梁銀萍,常小麗,張 敏,龔國(guó)淑,雷 雨,祁小波,羅麗雅,胡玉亭
(四川農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,四川成都 611130)
?
小麥L699葉片受白粉菌脅迫后蛋白質(zhì)的差異表達(dá)
梁銀萍,常小麗,張 敏,龔國(guó)淑,雷 雨,祁小波,羅麗雅,胡玉亭
(四川農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,四川成都 611130)
摘要:為從蛋白組學(xué)角度認(rèn)識(shí)小麥抗白粉病機(jī)制,以含有抗白粉病新基因 Pm40的小麥品系L699為材料,采用蛋白質(zhì)雙向電泳和質(zhì)譜技術(shù)(MALDI-TOF-MS)檢測(cè)小麥葉片接種白粉菌 24 h后的差異蛋白。結(jié)果表明,經(jīng)PDQuest軟件分析,接種白粉菌后小麥葉片中有18個(gè)蛋白質(zhì)斑點(diǎn)表達(dá)量上調(diào),38個(gè)蛋白質(zhì)斑點(diǎn)表達(dá)量下調(diào)。對(duì)表達(dá)量上調(diào)的蛋白質(zhì)斑點(diǎn)進(jìn)行質(zhì)譜分析和數(shù)據(jù)庫(kù)檢索,共鑒定出15種蛋白質(zhì),其中13種參與防御反應(yīng)、碳水化合物代謝和蛋白質(zhì)周轉(zhuǎn)。這些差異蛋白與抗病途徑、植株生理過(guò)程密切相關(guān),在小麥抗白粉病過(guò)程中起很重要的作用。
關(guān)鍵詞:小麥;白粉菌; Pm40;蛋白質(zhì);雙向電泳
小麥白粉病是由布氏白粉菌小麥?;?Blumeriagraminisf. sp.tritici)引起的真菌性病害,是小麥生產(chǎn)中普遍發(fā)生且危害嚴(yán)重的病害之一。近年來(lái),我國(guó)小麥白粉病發(fā)生面積在500萬(wàn)hm2以上,給我國(guó)小麥生產(chǎn)造成了嚴(yán)重的損失[1]。目前,農(nóng)業(yè)生產(chǎn)上采取以推廣抗病品種為主,輔以減少菌源、合理栽培和噴施藥劑的綜合措施來(lái)防治小麥白粉病[2]。迄今為止,在普通小麥中已有77個(gè)與抗白粉病相關(guān)的基因被定位在小麥染色體49個(gè)位點(diǎn)上[3]。然而小麥白粉菌生理小種進(jìn)化較快,導(dǎo)致許多抗病品種在種植過(guò)程中出現(xiàn)了抗性喪失。國(guó)內(nèi)外對(duì)于小麥抗白粉病基因定位、轉(zhuǎn)錄水平調(diào)控已有較多的研究[4],但對(duì)于小麥抗白粉病機(jī)制的認(rèn)識(shí)目前尚不十分透徹,仍需要大量的研究。由于生物體最終功能的執(zhí)行者是蛋白質(zhì),因此從蛋白質(zhì)組水平分析基因表達(dá)產(chǎn)物有助于揭示小麥抗白粉病機(jī)制。近年來(lái),在小麥黑胚病、白粉病、銹病等小麥病害的研究中,均有應(yīng)用蛋白質(zhì)雙向電泳及質(zhì)譜技術(shù)對(duì)感病或抗病材料在接種或不接種條件下進(jìn)行蛋白質(zhì)差異表達(dá)分析[5-9],且發(fā)現(xiàn)一些蛋白質(zhì)與小麥抗病性有關(guān)。 Pm40是四川農(nóng)業(yè)大學(xué)發(fā)現(xiàn)的一個(gè)小麥抗白粉病新基因,來(lái)源于小麥近緣種中間偃麥草(Elytrigiaintermedium),被定位在小麥7B染色體的短臂上,代表品種是GRY19[10]。目前, 有關(guān) Pm40抗白粉病的機(jī)制尚不清楚。本試驗(yàn)擬以遺傳性穩(wěn)定、對(duì)白粉病免疫或高抗的GRY自交高代品系L699為材料,利用蛋白質(zhì)組學(xué)技術(shù)對(duì)其接種白粉菌后葉片蛋白質(zhì)的差異表達(dá)及差異蛋白質(zhì)種類、生理功能進(jìn)行分析,以期揭示小麥抗白粉病機(jī)制,為L(zhǎng)699在生產(chǎn)和育種中的應(yīng)用奠定基礎(chǔ)。
1材料與方法
1.1試驗(yàn)材料
以小麥白粉病抗性新品系L699為材料。供試白粉菌采自四川省成都市溫江區(qū)小麥自然發(fā)病區(qū),并接種于感病品種川農(nóng)26上繁殖,置于光照培養(yǎng)箱中培養(yǎng),保菌。
1.2試驗(yàn)方法
1.2.1幼苗培養(yǎng)和病菌接種
L699種子經(jīng)75%乙醇表面消毒3 min,無(wú)菌水沖洗3次,放置于帶有濕潤(rùn)濾紙的培養(yǎng)皿中室溫下催芽24 h。然后將萌動(dòng)種子移入花盆中,置于光照培養(yǎng)箱中培養(yǎng),參數(shù)設(shè)定相對(duì)濕度95%、溫度18 ℃、光照周期12 h光照/12 h黑暗。小麥三葉期時(shí),將其分為接種組和對(duì)照組,用塑料隔離培養(yǎng)。采用密集抖落接種法接種白粉菌。接種24 h后,對(duì)接種組和對(duì)照組進(jìn)行取樣。
1.2.2小麥葉片全蛋白的提取
稱取葉片1 g,用去離子水洗凈,濾紙吸干,液氮研磨成細(xì)粉,分裝入1.5 mL離心管中。蛋白質(zhì)采用TCA-丙酮法[11]提取。用裂解液[7 mol·L-1尿素,2 mol·L-1硫脲,4% CHAPS,50 mmol·L-1DTT,0.5% Ampholine(pH 3~10),1%PMSF]對(duì)其進(jìn)行裂解,用改良Bradford方法測(cè)蛋白質(zhì)濃度[12-13]。
1.2.3蛋白質(zhì)雙向電泳
蛋白質(zhì)雙向電泳采用17 cm pH 4~7的線性膠條和12%聚丙烯酰胺凝膠,具體操作參考Bio-Rad蛋白質(zhì)組雙向電泳實(shí)驗(yàn)操作手冊(cè)進(jìn)行。采用膠體考馬斯亮藍(lán)染色方法對(duì)凝膠進(jìn)行染色,保鮮膜包裹后4 ℃保存。
1.2.4圖像采集與分析
采用GS800色譜掃描儀掃描得到雙向電泳膠凝膠圖譜,用PDQuest軟件進(jìn)行斑點(diǎn)檢測(cè)、匹配和差異斑點(diǎn)鑒別,設(shè)定差異表達(dá)比為2,確定處理組和對(duì)照組之間差異的蛋白質(zhì)斑點(diǎn)。
1.2.5差異表達(dá)點(diǎn)的質(zhì)譜分析
從制備凝膠上切下經(jīng)鑒定有差異的蛋白點(diǎn),用50%乙腈(ACN)、50 mmol·L-1碳酸氫氨溶液脫色兩次,然后用100%ACN干燥兩次,在冰冷的消化液(12.5 ng·μL-1的胰蛋白酶液,含25 mmol·L-1碳酸氫氨)中消化20 min后,轉(zhuǎn)移到37 ℃恒溫箱中過(guò)夜。用60 μL提取液(5%甲酸和50%ACN)抽提兩次后,收集上層的蛋白多肽,在氮?dú)庀赂稍?。將多肽溶解?.8 μL的基質(zhì)溶液中,利用AB SCIEX 5800型生物質(zhì)譜儀進(jìn)行MALDI-TOF-MS分析,波長(zhǎng)設(shè)為355 nm,紫外光重復(fù)頻率設(shè)置為400 Hz,加速電壓20 kV,質(zhì)譜最大分辨率設(shè)為1 600 Da,并用經(jīng)胰蛋白酶消化過(guò)的肌紅蛋白作為內(nèi)參,進(jìn)行校正。最后通過(guò)MASCOT軟件,在NCBI數(shù)據(jù)庫(kù)進(jìn)行查詢。
2結(jié)果與分析
2.1白粉菌侵染后小麥葉片蛋白質(zhì)的差異表達(dá)
分析結(jié)果(圖1)表明,每塊膠上共約500 多個(gè)蛋白質(zhì)點(diǎn)。在接種24 h后,L699葉片蛋白質(zhì)出現(xiàn)56個(gè)差異表達(dá)點(diǎn),其中38個(gè)蛋白質(zhì)點(diǎn)表達(dá)量下調(diào)(Spots 1~38)(圖1a),18個(gè)蛋白質(zhì)點(diǎn)表達(dá)量上調(diào)(Spots 39~56)(圖1b)。
2.2差異蛋白質(zhì)的鑒定
對(duì)L699接種后表達(dá)量上調(diào)的18個(gè)蛋白質(zhì)點(diǎn)進(jìn)行質(zhì)譜分析,去除雜質(zhì)峰值,用Mascot軟件搜索NCBInr數(shù)據(jù)庫(kù),最后鑒定出15種蛋白質(zhì)(表1),其他3 個(gè)蛋白點(diǎn)得分不夠,未能得到鑒定。鑒定出的蛋白質(zhì)中,有12種功能已知,其中丙氨酰轉(zhuǎn)移RNA合成酶(Spot 39)、Clp蛋白酶(Spot 40)、賴氨酰轉(zhuǎn)移RNA合成酶(Spot 41)、線粒體加工肽酶(Spot 44)、腺苷高半胱氨酸酶(Spot 45)、半胱氨酸合成酶(Spot 48)、核糖體再循環(huán)因子(Spot 52)與蛋白質(zhì)周轉(zhuǎn)有關(guān);葡萄糖磷酸變位酶(Spot 42、43)、六磷酸葡萄糖脫氫酶(Spot 46)、三磷酸甘油酸激酶(Spot 47)與碳水化合物代謝相關(guān),類萌素蛋白(Spot 53)與抗性有關(guān)。
a:對(duì)照組,24 h;b:處理組,24 h a:Control,24 h;b:Treatment,24 h
蛋白點(diǎn)Spot蛋白質(zhì)名稱Proteinname登陸號(hào)Accession分子量/等電點(diǎn)MW(Da)/PI匹配肽段數(shù)Matchedpeptids得分Score39丙氨酰轉(zhuǎn)移RNA合成酶Putativealanyl-tRNAsynthetase,chloroplasticgi|474142555111648.2/5.621219840Clp蛋白酶 ATP-dependentClpproteaseATP-bindingsubunitclpA-likeproteinCD4B,chloroplasticgi|47424177482735.2/5.163351341賴氨酰轉(zhuǎn)移RNA合成酶Lysyl-tRNAsynthetasegi|474147702132545.4/6.2889242葡萄糖磷酸變位酶Phosphoglucomutase,cytoplasmicgi|47376303363499.6/5.141830243葡萄糖磷酸變位酶Phosphoglucomutase,partialgi|1807679062789.1/5.661521844線粒體加工肽酶Putativemitochondrial-processingpeptidasesubunitbetagi|47414228143290.3/5.413048645腺苷高半胱氨酸酶Adenosylhomocysteinasegi|47415414145700.8/6.4885646六磷酸葡糖糖脫氫酶6-phosphogluconatedehydrogenase,decarboxylatinggi|47437987281169.9/8.562360847三磷酸甘油酸激酶Cytosolic3-phosphoglyceratekinase,partialgi|2817291131334.3/4.981629148半胱氨酸合成酶Cysteinesynthasegi|47431598635583.2/5.821321650假想蛋白HypotheticalproteinTRIUR3_21449gi|47438468732942.2/9.311412951未知蛋白Unnamedproteinproductgi|66902770426818.7/5.571333552核糖體再循環(huán)因子Ribosome-recyclingfactor,chloroplasticgi|47404307824770.6/8.921550453類萌素蛋白Germin-likeprotein8-14gi|47396302521939.2/5.36417455未知蛋白Unnamedproteinproductgi|66902944518152.7/5.605269
3討 論
本研究攜帶抗白粉病基因 Pm40的小麥品系L699在接種白粉菌24 h后,葉片中既沒(méi)有蛋白質(zhì)消失,也無(wú)新蛋白質(zhì)產(chǎn)生,但有53種蛋白質(zhì)的表達(dá)量發(fā)生變化,表明其與L699對(duì)白粉菌的抗性有關(guān)。對(duì)接種白粉菌24 h后表達(dá)量上調(diào)的蛋白質(zhì)斑點(diǎn)做了質(zhì)譜分析,鑒定出15種蛋白質(zhì),其中7種與蛋白質(zhì)周轉(zhuǎn)相關(guān),占總蛋白質(zhì)數(shù)量的47%,表明蛋白質(zhì)的穩(wěn)定對(duì)植物生命活動(dòng)至關(guān)重要。遺傳信息流動(dòng)的每一步都具有高度的忠實(shí)性,所以差錯(cuò)率很低[14]。盡管如此,蛋白質(zhì)在合成過(guò)程仍會(huì)有一定的差錯(cuò)率,其中氨酰轉(zhuǎn)移RNA合成酶在這一過(guò)程中扮演了重要的角色[15-16],其不僅參與蛋白質(zhì)的合成,而且還在轉(zhuǎn)錄及翻譯水平、 剪接RNA、傳導(dǎo)信號(hào)與免疫應(yīng)答等方面起重要作用[17]。白粉菌侵染小麥后,丙氨酰轉(zhuǎn)移RNA合成酶、賴氨酰轉(zhuǎn)移RNA合成酶的表達(dá)量都明顯提高,推測(cè)它們對(duì)小麥抗白粉菌侵染可能有重要的意義。
線粒體加工肽酶(Mitochondrial-processing peptidase,MPP),是由細(xì)胞核編碼在細(xì)胞質(zhì)中形成,然后被轉(zhuǎn)運(yùn)至線粒體并經(jīng)已形成的MPP催化加工而成[18]。MPP在線粒體中的主要作用是加工進(jìn)入線粒體的前體蛋白質(zhì)[19-21]。此外,植物體MPP也是呼吸鏈bc1復(fù)合體的重要組成[22]。本試驗(yàn)中,小麥L699受白粉菌侵染后,MPP表達(dá)上調(diào),表明MPP的表達(dá)與小麥白粉菌抗性有關(guān)。
在植物體中,Clp蛋白酶位于線粒體或葉綠體中參與多種生理活動(dòng)[23]。葉綠體Clp蛋白酶可協(xié)助清除錯(cuò)誤剪切的胞質(zhì)前體蛋白質(zhì)和降解錯(cuò)誤折疊的蛋白質(zhì)[24-25]。Clp蛋白酶與多種生物的抗逆性有關(guān),可以清除生物體在逆境條件產(chǎn)生的損傷蛋白質(zhì)或者多肽,從而保證生物體的正常代謝[26-27]。小麥L699在接種白粉菌后,Clp蛋白酶表達(dá)量上調(diào),推測(cè)Clp蛋白酶在小麥L699抗白粉菌的過(guò)程中起重要的作用。
核糖體循環(huán)因子(Ribosome recycling factor,RFF)的主要功能是在蛋白質(zhì)翻譯結(jié)束后,將核糖體從mRNA上釋放,使其循環(huán)再利用[28]。核糖體的數(shù)量影響mRNA的轉(zhuǎn)錄,是蛋白質(zhì)正常代謝的必要條件[29]。因此,蛋白質(zhì)的正常代謝是小麥抗白粉病的有力保障。白粉菌侵染小麥后,葡萄糖磷酸變位酶、六磷酸葡萄糖脫氫酶、三磷酸甘油酸激酶的表達(dá)量都明顯提高,表明它們對(duì)小麥抗白粉菌侵染也有重要的意義。
類萌發(fā)素蛋白(Germin-like proteins,GLPs)是植物響應(yīng)脅迫的一類重要蛋白質(zhì)。在植物被真菌、細(xì)菌或病毒等病原物入侵時(shí),GLPs的基因表達(dá)明顯上調(diào), 可以催化產(chǎn)生H2O2。產(chǎn)生的H2O2能夠選擇性參加信號(hào)級(jí)聯(lián)途徑,從而使植物產(chǎn)生自我防衛(wèi)反應(yīng),H2O2也能夠利用與纖維素發(fā)生交聯(lián)作用,從而加強(qiáng)植物細(xì)胞壁的結(jié)構(gòu),這對(duì)植物抵御氧化脅迫非常重要[30]。本試驗(yàn)中,L699被白粉菌侵染后,類萌發(fā)素蛋白表達(dá)上調(diào),表明其參與了小麥L699抗白粉菌過(guò)程。
綜上所述,小麥?zhǔn)馨追劬秩竞?,不僅有與抗性密切相關(guān)的蛋白質(zhì)如類萌蛋白參與了抗病過(guò)程,一些與植物生理代謝相關(guān)的蛋白質(zhì)在小麥抗白粉菌的過(guò)程中也起很重要的作用。
參考文獻(xiàn):
[1]邢淑蓮,周益林,段霞瑜,等.小麥白粉菌 HSP70基因的克隆及高溫脅迫對(duì)其表達(dá)的影響 [J].植物病理學(xué)報(bào),2013,43(2):205-210.
Xing S L,Zhou Y L,Duan X Y,etal.Cloning of heat shock protein gene, HSP70,inBlumeriagraminisf.sp.triticiand its expression under high temperature stress [J].ActaPhytopathologicaSinica,2013,43(2):205-210.
[2]侯明生,黃俊斌.農(nóng)業(yè)植物病理學(xué)[M].北京:科學(xué)出版社,2006:65.
Hou M S,Huang J B.Agricultural Phytopathology [M].Beijing:Science Press,2006:65.
[3]Hao Y F,Parks R,Cowger C,etal.Molecular characterization of a new powdery mildew resistance gene HSP70 in soft red winter wheat [J].TheoreticalandAppliedGenetics,2015,128(3):1-12.
[4]王友紅,張鵬飛,陳建群.植物抗病基因及其作用機(jī)理[J].植物學(xué)通報(bào),2005,22(1):92-99.
Wang Y H,Zhang P F,Chen J Q.Disease resistance genes and mechanisms in plants [J].ChineseBulletinofBotany,2005,22(1):92-99.
[5]李躍建,姬紅麗,彭 云,等.應(yīng)用雙向電泳技術(shù)研究條銹菌侵染后小麥蛋白質(zhì)的改變[J].四川大學(xué)學(xué)報(bào):工程科學(xué)版,2005,37(2):80-85.
Li Y J,Ji H L,Peng Y,etal.The change of proteins in wheat infected by wheat disease:PucciniiaStriiformisusing 2-dimentional electrophoresitic technology [J].JournalofSichuanUniversity:EngineeringScienceEdition,2005,37(2):80-85.
[6]Mak Y,Willows R D,Roberts T H,etal.Black point is associated with reduced levels of stress,disease-and defence-related proteins in wheat grain [J].MolecularPlantPathology,2006,7(3):177-189.
[7]于 振,李 倩,趙建葉,等.栽培小麥Brock和京411感染白粉菌后蛋白質(zhì)組的變化[J].作物學(xué)報(bào),2009,35(11):2064-2072.
Yu Z,Li Q,Zhao J Y,etal.Proteome changes in wheat varieties brock and Jing 411 after inoculatingBlumeniagraminis[J].ActaAgronomicaSinica,2009,35(11):2064-2072.
[8]李 強(qiáng),張衛(wèi)東,田紀(jì)春.小麥抗白粉病基因 Pm21抗病差異的蛋白質(zhì)組學(xué)研究 [J].中國(guó)農(nóng)業(yè)科學(xué),2009,42(8):2778-2783.
Li Q,Zhang W D,Tian J C.Differential proteomics analysis of the responses of resistant gene Pm21 to wheat powdery mildew [J].ScientiaAgriculturaSinica,2009,42(8):2778-2783.
[9]Mandal M S,Fu Y,Zhang S,etal.Proteomic analysis of the defense response of wheat to the powdery mildew fungus,Blumeriagraminisf.sp.tritici[J].TheProteinJournal,2014,33(6):513-524.
[10]Luo P G,Luo H Y,Chang Z J,etal.Characterization and chromosomal location of Pm40 in common wheat:a new gene for resistance to powdery mildew derived fromElytrigiaintermedium[J].TheoreticalandAppliedGenetics,2009,118(6):1059-1064.
[11]金 艷,許海霞,徐圓圓,等.幾種不同提取方法對(duì)小麥葉片總蛋白雙向電泳的影響[J].麥類作物學(xué)報(bào),2009,29(6):1083-1087.
Jin Y,Xu H X,Xu Y Y,etal.Effect of different extraction protein methods on two-dimensional electrophoresis of wheat leaf protein [J].JournalofTriticeaeCrops,2009,29(6):1083-1087.
[12]Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J].AnalyticalBiochemistry,1976,72(1):248-254.
[13]劉 斌.二倍體和四倍體玉米與四倍體多年生大芻草及其雜種的蛋白質(zhì)組學(xué)分析[D].雅安:四川農(nóng)業(yè)大學(xué),2014.
Liu B.Proteomics Analysis of Different Ploidy Corn with Tetraploid Perennial Corn and Its Hybrid [D].Yaan:Sichuan Agricultural University,2014.
[14]謝兆輝.氨酰-tRNA合成酶維持翻譯忠實(shí)性的機(jī)制[J].中國(guó)生物化學(xué)與分子生物學(xué)報(bào),2011,27(2):110-116.
Xie Y H.Translational fidelity mechanism of aminoacyl-tRNA synthetases [J].ChineseJournalofBiochemistryandMolecularBiology,2011,27(2):110-116.
[15]Ling J Q,So B R,Yadavalli S S,etal.Resampling and editing of mischarged tRNA prior to translation elongation [J].MolecularCell,2009,33(5):654-660.
[16]Zaher H S,Green R.Quality control by the ribosome following peptide bond formation [J].Nature,2009,457(7226):161-166.
[17]賈 捷,金由辛.氨酰tRNA合成酶的分子網(wǎng)絡(luò)和功能[J].生物化學(xué)與生物物理進(jìn)展,2004,31(4):291-295.
Jia J,Jin Y X.Macromolecular network and new function of aminoacyl-tRNA synthetases[J].ProgressinBiochemistryandBiophysics,2004,31(4):291-295.
[18]Schulte U,Arretz M,Schneider H,etal.A family of mitochondrial proteins involved in bioenergetics and biogenesis [J].Nature,1989,339(6220):147-149.
[19]Braun H P,Schmitz U K.The mitochondrial processing peptidase [J].TheInternationalJournalofBiochemistry&CellBiology,1997,29(8):1043-1045.
[20]Glaser E,Eriksson A C,Sjoling S.Bifunctional role of the bc1 complex in plants mitochondrial bc1 complex catalyses both electron transport and protein processing [J].FEBSLetters,1994,346(1):83-87.
[21]Glaser E,Sjoling S,Szigyarto C,etal.Plant mitochondrial protein import:precursor processing is catalysed by the integrated mitochondrial processing peptidase (MPP)/bc 1 complex and degradation by the ATP-dependent proteinase [J].BiochimicaetBiophysicaActa:Bioenergetics,1996,1275(1):33-37.
[22]Braun H P,Schmitz U K.The bifunctional cytochromec reductase/processing peptidase complex from plant mitochondria [J].JournalofBioenergeticsandBiomembranes,1995,27(4):423-436.
[23]Clarke A K,Macdonald T M,Sjogren L L.The ATP-dependent Clp protease in chloroplasts of higher plants [J].PhysiologiaPlantarum,2005,123(4):406-412.
[24]Sj?gren L L,Stanne T M,Zheng B,etal.Structural and functional insights into the chloroplast ATP-dependent Clp protease inArabidopsis[J].ThePlantCell,2006,18(10):2635-2649.
[25]Simpson S D,Nakashima K,Narusaka Y,etal.Two different novel cis-acting elements of erd1,a clpA homologousArabidopsisgene function in induction by dehydration stress and dark-induced senescence [J].ThePlantJournal,2003,33(2):259-270.
[26]王振海,孫野青.Clp蛋白酶研究進(jìn)展[J].藥物生物技術(shù),2005,12(6):412-415.
Wang Z H,Sun Y Q.Progress in study on Clp protease [J].PharmaceuticalBiotechnology,2005,12(6):412-415.
[27]Clarke A K.The chloroplast ATP-dependent Clp protease in vascular plants-new dimensions and future challenges [J].PhysiologiaPantarum,2011,145(1):235-244.
[28]Ma Z,Tao L,Bechthold A,etal.Overexpression of ribosome recycling factor is responsible for improvement of nucleotide antibiotic-toyocamycin inStreptomycesdiastatochromogenes 1628 [J].AppliedMicrobiologyandBiotechnology,2014,98(11):5051-5058.
[29]Wang L Y,Ou Y M,Li Q N,etal.TheArabidopsischloroplast ribosome recycling factor is essential for embryogenesis and chloroplast biogenesis [J].PlantMolecularBiology,2010,74(1-2):47-59.
[30]李紅麗,劉迪秋,何 華,等.類萌發(fā)素蛋白在植物防衛(wèi)反應(yīng)中的作用[J].植物生理學(xué)報(bào),2013,49(4):331-336.
Li H L,Liu D Q,He H,etal.The role of germin-like protein in plant defense responses [J].PlantPhysiologyCommunications,2013,49(4):331-336.
Differential Proteomics Analysis of Wheat Line L699 Induced byBlumeriagraminis
LIANG Yinping,CHANG Xiaoli,ZHANG Min,GONG Guoshu,LEI Yu,QI Xiaobo,LUO Liya,HU Yuting
(Agronomy College,Sichuan Agricultural University,Chengdu, Sichuan 611130, China)
Abstract:The aim of this study was to investigate the defense-related proteins of wheat line L699 against Blumeria graminis and to provide some basis for the resistance mechanism of wheat-Blumeria graminis through proteomic analysis. Proteins were extracted from the wheat leaf at 24 h after inoculation and analyzed by two dimensional electrophoresis and MALDI-TOF-MS. Results demonstrated that as compared to non-inoculated plants, expression of 18 proteins spots significantly increased after Blumeria graminis inoculation on the gel stained with coomassie brilliant blue G250, whereas 38 proteins spots decreased. Furthermore, 15 up-regulated proteins were identified by MALDI-TOF-MS and analyzed using the NCBInr database of Triticum and these identified proteins were predicted to be associated with defense response, carbohydrate metabolism, and protein turnover. It is suggested that the proteins are not only involved in disease defense response but also in other physiology-related pathway in the process that wheat resists to the Bgt.
Key words:Wheat; Blumeria graminis; Pm40; Protein; Two-dimensional electrophoresis
中圖分類號(hào):S512.1;S312
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1009-1041(2016)04-0460-05
通訊作者:張 敏(E-mail:yalanmin@126.com)
基金項(xiàng)目:國(guó)家公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201303016)
收稿日期:2015-10-22修回日期:2015-11-19
網(wǎng)絡(luò)出版時(shí)間:2016-04-01
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1359.S.20160401.1533.022.html
第一作者E-mail:104660993@qq.com