高建民,徐 強(qiáng),湯 靜
(江蘇大學(xué)現(xiàn)代農(nóng)業(yè)裝備與技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,鎮(zhèn)江212013)
E類諧振逆變低頻超聲霧化噴頭驅(qū)動(dòng)電路研制
高建民,徐 強(qiáng),湯 靜
(江蘇大學(xué)現(xiàn)代農(nóng)業(yè)裝備與技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,鎮(zhèn)江212013)
該文提出了一種E類諧振逆變低頻超聲霧化噴頭驅(qū)動(dòng)電路,以基本的E類諧振變換器為基礎(chǔ),結(jié)合超聲噴頭串聯(lián)諧振時(shí)的等效電路,設(shè)計(jì)并制作了一款高功率、低成本的超聲霧化驅(qū)動(dòng)電路。介紹了電路結(jié)構(gòu)、基本原理;分析了E類諧振逆變電路最佳工作狀態(tài)下的電路特性;給出了最佳狀態(tài)時(shí)理論分析、波形說明及公式推導(dǎo)。在理論參數(shù)設(shè)計(jì)的基礎(chǔ)上,結(jié)合saber仿真軟件對(duì)所求的理想?yún)?shù)驗(yàn)證,通過仿真波形圖與實(shí)驗(yàn)波形圖對(duì)比,結(jié)果表明,理論設(shè)計(jì)參數(shù)很好地符合仿真結(jié)果與實(shí)際結(jié)果。同時(shí),詳細(xì)分析了晶體管兩端的并聯(lián)電容的大小對(duì)電路的影響。
噴頭;噴霧;E類諧振逆變;最佳工作狀態(tài);saber軟件
高建民,徐 強(qiáng),湯 靜.E類諧振逆變低頻超聲霧化噴頭驅(qū)動(dòng)電路研制[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(6):82-88. doi:10.11975/j.issn.1002-6819.2016.06.011 http://www.tcsae.org
Gao Jianmin,Xu Qiang,Tang Jing.Development of low-frequency ultrasonic atomizing nozzle driving circuit with class E resonant inverter[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(6):82-88.(in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.06.011 http://www.tcsae.org
利用超聲能量使液體在氣相中形成細(xì)微霧滴的過程稱為超聲霧化[1]。近年來,超聲霧化已被應(yīng)用在眾多方面,如清洗[2]、噴涂、醫(yī)療、霧化栽培、加濕等。超聲霧化噴嘴種類多,按頻率區(qū)分有:低頻、中頻、高頻[3-4];按功率區(qū)分,大則上百瓦,小則幾瓦。針對(duì)不同頻率、不同功率的超聲波霧化噴嘴,超聲波霧化驅(qū)動(dòng)電路并不是單一的。從文獻(xiàn)回顧可以看出,目前有很多學(xué)者設(shè)計(jì)了超聲波霧化驅(qū)動(dòng)電路。如文獻(xiàn)[3]中研制的1.72 MHz、35 W的高頻超聲波霧化電路,其工作原理主要采用功率三極管和外圍電感、電容構(gòu)成的三點(diǎn)式振蕩電路,容易起振。但功率三極管的功率損耗較大,發(fā)熱明顯。然而,早在1998年日本學(xué)者[4]應(yīng)用鎖相環(huán)技術(shù)(phase locked loop,PLL)成功研制了1 MHz、60 W的高頻超聲換能器電路。通過檢測(cè)換能器電流與電壓的相位,如果兩者的相位發(fā)生偏差,將改變鎖相環(huán)芯片內(nèi)部壓控振蕩器(voltage-controlled oscillator,VCO)的振蕩信號(hào),從而能夠自動(dòng)追蹤到換能器的諧振頻率,確保換能器在最佳狀態(tài)下工作。但傳統(tǒng)的鎖相環(huán)技術(shù)頻率跟蹤范圍小,可靠性差,遇到較大干擾時(shí),有可能導(dǎo)致鎖相環(huán)失鎖等情況。隨著數(shù)字鎖相技術(shù)的發(fā)展,DSP(digital signal processor)技術(shù)[5-6]、DDS(direct digital synthesizer)技術(shù)[7-8]、PID(proportion integral derivative)控制[9]已被應(yīng)用在超聲波電源頻率跟蹤上,具有工作速度快、鎖相精度高等優(yōu)點(diǎn),具有良好的發(fā)展前景。但隨著系統(tǒng)的復(fù)雜性增加,保護(hù)電路就顯得尤為重要。相關(guān)參考文獻(xiàn)采用推挽型拓?fù)浣Y(jié)構(gòu)[10-12],結(jié)構(gòu)簡(jiǎn)單,成本低,主要是通過變壓器傳遞能量,然后在通過匹配網(wǎng)絡(luò)使換能器工作在純阻性狀態(tài)。在每半個(gè)周期內(nèi),推挽式變壓器一次側(cè)僅有一半的線圈在工作,因此變壓器利用率不高;開關(guān)管的耐壓值要大于輸入電壓的兩倍以上,所以不適合高電壓輸入[12]。本課題組曾研制的40 kHz、60 W的超聲霧化電路[13],該電路屬于單端脈沖激勵(lì)電路,利用脈沖變壓器升壓,串聯(lián)單個(gè)電感實(shí)現(xiàn)阻抗匹配,通過ARM9產(chǎn)生PWM(pulse width modulation)波控制開關(guān)管的開通與關(guān)斷。由于高頻變壓器漏感、繞組間分布電容及內(nèi)阻的存在,將會(huì)影響到換能器的匹配及電路的可靠性工作。試驗(yàn)表明,超聲霧化電路發(fā)熱嚴(yán)重,效率低。針對(duì)以上優(yōu)缺點(diǎn),本文提出了一款高效率,低成本的超聲波霧化驅(qū)動(dòng)電路,主功率部分采用E類諧振逆變電路[14],并結(jié)合換能器串聯(lián)諧振時(shí)等效電路,有效避免了高頻變壓器寄生參數(shù)對(duì)電路的影響。經(jīng)大量試驗(yàn)表明,此電路效率高,無明顯發(fā)熱,可長(zhǎng)時(shí)間工作,霧化效果好。
超聲霧化電路的結(jié)構(gòu)框如圖1所示,以非隔離式E類諧振DC/AC逆變電路作為主功率電路[14],驅(qū)動(dòng)電路主要控制E類諧振逆變電路中功率晶體管的開通與關(guān)斷,從而產(chǎn)生高頻電壓。因E類諧振逆變電路的輸出阻抗與噴頭的阻抗不一致,加入阻抗變換網(wǎng)絡(luò)實(shí)現(xiàn)阻抗變換。
圖1 超聲霧化電路結(jié)構(gòu)框圖Fig.1 Block diagram of ultrasonic atomization circuit
圖2為超聲霧化基本電路圖,電路包括直流電源VDC、扼流圈電感LRFC、功率晶體管S、開關(guān)管驅(qū)動(dòng)信號(hào)VGS、占空比D、開關(guān)頻率f、并聯(lián)電容C=C1+C2(C1為線路間的雜間電容與晶體管的輸出電容之和,C2為要使電路達(dá)到最佳狀態(tài)所外加的電容)、串聯(lián)諧振電感Ls、串聯(lián)諧振電容Css、阻抗匹配電容CP、噴頭。電路由有源器件開關(guān)、負(fù)載網(wǎng)絡(luò)和負(fù)載三個(gè)部分組成[14],見圖3。當(dāng)功率晶體管S以頻率f周期性工作時(shí),晶體管S漏極輸出周期性高頻脈沖電壓。從頻域的角度可知,任何周期性波形都可以有若干不同頻率(基頻的整數(shù)倍)的正弦或余弦波疊加而成。當(dāng)周期性高頻脈沖電壓通過負(fù)載網(wǎng)絡(luò)時(shí),可以抑制超聲噴頭兩端的諧波分量,從而選出基頻分量f。因此,在負(fù)載網(wǎng)絡(luò)品質(zhì)因數(shù)適當(dāng)?shù)那疤嵯?,超聲噴頭兩端可獲得與激勵(lì)頻率f同頻的正弦交流信號(hào)。簡(jiǎn)單地說,當(dāng)功率晶體管S按激勵(lì)方波信號(hào)周期性工作時(shí),通過負(fù)載網(wǎng)絡(luò)實(shí)現(xiàn)了來自電源的直流能量到交流能量的轉(zhuǎn)變,負(fù)載網(wǎng)絡(luò)不僅可以抑制開關(guān)頻率諧波,而且可以實(shí)現(xiàn)變換以調(diào)整負(fù)載阻抗。
圖2 超聲霧化基本電路圖Fig.2 Basic circuit for ultrasonic atomization
圖3 超聲霧化電路工作原理示意圖Fig.3 Sketch of operational principle of ultrasonic atomization circuit
下面對(duì)超聲霧化電路驅(qū)動(dòng)主電路在各階段的工作原理及波形簡(jiǎn)要分析。首先作如下3點(diǎn)假設(shè)[14-16]:
1)扼流圈電感LRFC足夠大,流過扼流圈電感的電流脈動(dòng)量小,因此,可認(rèn)為輸入電流為一直流量。
2)忽略晶體開關(guān)管S的導(dǎo)通電阻,關(guān)斷電阻視為無窮大;晶體開關(guān)管S瞬間完成開通與關(guān)斷。
3)諧振回路品質(zhì)因數(shù)適當(dāng)高,確保流過負(fù)載(噴頭)的電流是正弦波。
為方便分析,將圖2簡(jiǎn)化,晶體功率開關(guān)管S工作在飽和與截止?fàn)顟B(tài),相當(dāng)于機(jī)械開關(guān)S。流過噴頭的電流為正弦波電流,等效為正弦波信號(hào),如圖4所示。圖4中,il為流過扼流圈電感的電流,iS為流過開關(guān)S的電流,iC為流過并聯(lián)電容C的電流,i為負(fù)載電流,VS為并聯(lián)電容C兩端的電壓。
圖4 簡(jiǎn)化模型Fig.4 Simplified model
2.1 工作模式Ⅰ(0≤t≤t1)
開關(guān)管S關(guān)斷初,直流電壓VDC對(duì)扼流圈電感LRFC充電儲(chǔ)能,且并聯(lián)電容C被短路,兩端的電壓為零。當(dāng)開關(guān)S關(guān)斷時(shí),流過開關(guān)管S的電流iS瞬間被轉(zhuǎn)移到并聯(lián)電容C上,其電流大小為扼流圈電感電流il與負(fù)載電流i之差。原先儲(chǔ)存在扼流圈電感中的能量被轉(zhuǎn)移到諧振回路中,并聯(lián)電容C兩端的電壓VS由零開始上升。當(dāng)負(fù)載電流i等于扼流圈電感電流il時(shí),流過并聯(lián)電容的電流iC由正變?yōu)榱悖藭r(shí),并聯(lián)電容C兩端的電壓VS達(dá)到最大值。隨之,并聯(lián)電容的電流iC由零變?yōu)樨?fù),并聯(lián)電容C開始放電,電壓下降。當(dāng)負(fù)載電流i再次等于扼流圈電感電流il時(shí),并聯(lián)電容C放電完成,進(jìn)入下一階段。值得注意的是,開關(guān)管S于零電流與零電壓切換導(dǎo)通,切換導(dǎo)通損耗幾乎為零,其工作模式的電流、電壓波形如圖5所示。
2.2 工作模式Ⅱ(t1≤t≤T)
t1時(shí)刻,開關(guān)管S導(dǎo)通,并聯(lián)電容C被短路,直流電壓VDC對(duì)扼流圈電感充電,流過開關(guān)管S的電流iS等于負(fù)載電路i與扼流圈電感il之和。隨著開關(guān)管S的電流iS的逐漸增大,當(dāng)達(dá)到與扼流圈電感電流il相等時(shí),負(fù)載電流i開始換向,由正變?yōu)樨?fù)。以此類推,一個(gè)周期的工作模式結(jié)束,開始進(jìn)入下一個(gè)高頻周期的工作模式Ⅰ,其工作模式的電流、電壓波形如圖5所示。
圖5 理想電流與電壓波形Fig.5 Ideal current and voltage waveforms
超聲波霧化噴頭諧振附近時(shí)的等效電路圖如圖6(b)所示[11],C0為靜態(tài)電容,R1為動(dòng)態(tài)電阻,L1為動(dòng)態(tài)電感,C1動(dòng)態(tài)電容。當(dāng)電路工作在串聯(lián)諧振頻率時(shí),圖2中的超聲霧化噴頭可等效為圖6(c)所示的等效電路。
圖6(c)中的總阻抗Z1(從左向右看),分為一條電容C0支路與另一條電阻R1支路并聯(lián)得到的阻抗,其總阻抗大小為:
式中ω=2πf為開關(guān)頻率的角頻率,rad/s;f為開關(guān)頻率,kHz。R1為動(dòng)態(tài)電阻,Ω;C0為靜態(tài)電容,nF;Z1為電阻R1與電容C0并聯(lián)總阻抗,Ω。
圖6 噴頭等效電路模型Fig.6 Equivalent circuit model of nozzle
靜態(tài)電容C0與動(dòng)態(tài)電阻R1并聯(lián)可等效成一電阻R與電容Cm串聯(lián),其總阻抗大小為:
式中R為等效串聯(lián)電阻,Ω;Cm為等效串聯(lián)電容,nF;Z2為電阻R與電容Cm串聯(lián)總阻抗,Ω。
令Z1=Z2得:
從上式可以看出,假設(shè)R1,ω兩參數(shù)為定量時(shí),只改變C0的值,R的值發(fā)生變化。當(dāng)輸入阻抗與輸出阻抗不匹配時(shí),可以在負(fù)載兩端并聯(lián)電容用于阻抗變換。所以,圖2中,參數(shù)Cp起到阻抗變換的作用。
綜上分析,根據(jù)超聲霧化噴頭在串聯(lián)諧振時(shí)的等效電路圖,利用RC串并聯(lián)及等效阻抗變換的關(guān)系,可將超聲霧化驅(qū)動(dòng)電路(圖2),轉(zhuǎn)化為最基本的E類諧振逆變電路(圖4)[14,18-19]。
依據(jù)上述假設(shè)(3),負(fù)載品質(zhì)因數(shù)Q適中,則流過負(fù)載R的電流i為正弦波,故設(shè)負(fù)載電流i的值為:
式中i為負(fù)載電流,A;Im為負(fù)載電流i幅值,A;θ為負(fù)載電流i的初始相位角度,(°);t為時(shí)間,s。
由圖5知,在開關(guān)管S導(dǎo)通時(shí),即在2(k+1)π-2πD≤ωt≤2(k+1)π期間,流過開關(guān)管S的電流iS可表示為:
式中iS為流過開關(guān)S的電流,A;il為流過扼流圈電感LRFC的電流,A。
當(dāng)開關(guān)管S截止時(shí),即在2kπ≤ωt≤2(k+1)π-2πD期間,流過開始管S的電流iS為零,瞬間轉(zhuǎn)移到旁邊的并聯(lián)支路C上,其電流iC可表示為:
式中iC為流過并聯(lián)電容C的電流,A。
此階段,電容C兩端的電壓VS可以表示為:
式中VS為電容C兩端的電壓,V;C為并聯(lián)電容,nF;t1為開關(guān)斷開時(shí)間,s;D為占空比。
因電路工作在理想狀態(tài)[22],即當(dāng)ωt1=2π(1-D)時(shí),滿足VS=0,dVS/dt1=0,代入上式可得到如下方程:
方程式(10)~(17)是依據(jù)上面超聲霧化驅(qū)動(dòng)電路的工作原理推導(dǎo)出來的:
式中VDC為輸入電壓,V;P為輸出功率,W。
式中CS為負(fù)載電阻為R時(shí)的諧振電容,nF;l為剩余電感,mH;Q為負(fù)載網(wǎng)絡(luò)品質(zhì)因數(shù)。
式中LS為諧振電感,mH。
式中CP為阻抗匹配電容,nF。
式中CSS為諧振回路電容,nF。
為驗(yàn)證上述設(shè)計(jì)方法的可行性,對(duì)本課題組研制的頻率為60 kHz,功率為15 W的超聲霧化噴嘴試驗(yàn)[21]。超聲霧化噴頭的具體參數(shù)如下:
表1 60 kHz超聲霧化噴頭阻抗測(cè)試結(jié)果Table 1 Results of 60 kHz ultrasonic atomization nozzle impedance tests
此噴頭的驅(qū)動(dòng)電路設(shè)計(jì)指標(biāo):輸入電壓VDC為36 V;占空比D為0.39;噴頭功率為15 W;品質(zhì)因素Q為10。
依據(jù)上面的推導(dǎo)公式,分別求出各元器件參數(shù):并聯(lián)電容C為28.21 nF,諧振電感LS為0.686 mH,諧振電容Css為14.012 nF,阻抗變換電容CP為56.531 nF,扼流圈電感足夠大,選取LRFC為8 mH。
利用saber仿真軟件構(gòu)建本文所設(shè)計(jì)的超聲霧化驅(qū)動(dòng)電路的主電路,如圖7所示。
圖7 saber環(huán)境下的仿真電路圖Fig.7 Circuit simulation under saber environment
圖7中,電感、電容均為理想元器件,忽略其內(nèi)阻。功率晶體管S選擇IRF530作為開關(guān)管。在saber環(huán)境中,IRF530為理想模型,導(dǎo)通電阻為零,不考慮晶體管極間電容。但實(shí)際電路調(diào)試中,必須考慮晶體管極間電容及線路雜間電容,并聯(lián)電容C是非常重要的參數(shù)之一,決定著電路是否處于最佳工作狀態(tài)。若C為理想值時(shí),當(dāng)電容C所儲(chǔ)存的電荷量在開關(guān)管S開通時(shí),電荷量釋放完畢,開關(guān)管S零電壓導(dǎo)通,減少了開關(guān)管電壓應(yīng)力,如圖8(a)、8(b)所示。若電容C值偏大,電容C兩端電壓上升速率與下降速率變慢,當(dāng)電容C處于放電階段時(shí),在一定時(shí)間內(nèi)不能完全將所儲(chǔ)存的電荷量釋放完,如圖8(c)、8(d)所示,開關(guān)管處于非零點(diǎn)電壓導(dǎo)通,增加開關(guān)管導(dǎo)通損耗,發(fā)熱明顯。同理,若電容C偏小,電容C兩端的電壓上升速率與下降速率變快,當(dāng)C處于放電階段時(shí),電容C儲(chǔ)存的電荷量提前釋放完成,因場(chǎng)效應(yīng)晶體管S內(nèi)置反向二極管,為電流i1-i提供一條回路,且反向二極管鉗位,當(dāng)電流i1-i由負(fù)變?yōu)檎龝r(shí),此時(shí),開關(guān)S仍處于斷開狀態(tài),電流i1-i給電容C充電,形成了圖8(e)、8(f)中的小尖峰。
諧振電感LS與諧振電容的CSS對(duì)電路也會(huì)產(chǎn)生影響,諧振電容CSS比理想值偏?。ɑ蛑C振電感LS偏?。?、諧振電容CSS比理想值偏大(或諧振電感偏大)對(duì)電路會(huì)產(chǎn)生不一樣的影響。圖8(g)、8(h)給出了諧振電容偏小的情況,如在調(diào)試中出現(xiàn)圖中所示的情況,需要適當(dāng)?shù)脑黾又C振電容CSS的值。
以上討論的只是單一變量的情況,然而在實(shí)際調(diào)試中,可能會(huì)出現(xiàn)多個(gè)變量因素的影響,可通過實(shí)際情況或者結(jié)合仿真軟件,在仿真環(huán)境中改變變量的值,與實(shí)際波形對(duì)比。圖9(b)中,給出了試驗(yàn)中理想狀態(tài)下的負(fù)載電壓波形圖,并與仿真圖9(a)對(duì)比,由此可見,實(shí)際波形圖與仿真波形圖基本一致。
圖10(a)為基于E類諧振逆變的超聲霧化主電路圖,圖10(b)為霧化效果圖,從圖中可以看出霧化效果明顯。
圖8 開關(guān)電壓VS仿真波形與試驗(yàn)波形對(duì)比Fig.8 Comparison of simulated and experimental waveforms of the switch voltage VS
圖9 負(fù)載電壓V0仿真波形與試驗(yàn)波形對(duì)比Fig.9 Comparison of simulated and experimental waveforms of load voltage V0
圖10 主電路與霧化效果圖Fig.10 Figures of main circuit and atomization effect
1)E類諧振逆變電路的關(guān)鍵部分是負(fù)載網(wǎng)絡(luò)結(jié)構(gòu),通過選擇適當(dāng)?shù)呢?fù)載網(wǎng)絡(luò)參數(shù)使晶體功率管兩端的電壓與流過晶體管的電流交錯(cuò)開來,即功率晶體管上的電流與電壓不同時(shí)出現(xiàn),開關(guān)損耗降低,提高了電路的效率。并且根據(jù)負(fù)載電壓波形圖可以得出,E類諧振逆變電路可以獲得很好的正弦波電流。
2)在電路設(shè)計(jì)過程中,負(fù)載、功率、輸入電壓3個(gè)參數(shù)相互關(guān)聯(lián),若以噴頭參數(shù)及功率作為已知條件,計(jì)算出輸入電壓為51 V,不符合噴頭負(fù)載的驅(qū)動(dòng)要求。因此,本文以噴頭驅(qū)動(dòng)電壓36 V、功率15 W作為已知條件,通過添加阻抗匹配網(wǎng)絡(luò),完成超聲波霧化電源的設(shè)計(jì)。
3)并聯(lián)電容C兩端的電壓波形是判斷電路是否處于理想狀態(tài)的重要依據(jù)之一,本文研究了負(fù)載網(wǎng)絡(luò)參數(shù)的變化對(duì)電路的影響,并提供了理想與非理想狀態(tài)并聯(lián)電容C兩端的電壓波形圖,通過仿真波形與試驗(yàn)波形對(duì)比,結(jié)果基本一致,為電路調(diào)試提供依據(jù)。
[1]Rajan R,Pandit A B.Correlations to predict droplet size in ultrasonic atomization[J].Ultrasonics,2001(39):235-255.
[2]Kou Hao,Method for cleaning TFT-LCD glass substrate,US Patent 8945311B2[P].2015-03.
[3]徐振江.超聲霧化器中皮爾斯晶振電路射極電感的穩(wěn)頻作用[J].天津理工學(xué)院學(xué)報(bào),1992,(2):61-65.
[4]Ishikawa J,Suzuki T,et al.New type of compact control system for frequency and power in megasonic transducer drive at 1 MHz [J].IEEE Industry Applications Conference,1998,3:1638-1643.
[5]Kuang Y,Jin Y,Cochran S,et al.Resonance tracking and vibration stablilization for high power ultrasonic transducers[J]. Ultrasonics,2014,54(1):187-154.
[6]Guan Qiangdong,Lei Song.Research and application on the frequency automatic tracking of ultrasonic power based on DSP [J].Proceedingsofthe2012InternationalConferenceonAdvanced Mechatronic Systems,2012:478-481.
[7]Li Qunming,Zhu Ling,Wang Fuliang.Design of ultrasonic generator based on DDS and PLL technology[J].High Density Packaging and Microsystem Integration,2007,1-4.
[8]李小雪,汪東,李平,等.基于DDS的超聲換能器頻率跟蹤系統(tǒng)[J].壓電與聲光,2009,31(5):692-694. Li Xiaoxue,Wang Dong,Li Ping,et al.Frequency tracing system for piezoelectric transducer based on DDS[J].Piezoelectrics& Acoustooptics,2009,31(5):692-694.(in Chinese with English abstract)
[9] 屈百達(dá),韓志剛.一種換能器頻率跟蹤與振幅穩(wěn)定方法的研究[J].壓電與聲光,2014,36(5):845-848.
[10]翟偉翔,白焰,翟玲玲.智能化功率超聲電源的研制[J].電力電子技術(shù),2006,40(6):65-67. ZhaiWeixiang,BaiYan,ZhaiLingling.Developmentofintelligent power ultrasonic power supply[J].Power Electronics,2006,40 (6):65-67.(in Chinese with English abstract)
[11]潘仲明,祝琴.壓電換能器阻抗匹配技術(shù)研究[J].應(yīng)用聲學(xué),2007,26(6):357-361. Pan Zhongming,Zhu Qin.Study of impedance matching technology for piezoelectric transducer[J].Applied Acoustics, 2007,26(6):357-361.(in Chinese with English abstract)
[12]Lin F J,Wai R J,Lee C C.Fuzzy neural network position controller for ultrasonic motor drive using push-pull DC-DC converter[J].Control Theory and Applications,1999,146(1), 99-107.
[13]劉昌鑑.超聲霧化栽培根系霧滴分布測(cè)試試驗(yàn)臺(tái)設(shè)計(jì)及試驗(yàn)[D].鎮(zhèn)江:江蘇大學(xué),2013. Liu Changjian.Research on Design and Test of Root Droplet Distribution Test Platform for Ultrasonic Atomization Cultivation [D].Zhenjiang:Jiangsu University,2013. (in Chinese with English abstract)
[14]Sokal N,Sokal A.Class E-A new class of high-efficiency tuned single ended switching power amplifier[J].IEEE Journal of Sold-State Circuits,1975,10(3):168-176.
[15]Raab F H,Idealized operation of the class E tuned power amplifier[J].IEEE Transactions on Circuits and Systems,1977, 24(12):725-735.
[16]Kazimierczuk M K,Puczko K.Class E tuned power amplifier with antiparallel diode or series diode at switch,with any loaded Q and switch duty cycle[J].IEEE Transactions Circuits,1989, 36:1201-1209.
[17]Kazimierczuk M K,Puczko K.Effect of the collector current fall time on the Class E tuned power amplifier[J].IEEE Journal of Sold-State Circuits,1983,18:181-193.
[18]Acar M,Annerma A,Nauta B.Analytical design equations for Class-E power amplifiers[J].IEEE Transactions Circuits,2007, 54(12):2706-2717.
[19]Ebert J,Kazimierczuk M,Class E high-efficiency tuned power oscillator[J].IEEE Journal of Sold-State Circuits,1981,16(2): 62-66.
[20]邱關(guān)源.電路(第5版)[M].北京:高等教育出版社,2006.5
[21]高建民,陸岱鵬,劉昌鑑,等.微型指數(shù)振子低頻超聲霧化噴頭的研制及噴霧試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(4):40-46. Gao Jianmin,Lu Daipeng,Liu Changjian,et al.Development and spray test of micro index low-frequency ultrasonic nozzle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2014,30(4):40-46.(in Chinese with English abstract)
[22]Mury T,Fusco V F.Sensitivity characteristics of inverse class-E power amplifier[J].IEEE Transactions Circuits,2007,54(4): 768-778.
Development of low-frequency ultrasonic atomizing nozzle driving circuit with class E resonant inverter
Gao Jianmin,Xu Qiang,Tang Jing
(Key Laboratory of Modern Agricultural Equipment and Technology,Ministry of Education,Jiangsu University,Zhenjiang 212013,China)
Ultrasonic atomization atomizers are widely used in many fields with their excellent atomization properties. However,as a key part of ultrasonic atomization system,ultrasonic atomization nozzle driving powers are still costly, inefficient and unstable.In order to design an ultrasonic atomization driving circuit with high efficiency and low cost,a class-E resonant converter of high efficiency and low power dissipation was developed in this paper.The class-E inverter is a well-known resonant converter that can generate high-frequency sinusoidal current and has high power conversion efficiency.Only one transistor with a control circuit was used in the main power circuit,which made the class-E resonant converter high efficiency and low cost solution for low frequency ultrasonic atomization atomizers.The nozzle adopted in this paper was a novel micro index and low frequency ultrasonic nozzle whose parameters were as follows:input voltage 36 V,resonant frequency 60 kHz and output power 15 W.A class-E resonant inverter merged with the series resonance equivalent circuit of nozzle at its resonance frequency was used to drive the low-frequency ultrasonic atomizer at zero voltage switching.It was analyzed that the basic circuit structure,working principles and circuit characteristics of class E resonant inverter circuit under the optimal working condition.Additionally,a simplified model and merged model were respectively used to calculate waveforms and ideal parameters of this ultrasonic nozzle.The ideal parameters were validated based on the theoretical calculations and simulations conducted in saber software.However,the voltage waveform across the switch S was the key point to determine circuit performances.The shunt capacitor C,which was one of key parameters,was composed of the MOSFET output capacitance,the choke parasitic capacitance and the external shunt capacitance.When the value of the shunt capacitor C was properly designed,the energy stored in the shunt capacitor C discharged entirely just before the switch S turned on and the switch turned on at zero voltage.In this case,with less switching lost,the maximum power could be achieved.When the value of shunt capacitance C was larger than optimal value,the voltage rate of rise and fall across the shunt capacitance C decreased during the switch off and the switch voltage waveform did not reach zero prior to turn-on switching.Therefore,the switching losses occurred instantly when the switch turned on and the MOSFET may be burned out.In contrast,when the value of capacitance C was smaller than ideal value,the energy stored in the shunt capacitor C was discharged completely in advance.Furthermore,the MOSFET body diode turned on when the switch current was negative.Therefore,the turn-on switching losses and the large conduction losses of the body diode occurred at the same time.In order to verify the design method,a driving circuit of a 15 W ultrasonic atomization nozzle was built.The experimental results showed that the class-E resonant inverter could be succeeded in applying to drive the low-frequency nozzle and the circuit efficiency was 85%or more.The designed circuit was investigated as a good solution to drive the lowfrequency ultrasonic atomization nozzle.Additionally,experimental waveforms were in a good agreement with simulation results.From the waveform charts,we can obtain methods of the quantitative parameter adjustment to reach optimum condition.
nozzle;spraying;class E resonant inverter;optimal state;saber software
10.11975/j.issn.1002-6819.2016.06.011
S224.3
A
1002-6819(2016)-06-0082-07
2015-09-23
2016-01-25
國(guó)家自然科學(xué)基金資助項(xiàng)目(51275214);江蘇省自然科學(xué)基金資助項(xiàng)目(BK2011470);江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目(蘇財(cái)教(2011)8號(hào))
高建民(1971-),男,江西吉水人,研究員,博士,主要從事超聲精密噴霧技術(shù)研究,2010-2011年由教育部公派赴美國(guó)農(nóng)業(yè)部研究院農(nóng)業(yè)工程應(yīng)用技術(shù)國(guó)家實(shí)驗(yàn)室研修(USDA/ARS)。鎮(zhèn)江 江蘇大學(xué)現(xiàn)代農(nóng)業(yè)裝備與技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,212013。Email:1000001903@ujs.edu.cn
農(nóng)業(yè)工程學(xué)報(bào)2016年6期