黃東巖,朱龍圖,賈洪雷,于婷婷,閆 荊
(1.吉林農(nóng)業(yè)大學(xué)信息技術(shù)學(xué)院,長(zhǎng)春 130118;2.吉林大學(xué)工程仿生教育部重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春 130025)
基于GPS和GPRS的遠(yuǎn)程玉米排種質(zhì)量監(jiān)測(cè)系統(tǒng)
黃東巖1,2,朱龍圖1,賈洪雷2※,于婷婷1,閆 荊1
(1.吉林農(nóng)業(yè)大學(xué)信息技術(shù)學(xué)院,長(zhǎng)春 130118;2.吉林大學(xué)工程仿生教育部重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春 130025)
為了獲取區(qū)域內(nèi)的玉米播種質(zhì)量信息并對(duì)其進(jìn)行遠(yuǎn)程監(jiān)測(cè)與管理,提出了基于GPS和GPRS的遠(yuǎn)程排種監(jiān)測(cè)系統(tǒng)。該系統(tǒng)利用PVDF(polyvinylidene fluoride,聚偏二氟乙烯)壓電傳感器實(shí)時(shí)監(jiān)測(cè)指夾式排種器播種質(zhì)量信息并通過(guò)GPS接收器實(shí)現(xiàn)了播種質(zhì)量信息位置的精確定位;同時(shí),系統(tǒng)通過(guò)GPRS DTU模塊的應(yīng)用和遠(yuǎn)程服務(wù)器軟件的設(shè)計(jì),實(shí)現(xiàn)了播種質(zhì)量信息數(shù)據(jù)的遠(yuǎn)程傳輸與管理。試驗(yàn)結(jié)果表明,該系統(tǒng)播種量檢測(cè)精度為97.4%,漏播檢測(cè)精度為96.1%,重播檢測(cè)精度為95.9%,該系統(tǒng)能夠有效檢測(cè)玉米播種質(zhì)量并具有監(jiān)測(cè)數(shù)據(jù)遠(yuǎn)程監(jiān)管的功能。
傳感器;監(jiān)測(cè);作物;GPS;GPRS;PVDF壓電傳感器;單片機(jī)
黃東巖,朱龍圖,賈洪雷,于婷婷,閆 荊.基于GPS和GPRS的遠(yuǎn)程玉米排種質(zhì)量監(jiān)測(cè)系統(tǒng)[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(6):162-168.doi:10.11975/j.issn.1002-6819.2016.06.022 http://www.tcsae.org
Huang Dongyan,Zhu Longtu,Jia Honglei,Yu Tingting,Yan Jing.Remote monitoring system for corn seeding quality based on GPS and GPRS[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(6):162-168. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.06.022 http://www.tcsae.org
隨著精密播種技術(shù)的使用和推廣,越來(lái)越多的播種作業(yè)采用精密播種機(jī)來(lái)完成。在播種機(jī)上安裝排種監(jiān)測(cè)系統(tǒng),可以有效地實(shí)現(xiàn)對(duì)播種機(jī)工作狀況的實(shí)時(shí)檢測(cè)和監(jiān)視,有助于實(shí)時(shí)了解播種機(jī)作業(yè)性能、播種質(zhì)量狀況。準(zhǔn)確獲取區(qū)域內(nèi)的玉米播種質(zhì)量信息,一方面能夠檢測(cè)當(dāng)年玉米播種的實(shí)施效果,同時(shí)也是玉米產(chǎn)量精準(zhǔn)預(yù)測(cè)的重要參考[1]。目前田間玉米播種質(zhì)量監(jiān)測(cè)主要采用光電傳感器、電容傳感器、壓電傳感器[2-6]。如宋鵬等[7]研制的精密播種機(jī)工作性能實(shí)時(shí)監(jiān)測(cè)系統(tǒng),以光電傳感器作為排種質(zhì)量監(jiān)測(cè)元件,其具體設(shè)計(jì)是采用一字線激光器作為光電傳感器的發(fā)射端,使用緊密排列的光敏二極管作為光電傳感器接收端,實(shí)現(xiàn)了播種作業(yè)狀況下播種量、漏播量和重播量等參數(shù)信息的收集;又如周利明等[5]提出一種基于微電容信號(hào)獲取與分析的玉米播種機(jī)排種性能監(jiān)測(cè)方法,該方法通過(guò)電容傳感器獲取種子運(yùn)動(dòng)信息,并根據(jù)相鄰種子的電容脈沖峰值間隔和脈沖積分面積來(lái)獲取播種作業(yè)狀況下的播種量、漏播量、重播量等參數(shù)。但是,這些研究在重播檢測(cè)精度上不能滿足精確檢測(cè)要求,監(jiān)測(cè)系統(tǒng)缺少播種質(zhì)量信息位置定位和遠(yuǎn)程數(shù)據(jù)傳輸與監(jiān)管功能。
目前遠(yuǎn)程監(jiān)測(cè)技術(shù)越來(lái)越成熟,其應(yīng)用范圍也越來(lái)越廣,在各行各業(yè)中也逐漸嶄露頭角。其通信方式主要分為有線和無(wú)線傳輸。有線傳輸是通過(guò)自行架設(shè)通信網(wǎng)絡(luò)來(lái)實(shí)現(xiàn)的,如自組網(wǎng)絡(luò)(cellular digital packet data,CDPD),該方式雖然能夠保證可靠的通信質(zhì)量,但其運(yùn)營(yíng)費(fèi)用高,建網(wǎng)初期投資巨大。無(wú)線傳輸則是采用無(wú)線傳輸模塊,以現(xiàn)有的網(wǎng)絡(luò)(如市話網(wǎng)和internet網(wǎng))為依托來(lái)完成數(shù)據(jù)的傳輸,其通信效果好,且有效地降低了使用成本。GPRS DTU(GPRS data transfer unit)模塊是一個(gè)能夠有效實(shí)現(xiàn)遠(yuǎn)程數(shù)據(jù)無(wú)線通信的模塊[8]。
本文針對(duì)上述問(wèn)題,利用GPS接收器作為漏播位置采集器,使用GPRS DTU模塊作為遠(yuǎn)程傳輸工具,設(shè)計(jì)了以STM32單片機(jī)為核心、PVDF(polyvinylidene fluoride,聚偏二氟乙烯)壓電傳感器為監(jiān)測(cè)元件的排種監(jiān)測(cè)系統(tǒng)。該系統(tǒng)能實(shí)時(shí)準(zhǔn)確地監(jiān)測(cè)播種機(jī)的各項(xiàng)性能指標(biāo),并能將之實(shí)時(shí)、有效地上傳至遠(yuǎn)程服務(wù)器。
1.1 系統(tǒng)總體結(jié)構(gòu)
基于GPS和GPRS的遠(yuǎn)程排種監(jiān)測(cè)系統(tǒng)主要包括傳感信號(hào)采集單元、主控制單元、報(bào)警單元、GPS移動(dòng)站、GPS基準(zhǔn)站、GPRS DTU模塊和遠(yuǎn)程服務(wù)器等部分,如圖1所示。其中,傳感信號(hào)采集單元包括排種監(jiān)測(cè)傳感器和播種機(jī)速度傳感器;GPS基準(zhǔn)站包括基準(zhǔn)站GPS接收器、GPRS DTU模塊2和單片機(jī)STC12C5A60S2。
圖1 系統(tǒng)結(jié)構(gòu)框圖Fig.1 System structural diagram
1.2 排種器工作原理
作為免耕播種機(jī)的關(guān)鍵部件之一,指夾式排種器的性能是播種機(jī)播種質(zhì)量的直接決定因素[9-10]。如圖2所示為指夾式排種器實(shí)物及PVDF壓電傳感器安裝位置圖,其主要由指夾器、指夾器盤(pán)和排種葉片、葉片盤(pán)等組成。
圖2 排種器結(jié)構(gòu)與PVDF壓電傳感器安裝位置Fig.2 Seedmeter structure and installation site of PVDF piezoelectric sensor
指夾式排種器內(nèi)部結(jié)構(gòu)如圖2所示,12個(gè)指夾器安裝在指夾器盤(pán)上,工作時(shí),排種器軸帶動(dòng)指夾器與指夾器盤(pán)在排種盤(pán)一側(cè)旋轉(zhuǎn),在彈簧與凸輪共同作用下,指夾器轉(zhuǎn)動(dòng)到夾種區(qū)時(shí)開(kāi)啟并填充種子,經(jīng)過(guò)夾種區(qū)后指夾器關(guān)閉,進(jìn)入顛簸帶清種,顛簸帶是排種盤(pán)上凹凸不平的部分,夾在指夾器的種子經(jīng)過(guò)顛簸帶時(shí)會(huì)引起振動(dòng),清理掉多余的種子,通常經(jīng)過(guò)顛簸帶后,指夾器只夾住1~2粒種子,指夾器繼續(xù)經(jīng)過(guò)固定在排種盤(pán)上的毛刷時(shí)進(jìn)行2次清種,二次清種后指夾器內(nèi)通常只留下1粒種子,經(jīng)過(guò)卸種口時(shí),種子在彈簧作用下被指夾器射擊到緩沖檔板上,經(jīng)緩沖后,種子落入排種室,完成一次投種。同時(shí),排種軸帶動(dòng)排種輪與葉片盤(pán)在排種盤(pán)另外一側(cè)旋轉(zhuǎn),葉片盤(pán)上安裝12片排種葉片,形成12個(gè)排種室,經(jīng)過(guò)一次投種的種子隨排種葉片旋轉(zhuǎn)到排種器下部的排種口投出,完成2次投種。2次投種降低了投種高度,提高排種的均勻性。
為了實(shí)時(shí)監(jiān)測(cè)排種器的工作狀況,獲取整個(gè)作業(yè)區(qū)域的播種質(zhì)量信息,本設(shè)計(jì)采用PVDF壓電傳感器作為指夾式排種器的排種監(jiān)測(cè)傳感器。該壓電傳感器是由新型高分子壓電材料聚偏二氟乙烯(PVDF)薄膜制作而成,具有壓電特性強(qiáng)、密度小、質(zhì)地柔軟、靈敏度高、頻率響應(yīng)寬、質(zhì)量輕、化學(xué)穩(wěn)定性高,并且其熱穩(wěn)定性高、抗紫外線輻射能力強(qiáng),同時(shí)具有較高的耐沖擊和耐疲勞能力[11-15]。本文使用的PVDF壓電傳感器由PVDF薄膜經(jīng)裁剪制作而成,形狀為扇形,厚度為0.064 mm,上、下弧長(zhǎng)分別為67和45 mm,上、下弧之間的距離為23 mm,被安裝在緩沖檔板上,如圖2所示。由于該傳感器質(zhì)地柔軟使得其對(duì)緩沖檔板的緩沖效果幾乎沒(méi)有影響。指夾式排種器一次投種時(shí),種子碰觸到PVDF壓電傳感器時(shí)會(huì)使得壓電傳感器的2個(gè)上下表面產(chǎn)生極性相反的正負(fù)電荷,從而形成電壓信號(hào)。正是基于這種碰觸而產(chǎn)生電信號(hào)的壓電特性,使得PVDF壓電傳感器在監(jiān)測(cè)排種器工作時(shí)不受積塵的影響。
為測(cè)試PVDF壓電傳感器安裝位置的有效性,我們用示波器觀察PVDF壓電傳感器的輸出電壓信號(hào),如圖3所示。圖中第2個(gè)和第3個(gè)脈沖波形是由一個(gè)指夾器同時(shí)攜帶2粒種子與PVDF壓電傳感器碰觸產(chǎn)生的波形,而第1個(gè)和第4個(gè)脈沖波形則是由不同的2個(gè)指夾器各攜帶一粒種子與PVDF壓電傳感器碰觸產(chǎn)生的波形。一個(gè)指夾器同時(shí)攜帶2粒種子經(jīng)卸種口投入排種室,將會(huì)造成重播現(xiàn)象。從4個(gè)脈沖波形在時(shí)間軸之上的位置可以看出,重播的2粒種子觸碰PVDF壓電傳感器產(chǎn)生脈沖的時(shí)間間隔相對(duì)比較短。因此,將PVDF壓電傳感器安裝在排種器的緩沖檔板上能夠精確地對(duì)重播現(xiàn)象進(jìn)行監(jiān)測(cè)。
圖3 壓電傳感器輸出效果圖Fig.3 Output rendering of piezoelectric sensor
在實(shí)際應(yīng)用當(dāng)中,PVDF壓電傳感器輸出的電壓信號(hào)通過(guò)信號(hào)調(diào)理電路調(diào)理后,經(jīng)主控單元進(jìn)行相關(guān)處理并判斷是否出現(xiàn)漏播或重播現(xiàn)象,再由報(bào)警單元實(shí)現(xiàn)對(duì)應(yīng)的漏播或重播報(bào)警。根據(jù)《單粒精密播種機(jī)試驗(yàn)方法》[16],具體判斷依據(jù)為
1.3 GPS定位策略
本文采用全球差分定位技術(shù)獲取播種質(zhì)量位置信息,上述的GPS移動(dòng)站和GPS基準(zhǔn)站組成了全球差分定位系統(tǒng)[17-19]。GPS基準(zhǔn)站通過(guò)基站GPS接收器獲取差分改正量信息,經(jīng)STC12C5A60S2單片機(jī)處理后,由GPS DTU模塊發(fā)送至主控單元,以便主控制單元根據(jù)差分改正量和GPS移動(dòng)站的輸出量,結(jié)算出差分定位結(jié)果。在實(shí)際應(yīng)用中,將GPS移動(dòng)站固定在拖拉機(jī)駕駛室頂部,通過(guò)屏蔽導(dǎo)線與安裝在駕駛室內(nèi)的主控單元相連。GPS基準(zhǔn)站放置在距離作業(yè)地塊10 km以內(nèi)的任意位置,且作業(yè)過(guò)程中GPS基準(zhǔn)站的位置不允許變動(dòng)。之后,選定作業(yè)地塊的基點(diǎn)0,以基點(diǎn)0為原點(diǎn),在遠(yuǎn)程服務(wù)器軟件系統(tǒng)中建立二維坐標(biāo)系,將壟長(zhǎng)延長(zhǎng)的方向定義為縱軸Y,垂直于壟長(zhǎng)的方向定義為橫軸X。利用全球差分定位系統(tǒng)確定基點(diǎn)0的經(jīng)緯度,并將基點(diǎn)0的經(jīng)緯度信息上傳至遠(yuǎn)程服務(wù)器進(jìn)行存儲(chǔ)。開(kāi)始作業(yè)時(shí),播種機(jī)首先沿著Y軸的方向作業(yè),并在到達(dá)對(duì)面地頭時(shí)調(diào)轉(zhuǎn)方向,反向作業(yè),如此往復(fù)直至作業(yè)結(jié)束。
在整個(gè)作業(yè)過(guò)程中,遠(yuǎn)程服務(wù)器軟件系統(tǒng)根據(jù)全球差分定位系統(tǒng)提供的經(jīng)緯度信息,確定播種單體的實(shí)時(shí)經(jīng)緯度信息并在上述坐標(biāo)系中繪制播種單體的播種質(zhì)量信息圖。圖4為播種機(jī)沿著Y軸行進(jìn)軌跡示意圖。圖中1、2、3為行號(hào),隨著播種機(jī)作業(yè)的進(jìn)行,遠(yuǎn)程服務(wù)器軟件系統(tǒng)會(huì)沿著X軸方向順序標(biāo)記行號(hào)1、2、3...N;a、b、c為3個(gè)播種單體;d為拖拉機(jī)。
圖4 播種機(jī)行進(jìn)軌跡示意圖Fig.4 Seeding path diagram
1.4 GPRS DTU模塊通信
系統(tǒng)需要實(shí)現(xiàn)無(wú)線傳輸?shù)牡胤接?處:GPS基準(zhǔn)站和GPS移動(dòng)站之間的差分改正量信息的傳輸;主控單元與遠(yuǎn)程服務(wù)器之間的通信。為實(shí)現(xiàn)整個(gè)系統(tǒng)數(shù)據(jù)之間的有效傳輸,本設(shè)計(jì)采用GPRS DTU模塊作為數(shù)據(jù)傳輸通信模塊。GPRS DTU模塊是一種基于物聯(lián)網(wǎng)的無(wú)線數(shù)據(jù)傳輸模塊,內(nèi)嵌TCP/IP協(xié)議棧,使不具備TCP/IP協(xié)議的設(shè)備可以使用GPRS網(wǎng)絡(luò)通信,提供RS232/RS485、USB等連接接口,能夠與串口設(shè)備通過(guò)相應(yīng)的數(shù)據(jù)線進(jìn)行連接,從而完成數(shù)據(jù)的有效傳輸[20-22]。
差分改正量信息是通過(guò)GPS基準(zhǔn)站中的GPRS DTU模塊2與GPRS DTU模塊1之間的通信傳遞到主控制單元的,并由主控制單元進(jìn)行進(jìn)一步處理。
主控制單元與遠(yuǎn)程服務(wù)器之間的通信,則是通過(guò)GPRS DTU模塊1來(lái)實(shí)現(xiàn)的。圖5為主控制單元與遠(yuǎn)程服務(wù)器通信的傳輸原理圖,GPRS DUT模塊1通過(guò)標(biāo)準(zhǔn)串行接口接收主控制單元所傳輸?shù)臄?shù)據(jù)信息,并將之予以處理后,形成GPRS分組數(shù)據(jù),該分組數(shù)據(jù)被傳輸?shù)紾SM基站,接著由服務(wù)GPRS支持節(jié)點(diǎn)(serving GPRS support nod,SGSN)對(duì)其進(jìn)行封裝處理,進(jìn)而被傳至GPRS網(wǎng)絡(luò),之后,網(wǎng)關(guān)支持節(jié)點(diǎn)(gateway GPRS support nod,GGSN)從GPRS網(wǎng)絡(luò)獲取被封裝的數(shù)據(jù)信息,并對(duì)數(shù)據(jù)信息進(jìn)行進(jìn)一步的處理,最后再以Internet網(wǎng)絡(luò)作為傳輸媒介將數(shù)據(jù)信息傳輸至遠(yuǎn)程服務(wù)器上。
圖5 GPRS傳輸原理圖Fig.5 Schematic of GPRS transmission
本設(shè)計(jì)中,主控制單元以STM32F103C8T6單片機(jī)為中央處理芯片[23-24],該芯片以ARM cortex-M3為內(nèi)核,可高速運(yùn)行、數(shù)據(jù)處理能力強(qiáng),其內(nèi)部自帶的12位逐次逼近型ADC模數(shù)轉(zhuǎn)換器,完全滿足設(shè)計(jì)的要求。系統(tǒng)采用PVDF壓電傳感器作為排種監(jiān)測(cè)傳感器,采用霍爾傳感器作為播種機(jī)速度傳感器,系統(tǒng)的主要硬件電路如圖6所示。
圖中,電容C1、C2和C3,電阻R1和R2,以及AD620構(gòu)成了信號(hào)放大器,用于放大PVDF壓電傳感器所產(chǎn)生的電壓信號(hào);由電阻R3、R4和R5,電容C5,以及LM324所組成的低通濾波器用于濾除信號(hào)中高頻信號(hào);OP07被用作電壓跟隨器,以便其能更好地實(shí)現(xiàn)與STM32的A/D采集接口之間的阻抗匹配;電容C4和C6起交流耦合作用。圖中NJK-5002C為霍爾傳感器,用于測(cè)量免耕播種機(jī)的前進(jìn)速度,但因其輸出量為NPN型開(kāi)關(guān)量,因此需要使用光耦合器TLP521來(lái)實(shí)現(xiàn)現(xiàn)場(chǎng)開(kāi)關(guān)量與STM32單片機(jī)間的電氣隔離,從而提高系統(tǒng)的電絕緣和抗干擾能力;MAX232是一款可以同時(shí)完成發(fā)送轉(zhuǎn)換和接收轉(zhuǎn)換雙重功能的專用芯片。圖中DB9為串口接口,用于連接GPRS DTU模塊1。系統(tǒng)采用液晶屏LCD12864來(lái)完成數(shù)據(jù)信息的顯示功能;選用美國(guó)型號(hào)為T(mén)rimble SPS852GPS的GPS接收器作為GPS移動(dòng)站,其RTK水平定位精度可達(dá)8 mm,速度進(jìn)度為0.1 km/h,定向精度為0.1o,更新頻率最大可達(dá)到20 Hz。圖中,R14、R15、Q1、A1、R16、R17、D1和D2構(gòu)成報(bào)警單元,用于聲光報(bào)警,其中A1為蜂鳴器,D1、D2為發(fā)光二極管。
圖6 系統(tǒng)主要電路原理圖Fig.6 Main schematic circuit diagram of system
本監(jiān)測(cè)系統(tǒng)的軟件包括2部分:系統(tǒng)硬件驅(qū)動(dòng)程序和遠(yuǎn)程服務(wù)器程序。系統(tǒng)硬件驅(qū)動(dòng)程序采用C語(yǔ)言編寫(xiě),易于移植,可讀性強(qiáng);遠(yuǎn)程服務(wù)器程序主要用于管理播種機(jī)排種監(jiān)測(cè)狀況,具有數(shù)據(jù)接收、存儲(chǔ)、查詢、統(tǒng)計(jì)、分析、處理和報(bào)警等功能,其圖形化界面能夠達(dá)到人機(jī)交互及遠(yuǎn)程監(jiān)測(cè)的目的。
3.1 系統(tǒng)硬件驅(qū)動(dòng)程序
系統(tǒng)硬件驅(qū)動(dòng)程序主要完成整個(gè)信息采集處理工作和處理后信息的遠(yuǎn)程傳輸控制,其程序設(shè)計(jì)流程圖如圖7所示。首先,程序?qū)ο嚓P(guān)硬件模塊進(jìn)行初始化設(shè)置,包括定時(shí)器的初始化和啟動(dòng)、A/D轉(zhuǎn)換器的初始化、液晶顯示屏的初始和串口初始化等。程序通過(guò)讀取A/D值、計(jì)算相連兩粒種子落下的時(shí)間間隔、計(jì)算播種機(jī)前進(jìn)速度,并結(jié)合理論播種株距d判斷是否出現(xiàn)漏播或重播現(xiàn)象。若出現(xiàn)重播或漏播現(xiàn)象,則讀取移動(dòng)站GPS接收器的輸出信息,并根據(jù)基準(zhǔn)站所發(fā)送的差分改正量信息,解算出此時(shí)的漏播或重播位置,之后,將進(jìn)行漏播或重播報(bào)警,并顯示相關(guān)的播種量、漏播量、重播量、漏播或重播位置等信息,同時(shí)將上述相關(guān)信息發(fā)送至遠(yuǎn)程服務(wù)器;反之,則繼續(xù)進(jìn)行播種狀況監(jiān)測(cè)。
圖7 程序流程圖Fig.7 Program flow chart
3.2 遠(yuǎn)程服務(wù)器程序
遠(yuǎn)程服務(wù)器程序即監(jiān)控中心管理軟件,主要包括2大部分,即監(jiān)測(cè)管理程序和數(shù)據(jù)庫(kù)。監(jiān)測(cè)管理程序需要為用戶提供功能強(qiáng)大的應(yīng)用程序和友好的人工交互界面,且易于操作。本文監(jiān)測(cè)管理程序設(shè)計(jì)采用微軟的Visual Basic 6.0編程環(huán)境進(jìn)行開(kāi)發(fā)。VisualBasic6.0開(kāi)發(fā)環(huán)境具有成熟、穩(wěn)定、操作簡(jiǎn)單和實(shí)用的特點(diǎn),并且提供了多種數(shù)據(jù)庫(kù)的連接,如ADO(ActiveX data objects,ActiveX數(shù)據(jù)對(duì)象)、DAO(dataaccessobject,數(shù)據(jù)訪問(wèn)對(duì)象)和RDO(remote data objects,遠(yuǎn)程數(shù)據(jù)對(duì)象)等接口連接,同時(shí)提供了一系列的網(wǎng)絡(luò)編程控件,如 Winsock、Internet Transfer和WebBrowser等控件,滿足設(shè)計(jì)需求。鑒于該系統(tǒng)的信息量不大,但對(duì)信息的完整性、一致性以及安全性有較高的要求,因此使用Access 2003作為數(shù)據(jù)庫(kù)。
遠(yuǎn)程服務(wù)器程序采用Winsock接口與主控制單元進(jìn)行數(shù)據(jù)交換,使用ADO接口連接Access 2003數(shù)據(jù)庫(kù),從而實(shí)現(xiàn)播種機(jī)排種狀況的遠(yuǎn)程監(jiān)測(cè)和管理。遠(yuǎn)程服務(wù)器軟件具有顯示、查詢、統(tǒng)計(jì)分析和報(bào)表打印等功能,同時(shí)能夠?qū)ε欧N狀況信息進(jìn)行判斷分析并提供重播、漏播報(bào)警提示,如圖8所示為遠(yuǎn)程服排種監(jiān)測(cè)管理系統(tǒng)登錄界面。
圖8 登錄界面Fig.8 Login interface
2015年春季在吉林農(nóng)業(yè)大學(xué)試驗(yàn)農(nóng)場(chǎng)進(jìn)行玉米的免耕播種田間試驗(yàn)。在試驗(yàn)前,將GPS移動(dòng)站安裝在具有2個(gè)播種單體的吉林康達(dá)2BMZF-2X型免耕播種機(jī)駕駛室頂部,并將GPS基準(zhǔn)站置于試驗(yàn)區(qū)附近,選用的玉米種子為“先玉335”。在試驗(yàn)開(kāi)始之前啟動(dòng)遠(yuǎn)程服務(wù)軟件,等待GPRS DTU模塊與服務(wù)器通信。試驗(yàn)時(shí),選取200 m長(zhǎng)的試驗(yàn)測(cè)區(qū),設(shè)置A/D閾值為1.5 V,理論株距為20 cm,播種前進(jìn)速度范圍為5~6 km/h。記錄每個(gè)播種單體試驗(yàn)結(jié)果,并將監(jiān)測(cè)系統(tǒng)所測(cè)結(jié)果與人工檢測(cè)結(jié)果進(jìn)行比較,如表1所示。人工檢測(cè)是指人工直接記錄試驗(yàn)區(qū)內(nèi)的種子粒數(shù)和粒距,并進(jìn)行統(tǒng)計(jì)分析。
圖9所示為遠(yuǎn)程服務(wù)器所監(jiān)測(cè)的播種狀況位置信息圖。將整個(gè)播種地塊設(shè)置為若干播種區(qū)域,計(jì)算每個(gè)區(qū)域的漏播率和重播率,并將計(jì)算結(jié)果與用戶在界面上設(shè)定的漏播率和重播率作比較。如果某個(gè)區(qū)域內(nèi)計(jì)算的漏播率或重播率超過(guò)用戶的設(shè)定值,則該區(qū)域以紅色填充表示漏播,以黃色填充表示重播;如果某個(gè)區(qū)域內(nèi)計(jì)算的漏播率和重播率兩者都超過(guò)了用戶設(shè)定值,則以紅色和黃色按對(duì)應(yīng)的比率填充該區(qū)域;否則,該區(qū)域以綠色填充表示播種正常。其中,用戶可以設(shè)定播種區(qū)域的大。
表1 田間試驗(yàn)對(duì)比結(jié)果Table 1 Comparison of field test results
圖9 遠(yuǎn)程監(jiān)測(cè)界面Fig.9 Interface of remote monitoring
1)本文設(shè)計(jì)了基于GPS和GPRS的遠(yuǎn)程排種監(jiān)測(cè)系統(tǒng),系統(tǒng)選用STM32單片機(jī)作為主控單元核心處理器,應(yīng)用PVDF壓電傳感器實(shí)時(shí)監(jiān)測(cè)指夾式排種器播種質(zhì)量信息,采用全球差分定位技術(shù)獲取播種質(zhì)量位置信息,通過(guò)GPRS DTU模塊,實(shí)現(xiàn)播種質(zhì)量信息數(shù)據(jù)的遠(yuǎn)程傳輸,遠(yuǎn)程服務(wù)器程序?qū)崿F(xiàn)數(shù)據(jù)接收、存儲(chǔ)、查詢、統(tǒng)計(jì)、分析、處理和報(bào)警等功能。
2)試驗(yàn)測(cè)試結(jié)果表明,系統(tǒng)對(duì)播種量檢測(cè)精度為97.4%,漏播檢測(cè)精度為96.1%,重播檢測(cè)精度為95.9%,系統(tǒng)性能穩(wěn)定、可靠,對(duì)重播量的監(jiān)測(cè)精度較高,能夠有效地檢測(cè)玉米播種質(zhì)量,并且實(shí)現(xiàn)了播種質(zhì)量信息位置的精確定位,能達(dá)到排種監(jiān)測(cè)數(shù)據(jù)遠(yuǎn)程收集、保存、監(jiān)測(cè)和管理的目的。
[1] 齊江濤,張書(shū)慧,牛序堂,等.穗狀玉米測(cè)產(chǎn)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(1):181-185. Qi Jiangtao,Zhang Shuhui,Niu Xutang,et al.Design and application of yield monitor system for corn ear[J].Transactions of the Chinese Society for Agricultural Machinery,2011,42(1): 1811-185.(in Chinese with English abstract)
[2] 史智興,高煥文.排種監(jiān)測(cè)傳感器的試驗(yàn)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2002,33(2):41-43. Shi Zhixing,Gao Huanwen.RLD optoelectronic sensor for seeding monitoring[J].Transactions of the Chinese Society for Agricultural Machinery,2002,33(2):41-43.(in Chinese with English abstract)
[3]馮全,栗震霄,吳建民,等.免耕播種機(jī)高抗塵排種監(jiān)測(cè)器的設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(9):68-70.Feng Quan,Li Zhenxiao,Wu Jianmin,et al.Development of dustproofannunciatorsystemforno-tillageplanter[J].Transactions of the Chinese Society for Agricultural Machinery,2006,37(9):68-70.(in Chinese with English abstract)
[4]趙立業(yè),蹇興東.排種性能檢測(cè)傳感器設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2005,36(7):41-43. Zhao Liye,Jian Xingdong.Study on optoelectronic sensor for performance detection of a seedmeter[J].Transactions of the Chinese Society for Agricultural Machinery,2005,36(7):41-43. (in Chinese with English Abstract).
[5] 周利明,王書(shū)茂,張小超,等.基于電容信號(hào)的玉米播種機(jī)排種性能監(jiān)測(cè)系統(tǒng)[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(13):16-21. Zhou Liming,Wang Shumao,Zhang Xiaochao,et al.Seed monitoring system for corn planter based on capacitance signal [J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2012,28(13):16-21.(in Chinese with English abstract).
[6] 黃東巖,賈洪雷,祁悅,等.基于聚偏二氟乙烯壓電薄膜的播種機(jī)排種監(jiān)測(cè)系統(tǒng)[J].農(nóng)業(yè)工程學(xué)報(bào),2013,29(23):15-22. Huang Dongyan,Jia Honglei,Qi Yue,et al.Seeding monitor system for planter based on polyvinylidence fluoride piezoelectric film[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2013,29(23):15-22. (in Chinese with EnglishAbstract).
[7] 宋鵬,張俊雄,李偉,等.精密播種機(jī)工作性能實(shí)時(shí)監(jiān)測(cè)系統(tǒng)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(2):71-74. Song Peng,Zhang Junxiong,Li Wei,et al.Real-time monitoring system for accuracy of precision seeder[J].Transactions of the Chinese Society for Agricultural Machinery,2011,42(2):71-74. (in Chinese with English abstract)
[8]谷宗冉,孟立凡,楊艷軍.基于GPRS的無(wú)線數(shù)據(jù)傳輸系統(tǒng)[J].電測(cè)與儀表,2010,47(Z2):46-48. Gu Zongran,Meng Lifan,Yang Yanjun.The system of wireless data transmission based on GPRS[J].Electrical Measurement& Instrumentation,2010,47(Z2):46-48.
[9]周祖良,錢(qián)簡(jiǎn)可.指夾式玉米精密播種排種器[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),1986,17(1):47-53. Zhou Zuliang,Qian Jianke.The structure design of the picker finger seed metering units of precision corn seed drill[J]. Transactions of the Chinese Society for Agricultural Machinery, 1986,17(1):47-53.(in Chinese with English abstract).
[10]劉立晶,劉忠軍,李長(zhǎng)榮,等.玉米精密排種器性能對(duì)比試驗(yàn)[J].農(nóng)機(jī)化研究,2011,33(4):155-157. Liu Lijing,Liu Zhongjun,Li Changrong,et al.Comparative experiment on corn spacing seed feeder[J].Journal of Agricultural Mechanization Research,2011,33(4):155-157.(in Chinese with English abstract).
[11]具典淑,周智,歐進(jìn)萍.PVDF壓電薄膜的應(yīng)變傳感特性研究[J].功能材料,2004,35(4):450-456. Ju Dianshu,Zhou Zhi,Ou Jinping.Study on strain-sensing of PVDF films[J].Journal of Functional Materials(Transactions of the CSAE),2004,35(4):450-456.(in Chinese with English abstract).
[12]王術(shù)新,李以哲.PVDF傳感器的設(shè)計(jì)及在振動(dòng)測(cè)量中的應(yīng)用[J].壓電與聲光,2004,26(5):374-376. Wang Shuxin,Li Yizhe.The design of PVDF sensors and its application to measurement of vibration parameters[J].Piezoelectrics &Acoustooptics,2004,26(5):374-376.(in Chinese with English Abstract).
[13]Kawai H.The piezoelectricity of poly(vinylidene fluoride)[J].Jpn J Appl Phys,1969,8(7):975-976.
[14]Karki S,Lekkala J,Kuokkanen H,et al.Development of a piezoelectric polymer film sensor for plantar normal and shear stress measurements[J].Sensors and Actuators A,2009,154(1): 57-64.
[15]鐘海彬,毛崎波.基于PVDF傳感器的階梯梁實(shí)驗(yàn)?zāi)B(tài)分析[J].傳感器與微系統(tǒng),2015,34(4):38-41. Zhong Haibin,Mao Qibo.Experimental modal analysis for stepped beam by using PVDF sensor[J].Transducer and Microsystem Technologies,2015,34(4):38-41.(in Chinese with EnglishAbstract).
[16]GB/T 6973-2005,單粒(精密)播種機(jī)試驗(yàn)方法[S].
[17]何勇,葛曉鋒,俞海紅,等.農(nóng)用GPS測(cè)試精度分析及提高精度方法的研究[J].農(nóng)業(yè)工程學(xué)報(bào),2004,20(2):168-171. He Yong,Ge Xiaofeng,Yu Haihong,et al.Analyses of measurement precision of GPS for agricultural purposes and method for improving precision[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2004,20 (2):168-171.(in Chinese with English Abstract).
[18]楊永平,馮立清,張輝.GPS偽距差分定位技術(shù)的試驗(yàn)研究[J].鐵道勘察,2006,1:14-17. Yang Yongping,Feng Liqing,Zhang Hui.A trial research on the pseudo-range differential positioning technique of GPS[J].Railway Investigation And Surveying,2006,1:14-17.(in Chinese with English abstract)
[19]楊興,樓向東,呂秀海.差分GPS定位技術(shù)在列車實(shí)時(shí)動(dòng)態(tài)追蹤系統(tǒng)中的應(yīng)用[J].煤礦現(xiàn)代化,2015,2:106-107. Yang Xing,Lou Xiangdong,Lü Xiuhai.Application of differential GPS positioning technology in real-time dynamic[J].Coal Mine Modernization,2015,2:106-107.(in Chinese with English abstract)
[20]籓田,郭世明.基于GPRS的機(jī)車實(shí)時(shí)監(jiān)測(cè)系統(tǒng)[J].國(guó)外電子測(cè)量技術(shù)2006,25(10):46-49.Pan Tian,Guo Shiming.Locomotive real-time monitoring system based on GPRS[J].Foreign Electronic Measurement Technology, 2006,25(10):46-49.(in Chinese with English abstract).
[21]王永濤,吳艷英,李家春,等.基于GPRS DTU的農(nóng)業(yè)灌溉施肥智能化控制系統(tǒng)的應(yīng)用研究[J].中國(guó)農(nóng)村水利水電,2013 (12):93-97. Wang Yongtao,Wu Yanying,Li Jiachun,et al.Research on agricultural irrigation fertilization on intelligent control system based on GPRS DTU[J].China Rural Water and Hydropower, 2013(12):93-97.(in Chinese with English Abstract).
[22]陳東升.基于GPRS的下水道氣體遠(yuǎn)程監(jiān)測(cè)系統(tǒng)設(shè)計(jì)[J].計(jì)算機(jī)測(cè)量與控制,2014,22(12):3932-3934. Chen Dongsheng.Design of sewer gas remote monitoring system based on GPRS[J].Computer Measurement&Control(Transactions of the CSAE),2014,22(12):3922-3934.(in Chinese with EnglishAbstract).
[23]楊偉,肖義平.基于STM32F103C8T6單片機(jī)的LCD顯示系統(tǒng)設(shè)計(jì)[J].微型機(jī)與應(yīng)用,2014,33(20):29-31,34. Yang Wei,Xiao Yiping.LCD display system design based on MCU STM32F103C8T6[J].Microcomputer&Its Applications, 2014,33(20):29-31,34.(in Chinese with English Abstract).
[24]周麗娜,周建平,許燕,等.基于STM32F103C8T6和ZigBee的油井壓力監(jiān)控系統(tǒng)研究[J].物聯(lián)網(wǎng)技術(shù),2014(6):38-41. Zhou Lina,Zhou Jianping,Xu Yan,et al.Oil well pressure monitoring system based on STM32F103C8T6 and Zigbee[J]. Internet of Things Technologies,2014(6):38-41.(in Chinese with English Abstract).
Remote monitoring system for corn seeding quality based on GPS and GPRS
Huang Dongyan1,2,Zhu Longtu1,Jia Honglei2※,Yu Tingting1,Yan Jing1
(1.College of Information,Jilin Agricultural University,Changchun 130118,China;2.Key Laboratory of Bionics Engineering,Ministry of Education,Jilin Agricultural University,Changchun 130025,China)
The information of corn sowing quality such as seeding amount,missed planting and repeated planting not only reflects the implementation effect of corn planting,but also is an important reference for accurate prediction of corn yields. It is very important to obtain the information of corn sowing quality and monitor and manage it remotely.In this paper,a remote seeding monitoring system based on GPS(global position system)and GPRS(general packet radio service)was designed.The system is mainly composed of a sensor signal acquisition unit,main control unit,DGPS(differential global positioning system),GPRS DTU(GPRS data transfer unit)module and remote server.It can monitor the seeding status of pickup finger seed-metering device in real time by a PVDF(polyvinylidene fluoride)piezoelectric sensor,and achieve a precise position of the seeding status by the DGPS.The data of sowing quality can be transmitted by GPRS DTU modules and managed by remote server software.In order to improve system monitoring accuracy,the PVDF piezoelectric sensor is attached to the seeding outlet baffle with a sectorial form.The sensor is soft,thin and highly sensitive.During the process of seeding,seeds hit the PVDF piezoelectric sensor one by one.The hits of seeds make the piezoelectric polarization inside the film.The sensor generates a voltage signal respectively.Therefore,the voltage signals generated by the piezoelectric sensor can be used to determine whether there is missed planting or repeated planting.The current seeding position is recorded by DGPS which can provide better accuracy than basic GPS.The DGPS consists of 2 parts,i.e.the GPS mobile station and GPS reference station.The GPS reference station comprises a GPS receiver,a GPRS DTU module and a single-chip microcomputer.The GPS mobile station is used to observe the GPS signals which are used for sowing position.The GPS reference station is used to make a correction data,which is used to reduce the deviation of sowing position.The GPS mobile station is fixed on the top of tractor and the main control unit is installed in the cab,and both of them are connected with each other by shielded wire.The GPS reference station can be placed anywhere within 10 km distance from planting site,and it is not allowed to move during the process of seeding.Another GPRS DTU module is used to transmit sowing quality data and position data from the main control unit to the remote server.A server application based on Visual Basic 6.0 and Access 2003 has been developed.The application has a powerful function and a friendly interaction interface,and it is easy to operate.By the server application,the sowing quality data can be monitored in real time and the sowing quality information can be shown in a map.The map is based on the actual percentage of missed planting and repeated planting, and there are 3 different colors to represent different information of corn sowing quality.Red represents missed planting, yellow represents repeated planting,and green represents normal.Meanwhile,the system also provides the function of query,statistical analysis,and printing reports.The system was applied for a field test.The experiment results showed that the system′s accuracy of seeding amount was 97.4%,accuracy of missed planting was 96.1%and accuracy of repeated rate was 95.9%.This system can effectively monitor seeding performance and have the function of monitoring and management for the sowing data remotely.
sensors;monitoring;crops;GPS;GPRS;PVDF piezoelectric sensor;single-chip microcomputers
10.11975/j.issn.1002-6819.2016.06.022
S232.3
A
1002-6819(2016)-06-0162-07
2015-10-15
2016-01-22
“十二五”國(guó)家科技計(jì)劃課題(2011BAD20B09);長(zhǎng)春市科技計(jì)劃項(xiàng)目(14KG087);吉林省教育廳“十二五”科學(xué)技術(shù)研究(201449)
黃東巖(1976-),男,吉林長(zhǎng)春人,教授,博士,主要從事農(nóng)業(yè)機(jī)械自動(dòng)化的研究。長(zhǎng)春 吉林農(nóng)業(yè)大學(xué)信息技術(shù)學(xué)院,130118。
Email:cchdy760829@sina.com
※通信作者:賈洪雷(1957-),男,吉林長(zhǎng)春人,教授,博士,主要從事保護(hù)性耕作全程機(jī)械化及其智能裝備的研究。長(zhǎng)春 吉林大學(xué),生物與農(nóng)業(yè)工程學(xué)院,130025。Email:jiahl@vip.163.com
農(nóng)業(yè)工程學(xué)報(bào)2016年6期