魯植雄,龔佳慧,魯 楊,刁秀永,程 準(zhǔn),姜春霞,周 晶
(南京農(nóng)業(yè)大學(xué)工學(xué)院,南京 210031)
拖拉機(jī)線控液壓轉(zhuǎn)向系統(tǒng)的雙通道PID控制仿真與試驗
魯植雄,龔佳慧,魯 楊,刁秀永,程 準(zhǔn),姜春霞,周 晶
(南京農(nóng)業(yè)大學(xué)工學(xué)院,南京 210031)
拖拉機(jī)線控液壓轉(zhuǎn)向系統(tǒng)采用的單桿液壓缸具有非對稱性,為了提高轉(zhuǎn)向系統(tǒng)的控制精度,提出了雙通道PID(proportional integral derivative)控制方法,對液壓缸活塞桿伸出和縮回的運動進(jìn)行分通道控制?;赟imHydraulics模塊建立線控液壓轉(zhuǎn)向系統(tǒng)的物理模型,對轉(zhuǎn)向輪的跟隨響應(yīng)、階躍響應(yīng)進(jìn)行仿真試驗;同時搭建了線控液壓轉(zhuǎn)向系統(tǒng)試驗臺,進(jìn)行臺架試驗,從而分析雙通道PID控制對轉(zhuǎn)向系統(tǒng)的影響。仿真試驗得出雙通道PID控制的跟隨誤差為0.473°、響應(yīng)時間為0.273 s,且左、右轉(zhuǎn)向跟隨誤差基本一致,均優(yōu)于單通道PID控制,臺架試驗結(jié)果與仿真試驗的效果一致。結(jié)果表明,線控液壓轉(zhuǎn)向系統(tǒng)在雙通道PID控制下響應(yīng)快,跟隨誤差更小,具有良好的跟隨性和較高的控制精度。
農(nóng)業(yè)機(jī)械;拖拉機(jī);線控液壓轉(zhuǎn)向;PID控制;雙通道;SimHydraulics
魯植雄,龔佳慧,魯 楊,刁秀永,程 準(zhǔn),姜春霞,周 晶.拖拉機(jī)線控液壓轉(zhuǎn)向系統(tǒng)的雙通道PID控制仿真與試驗[J].農(nóng)業(yè)工程學(xué)報,2016,32(6):101-106.doi:10.11975/j.issn.1002-6819.2016.06.014 http://www.tcsae.org
Lu Zhixiong,Gong Jiahui,Lu Yang,Diao Xiuyong,Cheng Zhun,Jiang Chunxia,Zhou Jing.Simulation and experiment of dual channel PID control for hydraulic steer-by-wire system of tractor[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2016,32(6):101-106.(in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.06.014 http://www.tcsae.org
目前大多數(shù)拖拉機(jī)的轉(zhuǎn)向系統(tǒng)采用液壓助力轉(zhuǎn)向系統(tǒng),其具有轉(zhuǎn)向靈活輕便、性能穩(wěn)定、布置方便等優(yōu)點。但其轉(zhuǎn)向靈敏度基本不可調(diào)節(jié),且不能將行駛的路感狀態(tài)傳遞給駕駛員[1-2]。隨著線控轉(zhuǎn)向技術(shù)的發(fā)展,有學(xué)者結(jié)合全液壓轉(zhuǎn)向和線控轉(zhuǎn)向,設(shè)計出線控液壓轉(zhuǎn)向系統(tǒng)(hydraulic steer-by-wire,HSBW)[3-5]。此系統(tǒng)將方向盤和轉(zhuǎn)向輪間的機(jī)械機(jī)構(gòu)取消,代之以信號傳遞駕駛員意圖,ECU(electronic control unit)接收到轉(zhuǎn)向信號后,產(chǎn)生相應(yīng)大小的電流來控制電液比例伺服閥的開度,從而使轉(zhuǎn)向油缸活塞桿產(chǎn)生位移,位移的方向決定了轉(zhuǎn)向方向,位移的大小決定了轉(zhuǎn)向角度。HSBW系統(tǒng)最大的優(yōu)點是可以自由地設(shè)計轉(zhuǎn)向系統(tǒng)的角傳動比和力傳動比,變角傳動比的實現(xiàn)可以在保證操縱穩(wěn)定性的前提下使駕駛員在多種工況下都能輕松轉(zhuǎn)向,減輕了駕駛員的負(fù)擔(dān);而變力傳動比的實現(xiàn)可以讓駕駛員獲得最貼近真實路感的力感[6-9]。
目前液壓缸較多采用非對稱缸,然而,非對稱液壓缸正反向運動特性不同[10-12],這就導(dǎo)致系統(tǒng)對不同方向的誤差調(diào)節(jié)的效果不同。國內(nèi)外學(xué)者對非對稱缸的控制問題都有所研究,大體分為兩類:一是控制器的設(shè)計,方一鳴等針對其非線性模型設(shè)計了控制器[9],使系統(tǒng)具有更強的魯棒性;二是采用智能控制方法對非對稱液壓缸進(jìn)行補償,實現(xiàn)非對稱液壓缸的對稱性控制,包括模糊控制、自適應(yīng)控制、神經(jīng)元控制以及綜合運用,起雪梅、殷小平等研究了模糊自適應(yīng)的方法對非對稱液壓缸進(jìn)行控制[13-15]。
傳統(tǒng)的PID(proportional integral derivative)控制對非對稱液壓缸控制時無法彌補其非對稱性。為了讓轉(zhuǎn)向系統(tǒng)控制精度提高,本文從問題的本質(zhì)出發(fā),提出了雙通道PID控制的方法,通過對誤差正負(fù)性的判斷確定液壓缸活塞桿運動方向,從而采用不同的PID參數(shù)控制,并通過仿真和臺架試驗,驗證了雙通道控制系統(tǒng)的精度和可靠度。1 控制算法
1.1 PID控制算法
PID控制算法具有魯棒性強、可靠性高、結(jié)構(gòu)簡單且在實際工程中容易實現(xiàn)等優(yōu)點,從而被廣泛運用于控制領(lǐng)域。本文研究的控制是對線控液壓轉(zhuǎn)向系統(tǒng)前輪轉(zhuǎn)角這一單一目標(biāo)進(jìn)行控制,綜合考慮此特點及PID控制算法的優(yōu)點,選擇PID作為前輪轉(zhuǎn)角的控制算法。
PID控制實質(zhì)是對目標(biāo)值和實際值的偏差信號進(jìn)行比例、積分、微分運算,運算結(jié)果的加權(quán)和形成系統(tǒng)的控制信號,從而對被控對象進(jìn)行控制,這就形成PID控制的一般規(guī)律[16-17]:
式中e(t)為偏差;kp為比例系數(shù);Ti為積分時間常數(shù);Td為微分時間常數(shù)。
1.2 雙通道PID控制
結(jié)合線控液壓轉(zhuǎn)向系統(tǒng)和非對稱液壓缸分析可知,前輪轉(zhuǎn)角的實際值與理想值偏差的正負(fù)性決定了液壓缸活塞桿的運動方向。若采用同一組PID對誤差進(jìn)行調(diào)節(jié),大小相同正負(fù)性不同的誤差作為輸入信號,PID控制器產(chǎn)生的對伺服閥開度的控制電流是一樣的,及流量一樣,但是由于活塞桿在兩個運動方向上工作腔分別為有桿腔和無桿腔,很明顯無桿腔的工作面積大于有桿腔,這就導(dǎo)致液壓缸活塞桿往不同的方向運動時,位移卻不同,即誤差調(diào)節(jié)在活塞桿不同的運動方向的效果是不同的。轉(zhuǎn)向精度的調(diào)節(jié)本質(zhì)上是對液壓缸活塞桿的左右運動位移進(jìn)行調(diào)節(jié),考慮到誤差非正即負(fù),可將液壓缸視為2個工作面積不一樣的液壓缸交替工作。因此最簡單直接的解決方法就是對2個液壓缸(正負(fù)誤差)采用不同的PID值分通道調(diào)節(jié),特點是對正負(fù)性不同、大小相同的誤差進(jìn)行調(diào)節(jié)時,PID值不同,電液比例伺服閥的控制電流不同,但由于工作腔工作面積的差異,最后可以保證液壓缸活塞桿的位移是一樣的,即保證調(diào)節(jié)精度。
線控轉(zhuǎn)向系統(tǒng)前輪轉(zhuǎn)角的控制原理框圖如圖1所示。
圖1 線控液壓轉(zhuǎn)向系統(tǒng)PID控制原理框圖Fig.1 Principle block diagram of PID(proportional integral derivative)control of hydraulic steer-by-wire system
方向盤轉(zhuǎn)角和前輪轉(zhuǎn)角分別為輸入和輸出信號,前輪轉(zhuǎn)角與角傳動比的乘積為反饋信號。接收到反饋信號后對預(yù)期的轉(zhuǎn)向盤轉(zhuǎn)角與反饋信號的差值做正負(fù)性判斷,根據(jù)正負(fù)性選擇相應(yīng)的PID組,進(jìn)行PID控制,如此反復(fù),使前輪轉(zhuǎn)角達(dá)到預(yù)期的角度。
2.1 SimHydraulics仿真模型
Matlab中專門針對液壓傳動和控制系統(tǒng)的建模和仿真工具SimHydraulics,它用相應(yīng)的模塊代替真實的液壓元件,建模過程其實是一個真實的物理系統(tǒng)的搭建,利用它進(jìn)行仿真的好處是省去了繁瑣的數(shù)學(xué)模型的推導(dǎo)過程,避免了建立數(shù)學(xué)模型時忽略的一些影響因素,以及做出很多的假設(shè)和簡化,使得到的數(shù)學(xué)模型精度不高的缺陷。同時模型思路更加直觀,過程也變得更加簡單[18-20]。本文利用SimHydraulics工具箱,根據(jù)線控液壓轉(zhuǎn)向系統(tǒng)的液壓圖建立雙通道PID控制系統(tǒng)模型。如圖2所示。模型中重要元器件的選型與參數(shù)設(shè)置均以試驗臺架為參考,具體如表1所示。
系統(tǒng)仿真原理圖的構(gòu)成:
1)油源模型:在不影響系統(tǒng)性能的前提下,省去濾油器等次要元件,只調(diào)用液壓油箱、液壓介質(zhì)、定量泵、蓄能器和溢流閥構(gòu)成油源,按照圖2所示結(jié)構(gòu)連接,根據(jù)實際設(shè)置參數(shù)。
2)線控液壓系統(tǒng)元件模型:調(diào)用三位四通換向閥、比例伺服閥驅(qū)動模塊、仿真信號到物理信號的轉(zhuǎn)換模塊、PID控制器、管道、雙向作用液壓缸、解法器,按照圖2所示結(jié)構(gòu)連接,并根據(jù)實際設(shè)置參數(shù)。
3)輪胎負(fù)載模型:調(diào)用理想位移傳感器、平移阻尼器、彈簧元件、機(jī)械移動參考、物理信號到仿真信號轉(zhuǎn)換模塊,按照圖2所示結(jié)構(gòu)連接,根據(jù)實際設(shè)置參數(shù)。
4)其他輔助模型:調(diào)用示波器、減法器、乘法器、信號發(fā)生器和函數(shù)等模塊構(gòu)建模型。
圖2 線控液壓轉(zhuǎn)向系統(tǒng)雙通道PID控制系統(tǒng)原理圖Fig.2 Principle diagram of dual channel PID control of hydraulic steer-by-wire system
表1 重要元器件的參數(shù)與選型Table 1 Parameters and selection of important components
圖中信號模塊給定轉(zhuǎn)向盤轉(zhuǎn)角,通過一系列運算模塊計算得到前輪的轉(zhuǎn)動方向和轉(zhuǎn)動角度,控制電磁比例伺服閥的開度,從而控制液壓油缸活塞桿移動相應(yīng)的位移,轉(zhuǎn)向輪轉(zhuǎn)一定的角度。并通過示波器輸出液壓油缸的位移。
將液壓油缸活塞桿的位移通過函數(shù)換算成轉(zhuǎn)向輪的角度后,反饋到信號的輸入端,形成閉環(huán)控制系統(tǒng)。再與初始的輸入信號比較得到誤差信號并根據(jù)誤差選擇相應(yīng)的PID通道,PID控制器的輸出信號控制比例伺服閥,如此反復(fù),使得轉(zhuǎn)向輪轉(zhuǎn)角更接近理想的角度。
2.2 仿真結(jié)果與分析
如果忽略轉(zhuǎn)向系統(tǒng)中硬件性能的影響,轉(zhuǎn)向輪的響應(yīng)能力就只取決于軟件的控制部分[21-22]。本文選擇轉(zhuǎn)向輪轉(zhuǎn)角控制效果來評價雙通道和單通道PID控制的優(yōu)劣。而轉(zhuǎn)向輪轉(zhuǎn)角控制效果通過轉(zhuǎn)向輪的響應(yīng)精度和響應(yīng)速度來判斷[23-26]。
PID的參數(shù)整定方法有很多種,本文結(jié)合仿真與試驗對PID參數(shù)進(jìn)行了整定,先整定單通道控制時的參數(shù),得到的PID值同時作為雙通道控制的其中一個通道的值,再根據(jù)判斷標(biāo)準(zhǔn)整定出雙通道的兩組PID值。PID值的具體設(shè)計見表2。
表2 PID參數(shù)值的設(shè)計Table 2 Design of PID parameter
利用已經(jīng)搭建的SimHydraulics模型,得到轉(zhuǎn)向輪的跟隨響應(yīng)、階躍響應(yīng)和跟隨誤差變化的仿真結(jié)果。
1)跟隨響應(yīng)
以幅值20、周期2πs的正弦信號作為輸入信號,跟隨響應(yīng)仿真結(jié)果如圖3a所示。雙通道和單通道PID控制的跟隨效果相差較小,但通過局部放大圖可以明顯看出,雙通道PID控制的跟隨曲線與原始轉(zhuǎn)角輸入信號貼合最緊密,即雙通道控制的效果明顯好于單通道PID控制。進(jìn)一步分析可知,雙通道PID控制的最大跟隨誤差為0.525°,小于單通道PID控制的1.315°。結(jié)合誤差變化的仿真結(jié)果,如圖3b所示,分析可得,雙通道PID控制的整體誤差較小,且誤差大小在不同的方向基本一致。由此可見,雙通道PID控制的系統(tǒng)更好,更穩(wěn)定。
圖3 單通道和雙通道PID控制仿真曲線圖Fig.3 Simulate measuring curves of single channel and dual channel PID control
2)階躍響應(yīng)
階躍響應(yīng)的仿真結(jié)果如圖3c所示,雖然兩者的穩(wěn)定時間都很短,誤差很小,由局部放大圖然可看出雙通道PID控制具有更快的響應(yīng)速度,穩(wěn)定時間較短。單通道PID控制和雙通道PID控制的穩(wěn)定時間為分別為0.273 s和0.334 s。
為了驗證線控液壓轉(zhuǎn)向系統(tǒng)雙通道PID控制的物理模型以及其優(yōu)越性,基于STC的IPA15F2K61S2芯片對線控液壓轉(zhuǎn)向系統(tǒng)臺架進(jìn)行控制,忽略路面的影響,分別完成了跟隨試驗和階躍響應(yīng)試驗。
1)跟隨響應(yīng)
跟隨性試驗主要是測試拖拉機(jī)臺架在當(dāng)前控制器下的響應(yīng)精度,以幅值40、周期6 s的正弦信號作為輸入信號,拖拉機(jī)臺架跟隨試驗的響應(yīng)曲線如圖4a所示。
圖4 單通道和雙通道PID控制臺架試驗曲線圖Fig.4 Experimental measuring curves of single channel and dual channel PID control
由響應(yīng)曲線可見,在連續(xù)轉(zhuǎn)向過程中,雙通道PID控制下的前輪轉(zhuǎn)角的響應(yīng)幾乎與輸入信號一致,具有較好的跟隨效果,明顯優(yōu)于單通道PID。分析數(shù)據(jù)可知,雙通道PID控制的最大跟隨誤差是6.72°,小于單通道PID控制的最大跟隨誤差10.08°。結(jié)合拖拉機(jī)臺架試驗的跟隨誤差變化曲線,如圖4b所示,顯然,在雙通道PID控制下,前輪轉(zhuǎn)角誤差在不同方向數(shù)值基本相同,且整體誤差較小。而單通道PID控制下的誤差在不同方向差距較大,這也與仿真試驗的結(jié)果一致。因此,臺架試驗進(jìn)一步說明了雙通道控制的系統(tǒng)控制精度高,且更穩(wěn)定、可靠。
2)階躍響應(yīng)
拖拉機(jī)臺架試驗的階躍響應(yīng)曲線如圖4(c)所示。分析可知,雙通道和單通道PID控制系統(tǒng)穩(wěn)定性都很好且穩(wěn)態(tài)誤差也小,前者幾乎為零,后者在1.2%左右。此外,雙通道PID控制的響應(yīng)時間為0.95 s,較單通道的1.35 s速度有所提高。
1)針對線控液壓轉(zhuǎn)向系統(tǒng)提出了一種雙通道PID控制方法,彌補了單桿液壓缸的缺陷,提高了轉(zhuǎn)向控制精度。
2)基于SimHydraulics建立了線控液壓轉(zhuǎn)向系統(tǒng)物理模型并進(jìn)行仿真試驗。雙通道PID控制的最大跟隨誤差為0.525°,響應(yīng)時間為0.273 s,與單通道PID控制相比,雙通道PID最大控制誤差降低60%,響應(yīng)速度提高了18%。
3)搭建了線控液壓轉(zhuǎn)向系統(tǒng)試驗臺,進(jìn)行了雙通道PID控制轉(zhuǎn)向的臺架試驗,臺架試驗結(jié)果與仿真的效果一致,控制精度和響應(yīng)速度均優(yōu)于單通道PID控制。
[1] 金月.線控液壓轉(zhuǎn)向?qū)嶒炁_的電液加載系統(tǒng)的研究[D].南京:南京農(nóng)業(yè)大學(xué),2013. Jin Yue.Study on the Electro-hydraulic Loading System Based on Hydraulic Steering-by-wire[D].Nanjing:Nanjing Agricultural University,2013.(in Chinese with English abstract)
[2] 王祥.汽車線控轉(zhuǎn)向系統(tǒng)雙向控制及變傳動比特性研究[D].長春:吉林大學(xué),2013. Wang Xiang.Research on Bilateral Control and Variable Ratio Characteristics for Steer-by-wire Automobile[D].Changchun: Jilin University,2013.(in Chinese with English abstract)
[3] 吳俊淦.拖拉機(jī)線控液壓轉(zhuǎn)向系統(tǒng)的路感控制策略研究[D].南京:南京農(nóng)業(yè)大學(xué),2014. Wu Jungan.Study on Road Feeling Control Strategy for Tractor Hydraulic Steering-by-wire[D].Nanjing:Nanjing Agricultural University,2014.(in Chinese with English abstract)
[4] 于蕾艷,林逸,施國標(biāo).汽車線控轉(zhuǎn)向技術(shù)概述[J].農(nóng)業(yè)裝備與車輛工程,2007,35(3):3-6. Yu Leiyan,Lin Yi,Shi Guobiao.Summarization of automobile steerby-wiretechnology[J].Agriculturalequipment&Vehicleengineering, 2007,35(3):3-6.(in Chinese with English abstract)
[5] 張廣慶,朱思洪,李偉華,等.鉸接擺桿式重型拖拉機(jī)線控轉(zhuǎn)向系統(tǒng)仿真與試驗[J].農(nóng)業(yè)機(jī)械學(xué)報,2014,45(2):28-33. Zhang Guangqing,Zhu Sihong,Li Weihua,et al.Simulation and experiment of steering by wire system of large wheel tractor with hinge swing link[J].Transactions of the Chinese Society for Agricultural Machinery,2014,45(2):28-33.(in Chinese with English abstract)
[6] 郟國中,賈振華,吳心平.線控轉(zhuǎn)向汽車的路感特性試驗設(shè)計研究[J].拖拉機(jī)與農(nóng)用運輸車,2012,39(4):36-39.Jia Guozhong,Jia Zhenhua,Wu Xinping.Research on road sense characteristics test of steer-by-wire vehicle[J].Tractor& Farm Transporter,2012,39(4):36-39.(in Chinese with English abstract)
[7] 鄭宏宇,宗長富,王祥.汽車線控轉(zhuǎn)向系統(tǒng)路感模擬方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2011,42(2):18-23. Zheng Hongyu,Zong Changfu,Wang Xiang.Road feel design for vehicle steer-by-wire system[J].Transactions of the Chinese Society for Agricultural Machinery,2011,42(2):18-23.(in Chinese with English abstract)
[8] 邱緒云,馮晉祥,于明進(jìn),等.車輛線控轉(zhuǎn)向路感模擬控制研究[J].控制工程,2011,18(1):25-28. Qiu Xuyun,Feng Jinxiang,Yu Mingjing,et al.Onroad feeling simulation control of vehicle steer-by-wire system[J].Control Engineering of China,2011,18(1):25-28.(in Chinese with English abstract)
[9]Balachandran A,Gerdes J.Designing steering feel for steer-bywire vehicles using objective measures[J].IEEE/ASME Transactions on Mechatronics,2014,20(1):373-383.
[10]李陽.單出桿對稱液壓缸電液伺服系統(tǒng)動靜態(tài)特性研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2012. Li Yang.Research on Dynamic and Static Characteristic of Electro-hydraulic Servo System ofSingle-rod Symmetric Cylinder[D].Harbin:Harbin Institute of Technology,2012.(in Chinese with English abstract)
[11]張曉寧,王巖,付永領(lǐng).非對稱液壓缸對稱性控制[J].北京航空航天大學(xué)學(xué)報,2007,33(11):1334-1339. Zhang Xiaoning,Wang Yan,Fu Yongling.Symmetric control of asymmetric cylinder[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(11):1334-1339.(in Chinese with English abstract)
[12]郝前華,何清華,賀繼林,等.非對稱液壓缸的動態(tài)特性仿真研究[J].廣西大學(xué)學(xué)報:自然科學(xué)版,2010,35(6):984-988. Hao Qianhua,He Qinghua,He Jilin,et al.Simulation study on dynamic characteristics of asymmetrical hydraulic cylinder[J]. Journal of Guang xi University:NatSci Ed.2010,35(6):984-988.(in Chinese with English abstract)
[13]方一鳴,鄧菲,石勝利,等.非對稱液壓缸位置伺服系統(tǒng)魯棒控制[J].農(nóng)業(yè)機(jī)械學(xué)報,2013,10:272-276. Fang Yiming,Deng Fei,Shi Shengli,et al.Robust control for position servo system of asymmetric hydraulic cylinder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013,10:272-276.(in Chinese with English abstract)
[14]起雪梅.非對稱液壓缸模糊自適應(yīng)PID控制的研究[J].中國西部科技,2015,14(1):57-59. Qi Xuemei.Study on the fuzzy adaptive PID control of valve controlled asymmetrical cylinder[J].Science and Technology of West China,2015,14(1):57-59.(in Chinese with English abstract)
[15]Wonhee K,Daehee W,Donghoon S,et al.Output feedback nonlinear control for electro-hydraulic systems[J].Mechatronics,2012,22(6):766-777.
[16]殷小平,劉玉絨,吳海丹,等.一種模糊自整定PID復(fù)合控制在非對稱液壓缸電液伺服系統(tǒng)中的應(yīng)用[J].機(jī)床與液壓,2008,10:151-153. Yin Xiaoping,Liu Yurong,Wu Haidan,et al.Application of fuzzy self-tuning setting PID in the electro-hydraulic servo system with unsymmetrical oil-cylinder[J].Machine Tool& Hydraulics,2008,10:151-153. (in Chinese with English abstract)
[17]閆森,徐彥偉,頡潭成,等.基于時基的通用數(shù)控車床雙通道控制方法研究[J].組合機(jī)床與自動加工技術(shù),2014,(7):80-83. Yan Sen,Xu Yanwei,Xie Tancheng,et al.Research on doublechannel control of general NC lathe based on Time-base[J]. Modular Machine Tool&Automatic Manufacturing Technique, 2014,(7):80-83.(in Chinese with English abstract)
[18]Ming X,Balakrishnan S N.Missile longitudinal autopilot design using a new suboptimal nonlinear control method[J].IEEE Processing Control Theory Application,2003,150(6):577-584.
[19]劉冰,高嵩,何寧.基于PID控制的導(dǎo)彈分通道仿真[J].電子設(shè)計工程,2009,17(11):97-99. Liu Bing,Gao Song,He Ning,et al.Missile sub-channel simulation based on PID control[J].Electronic Design Engineering, 2009,17(11):97-99.(in Chinese with English abstract)
[20]Roland P,Miguel A,Javier C,et al.Geared PM coreless motor modeling for driver’s force feedback in steer-by-wire systems[J]. Mechatronics,2011,21:1043-1054.
[21]Vincent N.Vehicle Handling Stability and Bifurcation Analysis for Nonlinear Vehicle Models[D].Washington:University of Mary Land,2005.
[22]Salnnai M K,Heydinder G J,Grygier P A.Experimentalsteering feel performance measure[R].SAE Paper 2004-01-1074,2004.
[23]王茂林.改進(jìn)遺傳算法及其在PID控制器參數(shù)優(yōu)化中的應(yīng)用[D].長春:吉林大學(xué),2011. Wang Maolin.Improved Genetic Algorithm and Its Application in PID Controller Parameter Optimization[D].Changchun:Jilin University,2011.(in Chinese with English abstract)
[24]刁秀永,魯植雄,梅士坤.拖拉機(jī)線控液壓轉(zhuǎn)向系統(tǒng)的聯(lián)合仿真[J].農(nóng)業(yè)現(xiàn)代化研究,2015,36(2):315-320. Diao Xiuyong,Lu Zhixiong,Mei Shikun,et al.Co-simulation on hydraulic steer-by-wire system of tractor[J].Research of Agricultural modernization,2015,36(2):315-320.(in Chinese with English abstract)
[25]胡東,趙湘文,蔡旭.基于SimHydraulics的兆瓦級風(fēng)機(jī)液壓型變槳系統(tǒng)仿真[J].機(jī)床與液壓,2009,37(10):205-208. Hu Dong,Zhao Xiangwen,Cai Xu.Simulation of hydraulic pitch-regulated mechanism of a megawatt wind turbine[J]. Machine Tool&Hydraulics,2009,37(10):205-208.(in Chinese with English abstract)
[26]沈文龍,薛金林,張永.農(nóng)業(yè)車輛電控液壓轉(zhuǎn)向系統(tǒng)的設(shè)計[J].湖南農(nóng)業(yè)大學(xué)學(xué)報,2014,40(3):325-329. Shen Wenlong,Xue Jinlin,Zhang Yong.Development of electrohydraulic steering system based on agricultural vehicle[J]. Journal of Hunan Agricultural University (Natural Sciences), 2014,40(3):325-329.(in Chinese with English abstract)
Simulation and experiment of dual channel PID control for hydraulic steerby-wire system of tractor
Lu Zhixiong,Gong Jiahui,Lu Yang,Diao Xiuyong,Cheng Zhun,Jiang Chunxia,Zhou Jing
(College of Engineering,Nanjing Agricultural University,Nanjing 210031,China)
The hydraulic steering-by-wire system abandons the mechanical connection between hand-wheel and front steering wheels,and thus the driver′s intent is delivered via electrical signal.The actuator of hydraulic steering-by-wire system is the hydraulic cylinder.ECU (electronic control unit)generates the corresponding electric current to control the opening of electro-hydraulic proportional servo valve after receiving the steering signal,which correspondingly leads to the displacement of steering hydraulic cylinder.The displacement direction determines the steering direction and the magnitude determines the steering angle.At present,asymmetric hydraulic cylinders are mostly adopted.However,due to the piston areas are varied as the piston rod moves in different directions,even if the opening of electro-hydraulic proportional servo valve and the pressure are fixed,the displacements of the piston rod vary under stretch and retracting condition.Combining hydraulic steering-by-wire system with asymmetric hydraulic cylinder,we know that accuracy adjustment of steering is essentially the adjustment of the hydraulic cylinder piston rod′s displacement on the left or right side.Therefore,the traditional PID(proportional integral derivative)control of hydraulic steering-by-wire system is not efficient for precise control of steering angle.Considering the error is either positive or negative in steering angel,to improve control accuracy,the hydraulic cylinder can be regarded as different hydraulic cylinders with different piston areas working alternately.This paper presented the idea of dual-channel PID control,in which way the 2 hydraulic cylinders (positive or negative error)used different channels with different PID parameter values.The characteristic of dual-channel control was that when the errors,whose magnitudes were same and positivity and negativity were different,were adjusted with different PID values,the control current of electro-hydraulic proportional servo valves was not same.However,the difference of cavity work area finally guaranteed the same displacement of hydraulic cylinder piston rod,namely the accuracy of adjustment.In addition,in order to avoid the low accuracy of a simplified mathematical model as well as the time-consuming defect of other software,we used SimHydraulics to build the physical model of hydraulic steering-by-wire system conforming to the real platform,whose preferences consulted the reality;the simulation of following response and steering angle pulse test of the steering wheel was completed,the test rig of hydraulic steering-by-wire system was set up, and then IPA15F2K61S2 chip of STC was chosen,which was written to the dual-channel control program to be a controller of the hydraulic steering-by-wire system platform.The steering wheel angle was the input signal of controller,and the product of the actual angle and the steering ratio was a feedback signal.The output signal of the controller was the current controlling the electromagnetic proportional servo valve.The experiments of the steering wheel were completed under the control of single channel and dual channels on platform;and the effect of dual-channel PID control on the system was analyzed by combining simulation and experiment results.Under the dual-channel PID control,the simulation results showed that,the following error was 0.473°and the step response time was 0.273 s,the errors in different directions were almost the same,and they were both superior to the performance of the traditional PID control,for which the following error was 1.315°and the step response time was 0.334 s.Moreover,compared with single channel PID control,the error of dualchannel PID control decreased by 64%,and the response speed increased by 18%.The results of experiments on platform were consistent with the simulation,which indicated that under the control of dual-channel PID,the response of hydraulic steering-by-wire system was faster,the following error was smaller,and the errors in positive and negative direction were almost the same.Thus,it is concluded that the system under the control of dual-channel PID has superior following performance and control precision as well as more desirable stability and reliability.
agriculture machinery;tractors;hydraulic steering-by-wire;PID control;dual channel;SimHydraulics
10.11975/j.issn.1002-6819.2016.06.014
TP23;S24
A
1002-6819(2016)-06-0101-06
2015-09-23
2016-01-26
江蘇省科技支撐計劃資金項目(BE2012384)
魯植雄,男,湖北武穴人,教授,博士生導(dǎo)師,主要從事車輛電子控制技術(shù)、車輛-地面系統(tǒng)力學(xué)研究。南京 南京農(nóng)業(yè)大學(xué)工學(xué)院,210031。Email:luzx@njau.edu.cn
中國農(nóng)業(yè)工程學(xué)會會員:魯植雄(E041200163S)