanthralines in[Cu(I)(phen)2]were almost orthogonal but on oxidation of copper(I)to copper(II),they changed to a distorted trigonal bipymaidal arrangement[19].In the light of the distinctly different effect of above ligands,it is worthy to point out that steric effects of ligands played an important role in the stability and reactivity of the copper catalysts.With the catalystderived from L5(Table 1,Entry 5),the reaction could be effected in good yield owing to the presence of phenolic hydroxyl group.Probably for the reason that the inductive and conjugative effect of the phenolic hydroxyl group enhanced the af finity of nitrogen atom[21].

    3.1.2.Macrocyclic Schiff-base ligands

    Likewise, five Schiff-base macrocyclic ligands(L6-L10)(Fig.1)were synthesized.We found that the ligands L6 and L10 afforded a respective yield of 54.0%and 61.7%achieving bromaminic acid conversion of 84.2%and 100%(Table 1,Entries 6 and 10).While,the use of L7,L8,and L9 failed to efficiently catalyze the reaction(Table 1,Entries 7-9),implying that ring size of the ligand displayed a decisive role in macrocyclic ligands'reactivity[15].As for L6,L7 and L8,only L6 showed relatively good catalytic activity.Neither enlarging(L8)nor decreasing(L7)ring size of the ligand conformed to the coordination space of the coppercatalyst leading to poor af finity between ligands and catalyst,resulting in poor catalytic activity.In addition,we studied the electronic effects besides steric hindrance on the catalyst performance.L10 was designed to study the electronic effect.Surprisingly,conversion of bromaminic acid achieved 100%and the yield was also enhanced(Table 1,Entry 10)with the use of L10.The result of L10 con firmed the feasibility of the assumption that on one hand,aromatic ring could enhance the steric hindrance and hydrophobicity of ligands,on the otherhand,π-πconjugate formed by aromatic ring and imidogen(NH)was beneficialto stabilize the complex by expanding the motion of electrons[22].As for L9(Table 1,Entry 9),the poor reactivity exactly illustrated that the be fitting ring size of ligand counted for much.The results indicated that the steric effects and strong electron-donating capacity of ligands were indispensable for the copper-catalyzedN-arylation reaction of bromaminic acid.

    Fig.3.Calculation of NBO charge for simplified model of L11 and L13,by the method of B3LYP/6-31G(d).

    3.1.3.Schiff-base ligands containing phenolic hydroxyl groups

    Further on,three salicyclic aldehyde Schiff-base ligands L11,L12 and L13 base on the favorable efficacy of ligand L5 and the above macrocyclic Schiff-base ligands(Fig.1)were designed to examine their propensity for the catalytic reaction.L12 and L13 were synthesized on the basis of L11 with the purpose of exploring ligands'electronic effect on the yield of the reaction.

    As shown in Table 1,Entry 11,yield of the reaction was approximately 76%and conversion of bromaminic acid reached nearly 100%with the use of L11 as ligand.While,a comparably lower 37%yield was observed when L12 was used(Entry 12).Presumably,the lowered electron density and then the weakened stability of copper(I)complex led to the reduced efficiency[22].

    Notably,the catalytic system derived from L13 provided excellent reactivity For theN-arylation reaction of bromaminic acid in aqueous solution.The good yield was close to 93.0%(Table 1,Entry 13).Ithighlighted the fact that reducing C=N double bond into C-N single bond not influence the ligating atom and skeleton of the complex,but rather increased the electron density of ligating nitrogen atom(Fig.3)and then enhanced the stability and catalytic activity of the complexes.In addition,The XPS(Fig.4)proved the mixed valency of copper(I)and copper(II)in copper(II)-L13 with the atom ratio of 3:2.The substantial presence of copper(I)contributed much to the high reactivity of the studied catalysis.

    Overall,the ligand study in Table 1 provided evidence that the use of salicyclic aldehyde Schiff-base ligand bearing large steric hindrance,phenolic hydroxyl group and hydrophobic groups allowed for more satisfactory result for theN-arylation reaction of bromaminic acid in aqueous solution.Furthermore,results from L12 and L13 demonstrated that the complexes containing more electron-donating ligands showed higher reactivity.Maybe we can find some explanation from the mechanism of the C-N coupling reaction.As shown in Fig.5,four processes were involved in the reaction.Strong coordination between ligand and copper was essential for avoiding the dissociation of coordination bond.Increasing the electron density of ligating atom could be beneficial to enhance the coordination between ligand and copper.In addition,the large steric hindrance of ligands facilitated the reductive elimination process.

    3.2.Spectrum analysis of copper and copper complex

    3.2.1.UV-Vis spectrum analysis

    As shown in Fig.6A,the absorption maximum ofcopper(II)was about 750 nm.The 450 nm absorption band of copper(II)-L6 complex was assigned to the d-d transition of divalent copper complex[19].At the same time,in complex copper(I)-L6,the Metal-To-Ligand Charge-Transfer(MLCT)absorption band of monovalent copper complex appeared at 460 nm assigned to the d orbital electron of copper(I)jumping into the π*-antibonding orbital of ligands and its shape remained unchanged after 10 min showing that copper(I)-L6 was stable and L6 could coordinate with copper(I)well.As shown in Fig.6B,the shift of absorption maximum for copper(II)in copper(II)-L10 complex,meaning that the divalent copper complex was produced,consequently the adsorption maximum of copper(II)was changed.Meanwhile,the MLCT absorption band of copper(I)-L10 appeared at 400 nm.And its intensity and shape remained unchanged after half an hour,indicating the stability of the complex and the steady coordination between L10 and copper(I).While,in copper(II)-L11(Fig.6C),the absorption band of copper(II)disappeared,instead the MLCT absorption band of cuprous complex appeared at 550 nm,which is an indication of the reduction of copper(II)to copper(I)owing to the reducing capacity of the phenolic hydroxyl group of L11.In addition,in complex copper(I)-L11,MLCT absorption band appeared at 550 nm,it was relatively stable in air and the peak shape remained unchanged after half an hour,implying the benign coordination between L11 and copper(I).Similarly,the absorption band of copper(II)in copper(II)-L13 complex completely disappeared(Fig.6D)and the MLCT absorption band of cuprous complex appeared at 450 nm.This implies that the ligand could reduce copper(II)to copper(I)as well.Meanwhile,in copper(I)-L13,MLCT absorption band appeared at 500 nm and it kept unchanged for half an hour.This demonstrates that L13 had strong coordination with copper(I).

    Fig.4.Cu 2p XPS spectrum of complex Cu-L13.

    Fig.5.The mechanism of C-N coupling reaction[5].

    Fig.6.UV-Vis absorption for copper complexes.(A)Cu-L2.(B)Cu-L10.(C)Cu-L11 and(D)Cu-L13 in ethanol solution,c=1.0 × 10-5 mol·L-1,25 °C.

    3.2.2.Electrochemical analysis

    With the purpose of exploring the redox characteristic of the complexes,electrochemical analysis was carried out for the complexes Cu-L10 and Cu-L13 based on their catalytic performance.

    As shown in Fig.7A,two anodic peaks corresponding to the oxidation of copper(I)to copper(II)and copper(0)to copper(II)of (CH3COO)2acetonitrile solution appeared at-0.602 V and-0.110 V respectively.The reduction peak was a little weak relatively.While,in complex Cu-L10,a pair of copper(I)/copper(II)redox peaks appeared.The anodic peak of copper(I)to copper(II)appeared at a higher potential of-0.426 V accounting for that the preferable coordination between ligand L10 and copper(I)had made a more stable copper(I)[23].As for complex Cu-L13(Fig.7B),the higher anodic peak at 0.323 V assigned to copper(I)to copper(II)illustrating that the better coordination between ligand and copper(I),the more stable copper(I)will be.Therefore,the effect of ligands on the redox potentials of copper complexes implies that the environment of copper atom was changed,probably due to the binding between ligands and copper[24].Likewise,the good coordination of ligand and copper(I)was likely to explain the approving catalytic performance of Cu-L2 and Cu-L11.

    The UV-Vis spectrum and cyclic voltammetry curves of copper complexes showed that L2,L10,L11 and L13 all had strong coordination ability with copper(I).Moreover,the new absorption bands located at 481 cm-1and 410 cm-1in the FT-IR(Fig.S1)of Cu-L13 were assigned to Cu-O and Cu-N characteristic absorption peaks.

    Table 2The yield of reaction between bromaminic acid and different amines and conversion of bromaminic acid

    3.3.Extension of substrates for the reaction

    The efficiency and tolerance of the catalysts were explored by a series ofaromatic amines with bromaminic acid(Fig.8).The results were summarized in Table 2.All the reactions were carried out under the standard conditions and manipulated without any special precaution.

    As shown in Table 2,the reaction proceeded smoothly and completely for various aromatic amines.A range of functional groups were survivable in the reaction.For example,aromatic amines bearing electron-donating groups such as-OH,-CH3,-OCH3afforded good yields more than 80%.

    It is particularly noteworthy that even in the presence of sensitive substituents(i.e.,-COOH,-SO3H,-NO2and even Cl),the reaction proceeded successfully to provide the desired products in satisfactory yields without protection to the functional groups.

    Fig.7.Cyclic voltammograms for copper complexes.(A)Cu-L10 and(B)Cu-L13.Measured at 100 mV·s-1 and in a three-electrode cell with GC working electrode,Ag/AgCl reference electrode and platinum counter electrode,supporting electrolyte tetrabutyl-ammonium hexa fluorophosphate and solvent acetonitrile.

    Fig.8.Reaction of bromaminic acid and different aromatic amines.

    4.Conclusions

    A novel copper complex catalytic system was designed for the Ullmann cross coupling reaction of bromaminic acid with amines in aqueous solution.Three types of ligands with different structures were investigated.Among those,ligand L2 bearing planar bidentate chelating structure provided the desired product in satisfactory yield due to its large steric hindrance and ligand L5 gave the higher productivity because of the presence of phenolic hydroxyl group.While,ligands L10 and L11 based on macrocyclic salicylaldehyde Schiff-base achieved good catalytic efficiency owing to the presence of phenolic hydroxyl group as well.Furthermore,ligand L13 constituted the optimal catalytic system of all attributed to the large steric hindrance,the presence of phenolic hydroxyl group as well as hydrophobic benzene and the strong electron-donating capacity.The simple and easily handled ligand facilitated synthetic approach was proved useful to increase the stability of cuprous catalyst.It also suppressed the side-effect which resulted from the hydrolysis of bromaminic acid in aqueous system.More importantly,the catalyst systems showed good tolerance and efficiency of a wide range of aromatic amines.The UV-Vis and CV analyses highlighted that the benign coordination between ligand and copper(I)was beneficial to stabilize the catalytic system.

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.cjche.2016.01.010.References

    [1]K.Kunz,U.Scholz,D.Ganzer,Renaissance of Ullmann and Goldberg reactions—Progress in copper catalyzed C-N-,C-O-and C-S-coupling,Synlett2428(2003).

    [2]J.R.H.Ross,Ullmann's encyclopedia of industrial chemistry, fifth edition,volume A1,Appl.Catal.21(1986)213.

    [3]F.Monnier,M.Taillefer,Catalytic C-C,C-N,and C-O Ullmann-type coupling reactions,Angew.Chem.Int.Ed.48(2009)6954.

    [4]Z.Vrba,Mechanism of the Ullmann condensation,Collect.Czechoslov.Chem.Commun.46(1981)92.

    [5]I.P.Beletskaya,A.V.Cheprakov,The complementary competitors:Palladium and copper in C-N cross-coupling reactions,Organometallics31(2012)7753.

    [6]P.F.Larsson,A.Correa,M.Carril,P.-O.Norrby,C.Bolm,Copper-catalyzed crosscouplings with part-per-million catalyst loadings,Angew.Chem.121(2009)5801.

    [7]A.Sha fir,P.A.Lichtor,S.L.Buchwald,N-versus O-arylation of aminoalcohols:Orthogonal selectivity in copper-based catalysts,J.Am.Chem.Soc.129(2007)3490.

    [8]L.Liang,Z.Li,X.Zhou,PyridineN-oxides as ligands in Cu-catalyzed N-arylation of imidazoles in water,Org.Lett.11(2009)3294.

    [9]H.J.Xu,F.Y.Zheng,Y.F.Liang,Z.Y.Cai,Y.S.Feng,D.Q.Che,Ligand-free CuCl-catalyzed C-N bond formation in aqueous media,Tetrahedron Lett.51(2010)669.

    [10]J.Jiao,X.R.Zhang,N.H.Chang,J.Wang,J.F.Wei,X.Y.Shi,Z.G.Chen,A facile and practical copper powder-catalyzed,organic solvent-and ligand-free Ullmann amination of aryl halides,J.Org.Chem.76(2011)1180.

    [11]T.D.Tuong,M.Hida,A novel catalyst system for the Ullmann condensation in aqueous solution.Reaction of a halogenoanthraquinone with aniline,Chem.Lett.363(1973).

    [12]Y.Baqi,C.E.Muller,Rapid and efficient microwave-assisted copper(0)-catalyzed Ullmann coupling reaction:General access to anilinoanthraquinone derivatives,Org.Lett.9(2007)1271.

    [13]H.Rao,Y.Jin,H.Fu,Y.Jiang,Y.Zhao,A versatile and efficient ligand for coppercatalyzed formation of C-N,C-O,and P-C bonds:Pyrrolidine-2-phosphonic acid phenyl monoester,Chem.Eur.J.12(2006)3636.

    [14]R.Menif,A.E.Martell,P.J.Squattrito,A.Clear field,New hexaaza macrocyclic binucleating ligands.Oxygen insertion with a dicopper(I)Schiff base macrocyclic complex,Inorg.Chem.29(1990)4723.

    [15]A.Vijayaraj,R.Prabu,R.Suresh,C.Sivaraj,N.Raaman,V.Narayanan,New acyclic Schiff-base copper(II)complexes and their electrochemical,catalytic,and antimicrobial studies,J.Coord.Chem.64(2011)637.

    [16]H.Naeimi,M.Moradian,Encapsulation of copper(I)-Schiff base complex in NaY nanoporosity:An efficient and reusable catalyst in the synthesis of propargylamines via A3-coupling(aldehyde-amine-alkyne)reactions,Appl.Catal.A Gen.467(2013)400.

    [17]F.Rafat,K.S.Siddiqi,Synthesis and physicochemical properties of Schiff base Macrocyclic ligands and their transition metal chelates,J.Korean Chem.Soc.55(2011)912.

    [18]F.Rafat,K.S.Siddiqi,Synthesis and physicochemical properties of Schiff base macrocyclic ligands and their transition metal chelates,J.Korean Chem.Soc.55(2011)912.

    [19]G.De Santis,L.Fabbrizzi,M.Licchelli,C.Mangano,P.Pallavicini,The copper(I)complex of a metallocyclam-functionalized phenanthroline:A poorly stable species that is very resistant to oxidation,Inorg.Chem.32(1993)3385.

    [20]O.Carugo,C.B.Castellani,Five-co-ordinated copper(II)complexes:A new look at the isomerization from trigonal-bipyramidal to square-pyramidal geometry in bis(bipyridyl)-(monodentate ligand)copper(II)and related complexes,J.Chem.Soc.Dalton Trans.2895(1990).

    [21]K.Yang,Y.Qiu,Z.Li,Z.Wang,S.Jiang,Ligands for copper-catalyzed C-N bond forming reactions with 1 mol%CuBr as catalyst,J.Org.Chem.76(2011)3151.

    [22]J.W.Tye,Z.Weng,A.M.Johns,C.D.Incarvito,J.F.Hartwig,Copper complexes of anionic nitrogen ligands in the amidation and imidation of aryl halides,J.Am.Chem.Soc.130(2008)9971.

    [23]S.Itoh,Y.Hashimoto,S.Fukuzumi,Reaction of Cu(I)complexes bearing a phenol group in the ligand with O2,Appl.Catal.A Gen.194-195(2000)453.

    [24]M.Boiocchi,L.Fabbrizzi,Double-stranded dimetallic helicates:Assemblingdisassembling driven by the Cu(I)/Cu(II)redox change and the principle of homochiral recognition,Chem.Soc.Rev.43(2014)1835.

    亚洲经典国产精华液单| av视频免费观看在线观看| 亚洲欧美精品专区久久| 在线免费十八禁| 国产成人精品久久久久久| 丰满少妇做爰视频| 一个人看视频在线观看www免费| 成人漫画全彩无遮挡| 久久亚洲国产成人精品v| 亚洲国产精品一区三区| 国产毛片在线视频| 日本av手机在线免费观看| 伦精品一区二区三区| 成人影院久久| 免费人成在线观看视频色| 国产亚洲午夜精品一区二区久久| 久久这里有精品视频免费| 国产亚洲欧美精品永久| 亚洲av成人精品一区久久| 国产精品一及| 成年av动漫网址| 亚洲国产av新网站| 亚洲第一av免费看| 久久精品熟女亚洲av麻豆精品| 国产大屁股一区二区在线视频| 亚洲va在线va天堂va国产| 国国产精品蜜臀av免费| 日本色播在线视频| 婷婷色综合大香蕉| 伊人久久国产一区二区| 日韩av免费高清视频| 日韩成人伦理影院| 激情 狠狠 欧美| 日韩,欧美,国产一区二区三区| 国产免费视频播放在线视频| 久久久久久久久久人人人人人人| 亚洲精品国产av成人精品| 日韩欧美 国产精品| 夜夜看夜夜爽夜夜摸| 欧美最新免费一区二区三区| 日韩欧美一区视频在线观看 | 日韩大片免费观看网站| 国产精品国产三级专区第一集| 伊人久久国产一区二区| 精品一区在线观看国产| 女性生殖器流出的白浆| 女性被躁到高潮视频| 日本与韩国留学比较| 欧美成人午夜免费资源| 777米奇影视久久| 欧美日本视频| 99久久综合免费| 欧美精品一区二区大全| 美女视频免费永久观看网站| 一区二区av电影网| 国产淫语在线视频| 少妇裸体淫交视频免费看高清| av天堂中文字幕网| 国产淫片久久久久久久久| 国产精品偷伦视频观看了| 欧美高清性xxxxhd video| 国产一区亚洲一区在线观看| 欧美日本视频| 97热精品久久久久久| 日韩一本色道免费dvd| 国产精品蜜桃在线观看| 亚洲一级一片aⅴ在线观看| 另类亚洲欧美激情| 亚洲aⅴ乱码一区二区在线播放| av.在线天堂| 国产视频内射| 我的女老师完整版在线观看| 男女无遮挡免费网站观看| 人人妻人人添人人爽欧美一区卜 | 男的添女的下面高潮视频| 免费看日本二区| 精品午夜福利在线看| 伦精品一区二区三区| 毛片女人毛片| 日本色播在线视频| 联通29元200g的流量卡| 91在线精品国自产拍蜜月| av.在线天堂| 国产精品久久久久久久久免| 亚州av有码| 亚洲最大成人中文| 男人和女人高潮做爰伦理| 国产一区二区三区av在线| 国产色爽女视频免费观看| 欧美性感艳星| 国产av精品麻豆| 99精国产麻豆久久婷婷| 亚洲,一卡二卡三卡| 免费大片黄手机在线观看| 欧美精品亚洲一区二区| 欧美日韩亚洲高清精品| 亚洲人成网站高清观看| 成人二区视频| 自拍欧美九色日韩亚洲蝌蚪91 | 直男gayav资源| 国产高清国产精品国产三级 | 观看美女的网站| 熟女av电影| 久久午夜福利片| 久久久午夜欧美精品| 乱码一卡2卡4卡精品| 欧美日韩视频高清一区二区三区二| av.在线天堂| 极品教师在线视频| 精品久久国产蜜桃| 久久久久久久久久人人人人人人| 欧美3d第一页| 有码 亚洲区| 美女脱内裤让男人舔精品视频| 亚洲精品456在线播放app| 一级a做视频免费观看| 国产高清不卡午夜福利| 欧美丝袜亚洲另类| 国产成人91sexporn| 日韩国内少妇激情av| 国产黄色视频一区二区在线观看| 日本vs欧美在线观看视频 | 色吧在线观看| 精品一区二区免费观看| 99热国产这里只有精品6| 久久99蜜桃精品久久| 日韩一本色道免费dvd| 美女脱内裤让男人舔精品视频| 精品亚洲乱码少妇综合久久| 亚洲aⅴ乱码一区二区在线播放| 久久国产乱子免费精品| 亚洲国产精品999| 亚洲欧美日韩另类电影网站 | 免费大片18禁| av在线观看视频网站免费| 蜜桃在线观看..| 水蜜桃什么品种好| 美女cb高潮喷水在线观看| 美女高潮的动态| 亚洲精品成人av观看孕妇| 久久精品夜色国产| 亚洲欧美中文字幕日韩二区| 亚洲精品国产av成人精品| 欧美日韩国产mv在线观看视频 | 午夜精品国产一区二区电影| 美女福利国产在线 | 97超碰精品成人国产| 久久久色成人| 日韩av免费高清视频| 欧美精品人与动牲交sv欧美| 一级毛片aaaaaa免费看小| 中文乱码字字幕精品一区二区三区| 18禁裸乳无遮挡动漫免费视频| 亚洲成人av在线免费| 老师上课跳d突然被开到最大视频| 国模一区二区三区四区视频| 亚洲怡红院男人天堂| 久久女婷五月综合色啪小说| 国产在线一区二区三区精| 大片免费播放器 马上看| 性少妇av在线| 成在线人永久免费视频| 91国产中文字幕| 熟女少妇亚洲综合色aaa.| 黄色视频在线播放观看不卡| 久久天堂一区二区三区四区| 一级片免费观看大全| 亚洲国产欧美在线一区| 精品高清国产在线一区| 日韩大片免费观看网站| 精品免费久久久久久久清纯 | 不卡av一区二区三区| 又粗又硬又长又爽又黄的视频| 亚洲一码二码三码区别大吗| 青春草视频在线免费观看| 久久久久网色| 多毛熟女@视频| 国产精品国产三级专区第一集| a级片在线免费高清观看视频| 免费看av在线观看网站| 日本av手机在线免费观看| 日韩伦理黄色片| videosex国产| www.自偷自拍.com| 午夜福利影视在线免费观看| 狂野欧美激情性xxxx| 人成视频在线观看免费观看| 午夜免费观看性视频| 亚洲欧美日韩另类电影网站| 50天的宝宝边吃奶边哭怎么回事| 最黄视频免费看| 国产男女超爽视频在线观看| 国产野战对白在线观看| 老司机深夜福利视频在线观看 | 国产av精品麻豆| 日本91视频免费播放| 成年人午夜在线观看视频| 欧美国产精品一级二级三级| 国产黄频视频在线观看| 在线天堂中文资源库| av线在线观看网站| 国产成人免费无遮挡视频| 亚洲欧洲国产日韩| 五月开心婷婷网| 国产深夜福利视频在线观看| 中文字幕高清在线视频| 国产成人免费观看mmmm| 国产女主播在线喷水免费视频网站| 热99久久久久精品小说推荐| 黄色 视频免费看| 99久久99久久久精品蜜桃| 国产亚洲欧美精品永久| 亚洲精品久久久久久婷婷小说| 亚洲精品美女久久久久99蜜臀 | 中国美女看黄片| 国产欧美亚洲国产| 日韩大码丰满熟妇| 青青草视频在线视频观看| 丝袜在线中文字幕| 大香蕉久久网| 日韩视频在线欧美| 热re99久久精品国产66热6| 好男人视频免费观看在线| 日本猛色少妇xxxxx猛交久久| 日本av免费视频播放| 大陆偷拍与自拍| 考比视频在线观看| 性色av一级| 高清欧美精品videossex| 国产精品一区二区在线不卡| 日本wwww免费看| 一级,二级,三级黄色视频| 久久鲁丝午夜福利片| 国产又爽黄色视频| 国产精品久久久久久精品古装| 又黄又粗又硬又大视频| 国产成人av激情在线播放| 久久久久久亚洲精品国产蜜桃av| 丝袜人妻中文字幕| 99精国产麻豆久久婷婷| 免费在线观看完整版高清| 亚洲少妇的诱惑av| 久久久久久久大尺度免费视频| 国产精品二区激情视频| 国产成人一区二区三区免费视频网站 | 欧美+亚洲+日韩+国产| 国产日韩欧美在线精品| 国产成人一区二区在线| 香蕉国产在线看| 视频区欧美日本亚洲| 亚洲精品一二三| 免费少妇av软件| 亚洲图色成人| 日韩中文字幕欧美一区二区 | 免费在线观看完整版高清| 国产精品麻豆人妻色哟哟久久| 黄色 视频免费看| 亚洲欧美精品综合一区二区三区| 咕卡用的链子| 91老司机精品| 看免费av毛片| 好男人电影高清在线观看| 女性生殖器流出的白浆| 成在线人永久免费视频| 日韩人妻精品一区2区三区| 在线观看免费午夜福利视频| 亚洲国产欧美在线一区| 亚洲av电影在线观看一区二区三区| 精品国产国语对白av| 美女福利国产在线| 日日夜夜操网爽| 中文字幕制服av| 亚洲精品成人av观看孕妇| 国产老妇伦熟女老妇高清| 色播在线永久视频| 亚洲精品久久午夜乱码| 成人影院久久| 一本—道久久a久久精品蜜桃钙片| 日本午夜av视频| 欧美日韩成人在线一区二区| 伊人亚洲综合成人网| 中文字幕另类日韩欧美亚洲嫩草| 久久鲁丝午夜福利片| 尾随美女入室| 80岁老熟妇乱子伦牲交| 欧美在线黄色| 亚洲欧美色中文字幕在线| 十八禁高潮呻吟视频| 日韩熟女老妇一区二区性免费视频| 操美女的视频在线观看| 狂野欧美激情性bbbbbb| 欧美人与善性xxx| kizo精华| 久久天堂一区二区三区四区| 国产av一区二区精品久久| 国产精品香港三级国产av潘金莲 | 免费看十八禁软件| av网站免费在线观看视频| 免费女性裸体啪啪无遮挡网站| 成人亚洲欧美一区二区av| videosex国产| 成人免费观看视频高清| 国产欧美日韩精品亚洲av| 一本一本久久a久久精品综合妖精| 国产又色又爽无遮挡免| 国产真人三级小视频在线观看| tube8黄色片| 丁香六月天网| 女人高潮潮喷娇喘18禁视频| 成人国产一区最新在线观看 | 男女下面插进去视频免费观看| 丝袜美腿诱惑在线| 丝袜美腿诱惑在线| 美女脱内裤让男人舔精品视频| 国产男女超爽视频在线观看| 五月开心婷婷网| 90打野战视频偷拍视频| 成人亚洲精品一区在线观看| 90打野战视频偷拍视频| 亚洲成色77777| 成在线人永久免费视频| 最近中文字幕2019免费版| 天天添夜夜摸| 欧美日韩亚洲综合一区二区三区_| 欧美日韩综合久久久久久| 久久中文字幕一级| 久久中文字幕一级| 香蕉丝袜av| 亚洲七黄色美女视频| 满18在线观看网站| 天天躁夜夜躁狠狠久久av| 久久免费观看电影| 亚洲av国产av综合av卡| 亚洲精品久久久久久婷婷小说| 一区二区三区精品91| 欧美日韩视频精品一区| 精品熟女少妇八av免费久了| 成人黄色视频免费在线看| 亚洲人成电影免费在线| 极品人妻少妇av视频| av片东京热男人的天堂| 成年女人毛片免费观看观看9 | 午夜影院在线不卡| 午夜免费观看性视频| 国产不卡av网站在线观看| 午夜福利,免费看| 黄色一级大片看看| 夫妻性生交免费视频一级片| 国产精品久久久久成人av| 国产1区2区3区精品| av国产久精品久网站免费入址| 99国产精品一区二区三区| 黄色视频在线播放观看不卡| 又紧又爽又黄一区二区| 美女视频免费永久观看网站| 蜜桃国产av成人99| 老熟女久久久| 日韩视频在线欧美| 18禁国产床啪视频网站| 国产在线免费精品| 性色av乱码一区二区三区2| 天天躁夜夜躁狠狠久久av| 国产黄频视频在线观看| 女警被强在线播放| 少妇的丰满在线观看| 丁香六月欧美| 欧美乱码精品一区二区三区| 中文乱码字字幕精品一区二区三区| 国产亚洲av高清不卡| 久久久久久久大尺度免费视频| 亚洲成人免费av在线播放| 一区福利在线观看| 人人妻人人爽人人添夜夜欢视频| 国产免费现黄频在线看| 亚洲七黄色美女视频| 欧美日韩成人在线一区二区| 91精品伊人久久大香线蕉| 国产又色又爽无遮挡免| 亚洲一卡2卡3卡4卡5卡精品中文| 啦啦啦中文免费视频观看日本| 黄色 视频免费看| 黄色视频不卡| 日本一区二区免费在线视频| 精品高清国产在线一区| 日韩精品免费视频一区二区三区| 看免费成人av毛片| 亚洲黑人精品在线| 亚洲欧美成人综合另类久久久| 777米奇影视久久| 日本av手机在线免费观看| www日本在线高清视频| 久久久精品区二区三区| 女人高潮潮喷娇喘18禁视频| 久久毛片免费看一区二区三区| 色94色欧美一区二区| a级毛片在线看网站| 亚洲国产av新网站| 国产精品一区二区在线不卡| 亚洲欧美一区二区三区久久| 国产亚洲av高清不卡| 深夜精品福利| 男女高潮啪啪啪动态图| 一边摸一边做爽爽视频免费| 男女免费视频国产| 天堂8中文在线网| 每晚都被弄得嗷嗷叫到高潮| 国产免费现黄频在线看| 一级毛片 在线播放| 色婷婷久久久亚洲欧美| 久久精品aⅴ一区二区三区四区| 天天躁夜夜躁狠狠久久av| 亚洲国产精品一区三区| 国产精品久久久av美女十八| 国产欧美日韩综合在线一区二区| 啦啦啦在线免费观看视频4| 9191精品国产免费久久| 99热全是精品| 国产一区有黄有色的免费视频| 国产一区二区激情短视频 | 成人午夜精彩视频在线观看| 最近中文字幕2019免费版| 成人黄色视频免费在线看| 日韩大片免费观看网站| 久久99热这里只频精品6学生| 亚洲欧美精品综合一区二区三区| 亚洲 国产 在线| 亚洲,欧美,日韩| 肉色欧美久久久久久久蜜桃| 女警被强在线播放| 久久午夜综合久久蜜桃| 久久精品亚洲熟妇少妇任你| 狠狠精品人妻久久久久久综合| 久久精品aⅴ一区二区三区四区| 夫妻性生交免费视频一级片| 久久九九热精品免费| 免费久久久久久久精品成人欧美视频| 国产免费一区二区三区四区乱码| 欧美亚洲日本最大视频资源| avwww免费| 欧美激情高清一区二区三区| 黄色片一级片一级黄色片| 亚洲av电影在线观看一区二区三区| 久久精品亚洲熟妇少妇任你| av在线app专区| 久久精品国产亚洲av涩爱| 天天躁夜夜躁狠狠久久av| 十分钟在线观看高清视频www| 99国产精品99久久久久| 久久久久久免费高清国产稀缺| av欧美777| 51午夜福利影视在线观看| 两人在一起打扑克的视频| av在线播放精品| 建设人人有责人人尽责人人享有的| 午夜福利乱码中文字幕| 欧美日韩亚洲综合一区二区三区_| 精品熟女少妇八av免费久了| 免费观看a级毛片全部| 满18在线观看网站| 一级毛片 在线播放| 中文字幕高清在线视频| 飞空精品影院首页| 国产主播在线观看一区二区 | 成年av动漫网址| 99re6热这里在线精品视频| 天天躁夜夜躁狠狠久久av| 精品欧美一区二区三区在线| 高清欧美精品videossex| 精品亚洲乱码少妇综合久久| 啦啦啦 在线观看视频| 成年人黄色毛片网站| 青青草视频在线视频观看| 一级黄片播放器| 国产av一区二区精品久久| 一级,二级,三级黄色视频| 高清av免费在线| 亚洲自偷自拍图片 自拍| 男女午夜视频在线观看| 国产高清不卡午夜福利| 精品国产一区二区久久| 久久国产亚洲av麻豆专区| 午夜视频精品福利| 国产精品.久久久| 欧美日韩一级在线毛片| 一级毛片女人18水好多 | 欧美xxⅹ黑人| 成人国语在线视频| 久久精品国产综合久久久| 在线观看人妻少妇| 国产av精品麻豆| 久久久久久亚洲精品国产蜜桃av| 欧美日韩国产mv在线观看视频| 国产野战对白在线观看| 欧美日韩综合久久久久久| av片东京热男人的天堂| 天天躁日日躁夜夜躁夜夜| 国产野战对白在线观看| 少妇裸体淫交视频免费看高清 | 97人妻天天添夜夜摸| 大型av网站在线播放| 国产成人免费无遮挡视频| 成人亚洲精品一区在线观看| 国产成人91sexporn| 国语对白做爰xxxⅹ性视频网站| 午夜影院在线不卡| 国产女主播在线喷水免费视频网站| 欧美日韩亚洲国产一区二区在线观看 | 国产精品国产三级国产专区5o| a级片在线免费高清观看视频| 久久性视频一级片| 免费在线观看日本一区| 男人舔女人的私密视频| 天天添夜夜摸| 国产男人的电影天堂91| 久久国产精品影院| 亚洲,欧美精品.| av福利片在线| 精品国产国语对白av| 人体艺术视频欧美日本| 99久久综合免费| 精品久久久久久久毛片微露脸 | 99香蕉大伊视频| 久久人人爽人人片av| 精品国产一区二区三区久久久樱花| 亚洲国产av新网站| 欧美黄色片欧美黄色片| 在线观看免费午夜福利视频| 99国产精品99久久久久| 日韩 欧美 亚洲 中文字幕| 丝袜人妻中文字幕| 免费在线观看日本一区| 国产成人系列免费观看| 伊人亚洲综合成人网| 91老司机精品| 精品亚洲成国产av| 久久久亚洲精品成人影院| 91老司机精品| 午夜免费成人在线视频| 一级片免费观看大全| 久久久久久久精品精品| 人人妻,人人澡人人爽秒播 | 中文字幕人妻熟女乱码| 蜜桃国产av成人99| 午夜老司机福利片| 久久久久久久国产电影| 成年人黄色毛片网站| 国产精品99久久99久久久不卡| 狠狠婷婷综合久久久久久88av| 看免费av毛片| 日韩欧美一区视频在线观看| 在线av久久热| 自线自在国产av| 亚洲欧美成人综合另类久久久| 亚洲伊人色综图| 日本vs欧美在线观看视频| 女人高潮潮喷娇喘18禁视频| 成人三级做爰电影| avwww免费| √禁漫天堂资源中文www| 亚洲成人免费av在线播放| 欧美另类一区| 亚洲av美国av| 色播在线永久视频| 日本a在线网址| 午夜两性在线视频| 观看av在线不卡| 亚洲国产精品国产精品| e午夜精品久久久久久久| 国产精品香港三级国产av潘金莲 | 国产欧美日韩一区二区三区在线| 观看av在线不卡| 亚洲av片天天在线观看| 亚洲精品一二三| 成年女人毛片免费观看观看9 | 免费观看a级毛片全部| 又黄又粗又硬又大视频| 九草在线视频观看| 国产精品欧美亚洲77777| 欧美+亚洲+日韩+国产| 中国美女看黄片| 午夜福利影视在线免费观看| 日本黄色日本黄色录像| 久久久久久亚洲精品国产蜜桃av| 久久精品久久久久久久性| 久久99一区二区三区| 亚洲 欧美一区二区三区| 亚洲精品久久成人aⅴ小说| 国产成人一区二区三区免费视频网站 | av一本久久久久| 波多野结衣av一区二区av| 亚洲情色 制服丝袜| 涩涩av久久男人的天堂| 亚洲成人免费av在线播放| 日韩大码丰满熟妇| 日本91视频免费播放| 观看av在线不卡| 亚洲熟女毛片儿| 亚洲国产精品一区二区三区在线| 高清不卡的av网站| 午夜免费男女啪啪视频观看| 亚洲成国产人片在线观看| av电影中文网址| 看十八女毛片水多多多| 国产精品一区二区免费欧美 | 国产一级毛片在线| 亚洲成国产人片在线观看| 蜜桃在线观看..| 亚洲色图综合在线观看| 精品久久久久久久毛片微露脸 | 高清欧美精品videossex| av网站免费在线观看视频| 久久久久久人人人人人| 亚洲国产av新网站| 亚洲精品久久成人aⅴ小说| 亚洲情色 制服丝袜|