柳 馨,鐵 健,鐵生年
(青海大學(xué)新能源光伏產(chǎn)業(yè)研究中心,西寧810016)
溫室多壁碳納米管芒硝基相變材料儲(chǔ)能性能
柳 馨,鐵 健,鐵生年※
(青海大學(xué)新能源光伏產(chǎn)業(yè)研究中心,西寧810016)
該文對比不同溫度下強(qiáng)酸處理多壁碳納米管(multi-walled carbon nanotubes,MWCNTs)對其表面結(jié)構(gòu)改性,并以物理分散制備出含MWCNTs的十水硫酸鈉基復(fù)合相變儲(chǔ)能材料。探討不同酸化溫度下MWCNTs對十水硫酸鈉基復(fù)合相變儲(chǔ)能材料的過冷和相分層影響。并對其比熱,導(dǎo)熱系數(shù)及相變潛熱特征進(jìn)行分析。結(jié)果表明:酸化處理后MWCNTs產(chǎn)生羧基;添加質(zhì)量分?jǐn)?shù)1%的120℃酸化后的MWCNTs的A、B兩種十水硫酸鈉基復(fù)合相變儲(chǔ)能材料過冷度降低最大;添加酸化處理后的MWCNTs的十水硫酸鈉基復(fù)合相變儲(chǔ)能材料相容性較好;含120℃酸化后的1%的MWCNTs的A、B兩種十水硫酸鈉基復(fù)合相變儲(chǔ)能材料比熱及導(dǎo)熱系數(shù)在相變溫度點(diǎn)附近都達(dá)到最大,分別為5.095 mm2/s和0.932 5 w/mk、4.235 6 mm2/s和0.941 3 w/mk;含質(zhì)量分?jǐn)?shù)1%的120℃酸化處理的MWCNTs的B類復(fù)合相變儲(chǔ)能材料較A類的潛熱值大,其分別為143.6 J/g,97.42 J/g;該試驗(yàn)表明含1%MWCNTs-B相變儲(chǔ)能材料更適合應(yīng)用于溫室。
溫室;相變材料;十水硫酸鈉;儲(chǔ)熱性能
柳 馨,鐵 健,鐵生年.溫室多壁碳納米管芒硝基相變材料儲(chǔ)能性能[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(6):226-231.doi:10.11975/j.issn.1002-6819.2016.06.031 http://www.tcsae.org
Liu Xin,Tie Jian,Tie Shengnian.Energy storage properties of mans nitro phase transition materials of multi-walled carbon nanotubes of greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2016,32(6): 226-231.(in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.06.031 http://www.tcsae.org
為克服惡劣多變的天氣,溫室大棚在青藏地區(qū)的農(nóng)產(chǎn)品開發(fā)與規(guī)模生產(chǎn)起著舉足輕重的作用,但溫室大棚溫差較大,白天溫室內(nèi)溫度較高,夜間溫室溫度又較低。傳統(tǒng)形式的升降溫方式如煙道加熱,蒸汽加熱及噴霧降溫等措施普遍存在高能耗及高運(yùn)營成本,尤其是升溫過程產(chǎn)生煤,電等的能源消耗,同時(shí)燃燒產(chǎn)生的廢氣又污染環(huán)境。中、低溫相變材料作為一種高效儲(chǔ)能材料,在農(nóng)業(yè)上的應(yīng)用主要體現(xiàn)在溫室大棚的溫度環(huán)境調(diào)控上,相變儲(chǔ)能材料可以通過相變過程對太陽能進(jìn)行存儲(chǔ),解決能源在時(shí)間和空間上的不匹配問題[1-3]。
青藏地區(qū)是芒硝(Na2SO4.10H2O)資源的聚集地,其作為一種中、低溫相變儲(chǔ)能材料,具有相變體積變化小,潛熱密度大,導(dǎo)熱系數(shù)大等優(yōu)點(diǎn),因而具有實(shí)際應(yīng)用前景[4-6]。實(shí)際應(yīng)用中,其存在過冷和相分層問題,又制約其使用[7-9]。本研究擬解決十水硫酸鈉鈉基復(fù)合相變儲(chǔ)能材料的過冷和相分層問題。
基于溫室大棚應(yīng)用,常選擇適宜溫室大棚植物生長溫度(15~25℃)相變儲(chǔ)能材料,通常滿足以下條件[10-11]:1)相變材料的相變溫度應(yīng)為植物適宜生長溫度;2)相變材料相變潛熱大,體積膨脹率小;3)不產(chǎn)生對植物生長有害的物質(zhì);4)導(dǎo)熱系數(shù)大,密度大,比熱容大;5)價(jià)格低廉,來源豐富。例如,韓麗蓉[12]研究表明在Na2SO4.10H2O加入10%KCl可以將相變溫度由32.4℃降低到23.77℃左右,本課題組[13]研究Na2SO4.10H2O與Na2CO3.10H2O以質(zhì)量分?jǐn)?shù)9:1再添加4%NaCl可將想變溫度降到25℃以下。雖然其相變溫度適于應(yīng)用溫室內(nèi),但是材料本身仍具有過冷和相分層現(xiàn)象,制約其使用。
多壁碳納米管(multi-walled carbon nano-tubes,MWCNTs)具有極高的導(dǎo)熱系數(shù),碳納米強(qiáng)化傳熱已有較多的研究報(bào)道[14-17],而將其應(yīng)用于相變儲(chǔ)能材料領(lǐng)域中也有良好效果[18-19]。導(dǎo)熱材料添加于無機(jī)相變儲(chǔ)能材料中可以增大材料的導(dǎo)熱系數(shù),使材料內(nèi)部傳熱增強(qiáng),在外界溫度變化時(shí),內(nèi)部材料的溫度變化均勻,過飽和度就均勻,從而減少材料的相分層現(xiàn)象[20]。為此本文將探討MWCNTs的添加對Na2SO4.10H2O基復(fù)合相變儲(chǔ)能材料的影響。
本文將以物理分散方法制備MWCNTs與Na2SO4.10H2O基復(fù)合相變儲(chǔ)能材料混合的復(fù)合相變儲(chǔ)能材料。對比不同溫度下強(qiáng)酸處理的多壁碳納米管(MWCNTs)的表面結(jié)構(gòu)的改性;探討MWCNTs酸化溫度與添加質(zhì)量分?jǐn)?shù)對Na2SO4.10H2O基復(fù)合相變儲(chǔ)能材料的過冷和相分層現(xiàn)象影響;同時(shí)對復(fù)合相變儲(chǔ)能材料的熱常數(shù)及相變潛熱特征進(jìn)行分析,制備出適宜青藏地區(qū)溫室大棚應(yīng)用的相變儲(chǔ)能材料。
1.1 樣品制備
在40 ml混酸(VH2SO4∶VHNO3=3∶1)加入1 g MWCNTs(孔徑60~100 nm,長度1~5 μm,徐州捷創(chuàng)新材料科技有限公司),然后控制溫度分別在90、120、140℃反應(yīng)20 min停止加熱,待其冷卻至室溫后,將上述所得反應(yīng)物用去離子水反復(fù)清洗至中性,然后在100℃恒溫箱中烘干,分別記為0-MWCNTs(未氧化處理MWCNTs)、90-MWCNTs、120-MWCNTs、140-MWCNTs。取Na2SO4.10H2O研磨,稱取一定量Na2SO4.10H2O再添加10%KCl制成復(fù)合相變儲(chǔ)能材料并記為A,同時(shí)稱取一定量Na2SO4.10H2O和Na2CO3.10H2O以質(zhì)量比9∶1混合再添加總質(zhì)量的4%的NaCl制成復(fù)合相變儲(chǔ)能材料并記為B。使A、B復(fù)合相變儲(chǔ)能材料在30℃變成融化狀態(tài)下分別加入質(zhì)量分?jǐn)?shù)為0.5%,1%,3%,5%的0-MWCNTs,90-MWCNTs,120-MWCNTs,140-MWCNTs超聲振蕩 20 min并加以攪拌,制成MWCNTs復(fù)合的十水硫酸鈉基復(fù)合相變儲(chǔ)能材料,分別記為A-0-MWCNTs、A-90-MWCNTs、A-120-MWCNTs、A-140-MWCNTs以及B-0-MWCNTs、B-90-MWCNTs、B-120-MWCNTs、B-140-MWCNTs。
1.2 測試與表征
采用美國Keysight公司產(chǎn)的34970A數(shù)據(jù)采集儀記錄復(fù)合相變儲(chǔ)能材料的溫度隨時(shí)間變化情況;采用美國熱電公司產(chǎn)的Nexus傅里葉變換紅外光譜儀對MWCNTs進(jìn)行紅外檢測;采用日本株式會(huì)社產(chǎn)JSM-5610LV低真空掃描電子顯微鏡(scanning electron microscope,SEM)觀察酸化處理后的MWCNTs表面形貌;采用瑞典HOT DISK產(chǎn)的TPS2200型號熱常數(shù)分析儀(thermal constants analyzer,TCA)對MWCNTs復(fù)合后的十水硫酸鈉相變儲(chǔ)能材料的熱常數(shù)進(jìn)行分析,從0℃升溫到50℃(5℃/次)進(jìn)行測量;采用德國NETZSCH公司產(chǎn)的200F3差示掃描熱量儀(different scanning calorimetry,DSC)分析復(fù)合相變儲(chǔ)能材料的相變潛熱,氮?dú)鈿夥眨?0 mL/min),升溫速度1℃/min。
2.1 酸化MWCNTs的紅外分析
圖1給出了0-MWCNTs,90-MWCNTs,120-MWCNTs,140-MWCNTs的紅外光譜圖。結(jié)果表明:0-MWCNTs除在3 400.56 cm-1處有特征峰外,其余無明顯特征峰,此處為羥基的振動(dòng)峰。經(jīng)過混酸處理后,90-MWCNTs在1703.6、1 145.34 cm-1處出現(xiàn)了-C=O的振動(dòng)峰及C-O的伸縮振動(dòng)峰;120-MWCNTs多壁碳納米管在2 412.13、1 705.17、1 158.27 cm-1出現(xiàn)了新的峰值,它是羧基中的-O-H的振動(dòng)峰,-C=O的振動(dòng)峰及C-O的伸縮振動(dòng)峰;及140-MWCNTs在2 415.6、1 704.21、1 132.16 cm-1同樣出現(xiàn)了羧基中的-O-H的振動(dòng)峰,-C=O的振動(dòng)峰及C-O的伸縮振動(dòng)峰。試驗(yàn)表明經(jīng)過混酸氧化后,多壁碳納米管上產(chǎn)生了羧基基團(tuán)。
圖1 碳納米管紅外光譜圖Fig.1 Fourier transform infrared spectroscopy analysis of MWCNTs
2.2 酸化MWCNTs的形貌分析
圖2中的a,b,c,d分別為0-MWCNTs,90-MWCNTs,120-MWCNTs,140-MWCNTs的掃描電鏡照片。結(jié)果表明:0-MWCNTs及90-MWCNTs變化不明顯;120-MWCNTs有相當(dāng)一部分變短,同時(shí)有略微的團(tuán)聚現(xiàn)象;140-MWCNTs的管長較其它更短,并且呈現(xiàn)團(tuán)聚狀態(tài)。這是因?yàn)榛焖峋哂袕?qiáng)氧化性,破壞并且剪短了MWCNTs,而羧基正出現(xiàn)在這些破壞處。
圖2 MWCNTs酸化前后的掃描電鏡照片F(xiàn)ig.2 Scanning electron micrographs of MWCNTs before and after acid treatment
2.3 復(fù)合相變儲(chǔ)能材料過冷現(xiàn)象
圖3中的a,b,c,d和圖4中的a,b,c,d分別為添加質(zhì)量分?jǐn)?shù)0.5%~5%的MWCNTs的A和B復(fù)合相變儲(chǔ)能材料。結(jié)果表明:A、B相變儲(chǔ)能材料本身具有一定的過冷度,過冷度現(xiàn)象嚴(yán)重時(shí)會(huì)影響水合鹽形成晶體物質(zhì),導(dǎo)致相變潛熱儲(chǔ)熱能力下降;由圖3a及圖4a看出,未氧化的MWCNTs對復(fù)合儲(chǔ)能材料的過冷度沒有明顯影響,由于MWCNTs的親水性較差,所以與材料的相容性較差,以至于材料的添加對復(fù)合相變儲(chǔ)能材料沒有明顯影響;由圖3b及4b看出,90-MWCNTs的添加對復(fù)合相變儲(chǔ)能材料都有一定的影響,過冷度略小于A種復(fù)合相變儲(chǔ)能材料,說明酸化后的MWCNTs產(chǎn)生的親水基團(tuán)羧基起到了一定作用,使得復(fù)合相變儲(chǔ)能材料發(fā)生非均勻成核降低過冷度;由圖3c及4c看出復(fù)合相變儲(chǔ)能材料的過冷度降低較為明顯,說明120-MWCNTs的添加對復(fù)合相變儲(chǔ)能材料的過冷度有明顯影響,可能MWCNTs經(jīng)過120℃高溫氧化后,MWCNTs上形成的羧基較多,親水性較好,所以過冷度降低較多;由圖3d和4d看出,140-MWCNTs的A、B復(fù)合相變儲(chǔ)能材料過冷度較120-MWCNTs降低較少,可能是140℃酸化后的MWCNTs團(tuán)聚現(xiàn)象較為嚴(yán)重,對復(fù)合相變儲(chǔ)能材料的過冷度降低有一定影響。
圖3 A類復(fù)合相變儲(chǔ)能材料的T-history曲線Fig.3 T-history curves of class A composites phase change materials
圖4 B類復(fù)合相變儲(chǔ)能材料的T-history曲線Fig.4 T-history curves of class B composites phase change materials
2.4 復(fù)合相變儲(chǔ)能材料相分層現(xiàn)象
圖5為復(fù)合相變儲(chǔ)能材料相容性照片,a圖為含1%A-0-MWCNTs的相容性照片。結(jié)果表明:MWCNTs多數(shù)含量漂浮于水合鹽的上層,其余一部分融入水合鹽中,相容性較差,這表明未氧化的MWCNTs難溶于此體系中;然而經(jīng)過酸化處理后MWCNTs由于表面羧酸化,易溶于無機(jī)相變儲(chǔ)能材料中,以120℃酸化后MWCNTs為添加劑,b,c圖依次為不同質(zhì)量分?jǐn)?shù)的A-120-MWCNTs和B-120-MWCNTs的復(fù)合相變儲(chǔ)能材料,從圖中可以看出,純A、B相變儲(chǔ)能材料為白色,試管底層為白色固體鹽,中層為結(jié)晶的水合鹽,上層有部分溶液未結(jié)晶,其本身有一定的相分層現(xiàn)象,添加120-MWCNTs后與相變儲(chǔ)能水合鹽相容性較好,混為一體呈現(xiàn)黑色,同時(shí)水合鹽本身無明顯相分層現(xiàn)象,說明酸化后的MWCNTs易溶于此體系中,以減少復(fù)合相變儲(chǔ)能材料的相分層現(xiàn)象。
圖5 復(fù)合相變儲(chǔ)能的相容性照片F(xiàn)ig.5 Composite phase change energy storage compatibility photo
2.5 復(fù)合相變儲(chǔ)能材料熱常數(shù)
圖6為含1%120-MWCNTs復(fù)合相變儲(chǔ)能材料的熱常數(shù)圖。圖a為含1%120-MWCNTs的A,B復(fù)合相變儲(chǔ)能材料比熱隨溫度變化曲線。結(jié)果表明:復(fù)合相變儲(chǔ)能材料比熱在相變溫度點(diǎn)附近出現(xiàn)了反常現(xiàn)象,即出現(xiàn)了一個(gè)峰,復(fù)合相變儲(chǔ)能材料的比熱達(dá)到最大,分別為5.095、4.235 6 mm2/s,這表明材料內(nèi)部發(fā)生了從有序到無序的轉(zhuǎn)變,說明在該相變溫度點(diǎn)材料有吸熱現(xiàn)象[21-24]。圖b為含1%120-MWCNTs的A、B復(fù)合相變儲(chǔ)能材料的導(dǎo)熱系數(shù)隨溫度的變化的曲線。結(jié)果表明:在相變溫度點(diǎn)附近含1%120-MWCNTs的A、B復(fù)合相變儲(chǔ)能材料的導(dǎo)熱系數(shù)最高,分別為0.932 5、0.941 3 w/mk,并且在相變點(diǎn)的左右兩側(cè)導(dǎo)熱系數(shù)都隨著溫度的升高而增加。
圖6 復(fù)合相變儲(chǔ)能材料的熱常數(shù)圖Fig.6 Thermal constant of composite phase change energy storage materials
2.6 復(fù)合相變儲(chǔ)能材料的相變潛熱
圖7為復(fù)合相變儲(chǔ)能材料DSC圖。結(jié)果表明:添加1%的120-MWCNTs的A,B復(fù)合相變儲(chǔ)能材料較純A,B的相變溫度點(diǎn)都有所提前,A類相變儲(chǔ)能復(fù)合材料由相變點(diǎn)21.1提前到20.8,B類相變儲(chǔ)能復(fù)合材料由相變點(diǎn)23.4提前到21.5,分別提前,0.3℃,1.9℃,由于120-MWCNTs的添加,使得材料的導(dǎo)熱性提高,材料內(nèi)部傳熱效果增強(qiáng),材料隨溫度變化的能力增強(qiáng),所以易使相變點(diǎn)提前;同時(shí)添加1%的120-MWCNTs的A,B復(fù)合相變儲(chǔ)能材料較純A,B的潛熱減小,分別減小14.48 J/g,25.9J/g,由于添加了1%-MWCNTs,導(dǎo)致實(shí)際吸熱復(fù)合相變儲(chǔ)能材料的比例減小,所以潛熱值減??;A,B復(fù)合相變儲(chǔ)能材料相變潛熱值分別為111.9 J/g,169.5 J/g,B較A材料潛熱值大,同時(shí)添加1%的120-MWCNTs的A,B復(fù)合相變儲(chǔ)能材料相變潛熱值分別為97.42 J/g,143.6 J/g,后者潛熱值較大。
圖7 復(fù)合相變儲(chǔ)能材料的DSC圖Fig.7 Different scanning calorimetry(DSC)photographs of composite phase change material
1)酸化處理后的MWCNTs上形成羧基,90℃酸化處理的MWCNTs變化不明顯,140℃酸化處理的MWCNTs剪短及團(tuán)聚現(xiàn)象嚴(yán)重,120℃酸化處理的MWCNTs管長仍較長,有略微的團(tuán)聚現(xiàn)象。
2)添加1%的120-MWCNTs的A,B類復(fù)合相變儲(chǔ)能材料的過冷度降低最大;同時(shí)添加酸化處理的MWCNTs的A,B相變復(fù)合儲(chǔ)能材料的相容性較好,無明顯相分層現(xiàn)象。
3)相變溫度點(diǎn)附近的含1%的120-MWCNTs的A、B復(fù)合相變儲(chǔ)能材料的比熱和導(dǎo)熱系數(shù)最大,分別為5.095 mm2/s、0.932 5 w/mk、4.235 6 mm2/s、0.941 3 w/mk,比熱的突變表明材料發(fā)生吸熱現(xiàn)象,導(dǎo)熱系數(shù)在相變點(diǎn)附近的左右兩邊都隨溫度的升高而增大。
4)含1%的120-MWCNTs復(fù)合相變儲(chǔ)能材料B較A材料的潛熱值大,分別為143.6 J/g,97.42 J/g,更適用于溫室大棚。
[1]Abhat A.Low temperature latent heat thermal energy storage: heat storage materials[J].Solar Energy,1983,30:313-332.
[2]Sharma A,Tyagi V V,Chen C R,et al.Review on thermal energy storage with phase change materials and applications[J].Renew Sustain Energy Rev,2009,13:318-345.
[3]Khudhair A M,Farid M M.A review on energy conservation in building applications with thermal storage by latent heat using phase change materials[J].Energy Conversio nand Management, 2004,45:263-275.
[4]Mesalhy O,Lafdi K,Elgafy A.Carbon foammarices saturated with PCM for thermal protection purposes[J].Carbon,2006,44: 2080-2088.
[5]Lafdi K,Mesalhy O,Elgafy A.Graphite foams in filtrated with phase change materials as alter native materials for space and terrestrial thermal energy storage applications[J].Carbon,2008, 46(1):159-168.
[6]Lafdi K,Mesalhy O,Shaikh S.Experimental study on the influence of foam porosity and pore size on the melting of phase change materials[J].Journal of Applied Physics,2007,102(8): 083549-083549-6.
[7]Zalba B,Marin J,Cabeza L F,etal.Review on thermal energy storage with phase change materials heat transfer analysis and applications[J].AppliedThermalEngineering,2003,23:251-283.
[8] 盛強(qiáng),邢玉明,王澤.八水氫氧化鋇相變材料的強(qiáng)化傳熱實(shí)驗(yàn)[J].航空動(dòng)力學(xué)報(bào),2013,28(9):1927-1932.Sheng Qiang,Xing Yuming,Wang Ze.Experiment on heat transfer enhancement of barium hydroxide octahydrate phase change material[J].Journal of Aerospace Power,2013,28(9): 1927-1932.(in Chinese with English abstract)
[9]張雪梅,蔡路茵,章迪.相變儲(chǔ)能化合物CH3COONa.3H2O的熱分解行為[J].無機(jī)化學(xué)學(xué)報(bào),2010,26(1):67-71.Zhang Xuemei,Cai Luyin,Zhang Di.Thermal behavior of CH3COONa.3H2O as phase change material[J].Chinese Journal of Inorganic Chemistry,2010,26(1):67-71.(in Chinese with English abstract)
[10]王宏麗,鄒志榮,陳紅武,等.溫室中應(yīng)用相變儲(chǔ)熱技術(shù)研究進(jìn)展[J].農(nóng)業(yè)工程學(xué)報(bào),2008,24(6):304-307.Wang Hongli,Zhou Zhirong,Chen Hongwu,et al.Research advances in technologies of phase-change heat storage and its application in hothousess[J].Transactions of Chinese Society of Agricultural Engineering(Transactions of the CSAE),2008,24 (6):304-307.(in Chinese with English abstract)
[11]王宏麗,李曉野,鄒志榮.相變蓄熱砌塊墻體在日光溫室中的應(yīng)用效果[J].農(nóng)業(yè)工程學(xué)報(bào),2011,27(5):253-257.Wang Hongli,Li Xiaoye,Zou Zhirong.Application of brick wall with phase change rice husk in solar hothousess[J].Transactions of Chinese Society of Agricultural Engineering(Transactions of the CSAE),2011,7(5):253-257.(in Chinese with English abstract)
[12]韓麗蓉.相變蓄熱材料十水硫酸鈉的改性及應(yīng)用研究[D].楊陵:西北農(nóng)林科技大學(xué),2014.Han Lirong.Modification and Application Research of Phase ChangeHeat Storage Material Glauber Salt[D].Yangling: NorthwestA&FUniversity,2014.(inChinesewithEnglishabstract)
[13]蔣自鵬,鐵生年.物理法制備芒硝基復(fù)合相變材料及其性能研究[J].人工晶體學(xué)報(bào),2015,44(12):3120-3127. Jiang Zipeng,Tie Shengnian.Preparation and properties of Glauber’s salt-based composites phase change materials by physical method[J].Journal of Synthetic Crystals,2015,44(11): 3074-3080.(in Chinese with English abstract)
[14]Chen Ying,Jia Lisi,Mo Songping.Experimental investigation of crystallization process of nanofluids by DSC[J].Journal of Southeast University,2010,26(2):359-363.
[15]He Qingbo,Wang Shuangfeng,Tong Mingwei.Experimental study on thermophysical properties of nanofluids as phasechange material(PCM)in low temperature cool storage[J].Energy Conversion Management,2012,64:199-205.
[16]楊波,王蛟,劉軍.碳納米流體強(qiáng)化傳熱研究[J].強(qiáng)激光與粒子束,2014,26:051003.Yang Bo,Wang Jiao,Liu Jun.Heat transfer enhancement of carbon nanofluids[J].High Power Laser and Particle Beams,2014,26:051003.(in Chinese with English abstract)
[17]王姣,楊波,劉軍,等.碳納米流體相變特性實(shí)驗(yàn)研究[J].強(qiáng)激光與粒子束,2015,27:074102.Wang Jiao,Yang Bo,Liu Jun,et al.Experimental studies on phase change characterittics of carbon nanofluids[J].High Power Laser and Particle Beams,2015,27:074102.(in Chinese with English abstract)
[18]商紅巖,劉晨光,徐永強(qiáng).碳納米管的表面修飾對Co-Mo催化劑HDS性能影響的研究[J].新型炭材料,2004,19(2):129-136.Shang Hongyan,Liu Chenguang,Xu Yongqiang.Effect of the surface modification of multi-walled carbon nanotubes (MWCNTs)on hydrodesulfurization activity of Co-Mo/MWCNTs catalysts[J].New Carbon Materials,2004,19(2):129-136.(in Chinese with English abstract)
[19]王繼芬,謝華清,辛忠,等.酸化碳納米管棕?cái)R酸復(fù)合相變儲(chǔ)能材料的研究[J].工程熱物理學(xué)報(bào),2010,31(8):1389-1391.Wang Jifen,Xie Huaqing,Xin Zhong,et al.Experimental study on palmitic acid composites containing carbon nanotubes by acidtreatment[J].Journal of Engineering Thermophysics,2010, 31(8):1389-1391.(in Chinese with English abstract)
[20]柳馨,鐵健,鐵生年.納米粉體對Na2SO4.10H2O過冷及相分層現(xiàn)象的影響[J].人工晶體學(xué)報(bào),2015,44(11):3074-3080.Liu Xin,Tie Jian,Tie Shengnian.Effect of nano powder addition on the subcooling and phase stratification of sodium sulfate decahydrate[J].Journal of Synthetic Crystals,2015,44(11): 3074-3080.(in Chinese with English abstract)
[21]石海榮,哈斯朝魯,王全晶,等.Mn2-xFexP0.51Si0.49化合物的比熱容與相變[J].稀有金屬材料與工程,2012,41(2):600-602.Shi Hairong,Ha Sizhaolu,Wang Jinjing,et al.Specific heat and phase transition in Mn2-xFexP0.51Si0.49compounds[J].Rare Metal Materials and Engineering,2012,41(2):600-602.(in Chinese with English abstract)
[22]彭小飛,俞小莉,余鳳芹.低濃度納米流體比熱容試驗(yàn)研究[J].材料科學(xué)與工程學(xué)報(bào),2007,25(5):719-722.Peng Xiaofei,Yu Xiaoli,Yu Fengqin.Experimental study on the specific heat of nanofluids[J].Journal of Materials Science &Engineering,2007,25(5):719-722.(in Chinese with English abstract)
[23]Lee S,Choi U S.Measuring thermal conductivity of fluids containing oxide nanoparticles[J].Transaction of the ASME, 1999,121(5):280-284.
[24]Xuan Y M,Li Q.Heat transfer enhancement of nanofluids[J]. Int.J.Heat and Fluid Flow,2000,21:58-64.
Energy storage properties of mans nitro phase transition materials of multi-walled carbon nano-tubes of greenhouse
Liu Xin,Tie Jian,Tie Shengnian※
(New Energy(photovoltaic)Industry Research Center,Qinghai University,Xining 810016,China)
It is significant to study low temperature phase change materials(PCM)widely used in hothouses.The performance of low temperature sodium sulfate decahydrate based PCM composite affects hothouse temperature directly. Sodium sulfate decahydrate based PCM composite has suitable phase change temperature,but presents supercooling and phase stratification phenomenon.These problems restrict its practical application.The result of related study indicated that the heat conductive material had a certain influence on supercooling and phase stratification of PCM.We studied that the effect of nano-powders of sodium sulfate decahydrate on subcooling and phase stratification,of which the nano-carbon had the better effects on sodium sulfate decahydrate′s supercooling and phase stratification.This paper explored the effect of multi-walled carbon nano-tubes(MWCNTs)with high thermal conductivity on 2 kinds of sodium sulfate decahydrate based PCM composites,named PCM A and PCM B.PCM A consisted of 90wt%Na2SO4.10H2O and 10wt%KCl.PCM B consisted of 86.4wt%Na2SO4.10H2O,9.6wt%Na2CO3.10H2O,and 4wt%NaCl.Firstly,MWCNTs was modified on surface by acid treatment at 90,120 and 140℃respectively,in order to obtain good compatibility with PCM A and B.Fourier transform infrared spectroscopy was used to detect the acid-treated MWCNTs and the surface functional groups on the MWCNTs were analyzed.Low vacuum scanning electron microscope was used to observe the surface morphology of acid-treatment MWCNTs.The acid-treated MWCNTs were added into PCM A and B by physical dispersion method.The time dependence of the temperature of PCM A and B containing acid-treated MWCNTs or not was recorded by date acquisition instrument to explore the effects of acid treatment temperature and mass fraction of MWCNTs on the degree of supercooling of PCM.The phase stratification phenomenon was photographed and investigated.The specific heat and thermal conductivity were measured by thermal constant analyzer.And the thermal conductivity and specific heat of thermally conductive material added into the PCM A and B were analyzed.The latent heat of PCM was analyzed by different scanning calorimetry measurements.Latent heat value directly affects the size of the heat storage capacity of the material.The results indicated that carboxyl group was formed in MWCNTs after acid treatment,which could improve the compatibility between MWCNTs and PCM A or B.By the scanning electron microscope,the surface topography change of the MWCNTs without oxidization and the MWCNTs with the surface modified by acid treatment at 90℃was not obvious.And the MWCNTs with the surface modified by acid treatment at 120℃had slight agglomeration.The MWCNTs with the surface modified by acid treatment at 140℃had serious agglomeration and shear break.When 1wt%acid-treated MWCNTs at 120℃were added,both of PCM A and B showed low degree of supercooling.Their specific heat and thermal conductivity reached the maximum,which were 5.095 mm2/s,0.932 5 w/mk and 4.235 6 mm2/s,0.941 3 w/mk respectively in the vicinity of the phase transition temperature.Abrupt change of specific heat of the phase change material at this point showed that mutations occurred for latent heat material itself.The increase of thermal conductivity showed that the heat transfer effect of phase change energy storage material was enhanced in the process of heat absorption and heat transfer.Besides,PCM B containing 1wt% MWCNTs acid-treated at 120℃had higher latent heat than PCM A.They were 143.6 and 97.42 J/g respectively.These experiment results indicate that the PCM B containing 1wt%MWCNTs is more suitable for hothouse application.
greenhouse;phase change materials;sodium sulfate decahydrate;thermal storage performance
10.11975/j.issn.1002-6819.2016.06.031
S214.3;S625.5+1;O792;TB34
A
1002-6819(2016)-06-0226-06
2015-10-20
2016-01-13
青海省國際合作資助項(xiàng)目(2014-HZ-820);青海省重點(diǎn)實(shí)驗(yàn)室發(fā)展專項(xiàng)資金(2014-Z-Y31,2015-Z-Y02)
柳 馨,女(滿),遼寧本溪人,主要從事相變儲(chǔ)能技術(shù)研究。西寧 青海大學(xué)新能源光伏產(chǎn)業(yè)研究中心,810016。Email:qhuliuxin@163.com※通信作者:鐵生年,男,青海西寧人,教授,主要從事新能源儲(chǔ)能材料研究。西寧 青海大學(xué)新能源光伏產(chǎn)業(yè)研究中心,810016。
Email:tieshengnian@163.com