路暢 楊彩霞 欒先冬
摘 要: 壓縮感知理論作為一種新的采樣理論,因其采樣少,恢復(fù)效果好等特點(diǎn)被學(xué)術(shù)界廣泛關(guān)注。雖然傳統(tǒng)的信道估計算法已經(jīng)達(dá)到了非常不錯的效果,但隨著科技的發(fā)展,人們對信息傳輸速度和傳輸質(zhì)量的需求不斷增加,傳統(tǒng)算法占用頻帶資源大、計算復(fù)雜度高等缺點(diǎn)就變得越發(fā)凸顯。于是開始使用壓縮感知理論進(jìn)行信道估計。在使用壓縮感知理論對多入多出正交頻分復(fù)用(MIMO?OFDM)系統(tǒng)進(jìn)行信道估計的過程中,提出一種導(dǎo)頻的設(shè)計方法。最后,選定訓(xùn)練序列與幾種既有的導(dǎo)頻選擇法相結(jié)合,通過仿真演示提出算法的效果,仿真結(jié)果表明提出的方法估計效果較好。
關(guān)鍵詞: 信道估計; 壓縮感知理論; 確定性導(dǎo)頻; MIMO?OFDM
中圖分類號: TN91?34 文獻(xiàn)標(biāo)識碼: A 文章編號: 1004?373X(2016)05?0051?04
0 引 言
為了提高無線通信系統(tǒng)的性能,人們很早就開始嘗試信道估計并研究出多種算法。但是傳統(tǒng)算法若想獲得較好的估計性能,導(dǎo)頻須在時間域或頻域以滿足奈奎斯特采樣條件等間隔放置,這不僅使得大量的頻帶資源被占用,而且計算量較大,從而影響系統(tǒng)的傳輸速率,并且給系統(tǒng)帶來較大負(fù)擔(dān)。隨著壓縮感知理論的提出,人們開始將這個較新的理論應(yīng)用于信道估計中,因?yàn)樗哂胁杉倭坎蓸又稻涂梢曰謴?fù)原始信息的特點(diǎn),能夠改善傳統(tǒng)信道估計算法中存在的不足而受到越來越多的關(guān)注。
5 結(jié) 語
本文使用確定性選擇導(dǎo)頻與隨機(jī)訓(xùn)練序列一起估計可壓縮MIMO?OFDM系統(tǒng)信道。所提出的確定性導(dǎo)頻的選擇方法優(yōu)勢在于參數(shù)選擇靈活,并且估計效果較好。文中,為應(yīng)用方法的性能提供了理論保證。最后,盡管分析局限于隨機(jī)訓(xùn)練序列的情況,但足以說明確定性選擇導(dǎo)頻在應(yīng)用壓縮感知理論的MIMO?OFDM系統(tǒng)信道估計中具有一定的優(yōu)勢。目前,壓縮感知理論在信道估計中的應(yīng)用仍然受到諸多限制,比如應(yīng)用環(huán)境和硬件實(shí)現(xiàn)等,所以關(guān)于此領(lǐng)域的研究還需要更進(jìn)一步,以滿足實(shí)際應(yīng)用的需要。
參考文獻(xiàn)
[1] BAJWA W U, HAUPT J, SAYEED A M, et al. Compressed channel sensing: a new approach to estimating sparse multipath channels [J]. Proceedings of the IEEE, 2010, 98(6): 1058?1076.
[2] SHAKERI Z, BAJWA W U. Deterministic selection of pilot tones for compressive estimation of MIMO?OFDM channels [C]// Proceedings of 2015 49th Annual Conference on Information Sciences and Systems. Baltimore: IEEE, 2015: 1?6.
[3] YUE J, KIM K J, GIBSON J D, et al. Channel estimation and data detection for MIMO?OFDM systems [C]// Proceedings of 2003 Global Telecommunications Conference. [S.l.]: IEEE, 2003, 2: 581?585.
[4] CANDES E J, TAO T. Decoding by linear programming [J]. IEEE transactions on information theory, 2004, 34(4): 435?443.
[5] CANDES E J. The restricted isometry property and its implications for compressed sensing [J]. Comptes rendus mathematique, 2008, 346(9/10): 589?592.
[6] ZENG Y, NG T S. A semi?blind channel estimation method for multiuser multiantenna OFDM systems [J]. IEEE transactions on signal processing, 2004, 52(5): 1419?1429.
[7] CANDES E, TAO T. The Dantzig selector: statistical estimation when p is much larger than n [J]. Annals of statistics, 2008, 35(6): 1300?1308.
[8] APPLEBAUM L, BAJWA W U, HAUPT J, et al. Deterministic pilot sequences for sparse channel estimation in OFDM systems [C]// Proceedings of 2011 17th International Conference on Digital Signal Processing. Corfu: IEEE, 2011: 1?7.
[9] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE transactions on information theory, 2006, 52(2): 489?509.
[10] CANDES E J, ROMBERG J K, TAO T. Stable signal reco?very from incomplete and inaccurate measurements [J]. Communications on pure and applied mathematics, 2006, 59(8): 1207?1223.
[11] MOHAMMADNIA?AVVAL M, GHASSEMI A, LAMPE L. Compressive sensing recovery of nonlinearly distorted OFDM signals [C]// Proceedings of 2011 IEEE International Confe?rence on Communications. [S.l.]: IEEE, 2011: 1?5.
[12] TAUBOCK G, HLAWATSCH F. A compressed sensing technique for OFDM channel estimation in mobile environments: exploiting channel sparsity for reducing pilots [C]// Procee?dings of 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. [S.l.]: IEEE, 2008: 2885?2888.
[13] BERGER C R, ZHOU S, PREISIG J C, et al. Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing [J]. IEEE transactions on signal processing, 2010, 58(3): 1708?1721.
[14] NEEDELL D, TROPP J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples [J]. Applied and computational harmonic analysis, 2009, 26(3): 301?321.
[15] PLATTE R B. An introduction to compressive sensing [J]. IEEE signal processing magazine, 2011, 25(2): 1433?1452.
[16] 劉冰,付平,孟升衛(wèi).基于正交匹配追蹤的壓縮感知信號檢測算法[J].儀器儀表學(xué)報,2010(9):1959?1964.
[17] DONOHO D L. For most large underdetermined systems of linear equations the minimal [?1]?norm solution is also the sparsest solution [J]. Communications on pure and applied mathematics, 2006, 59(6): 797?829.
[18] 李小波.基于壓縮感知的測量矩陣研究[D].北京:北京交通大學(xué),2010.
[19] 何雪云,宋榮方,周克琴.基于壓縮感知的 OFDM系統(tǒng)稀疏信道估計新方法研究[J].南京郵電大學(xué)學(xué)報(自然科學(xué)版),2010,30(2):60?65.
[20] 解志斌,薛同思,田雨波,等.一種稀疏增強(qiáng)的壓縮感知MIMO?OFDM信道估計算法[J].電子與信息學(xué)報,2013,35(3):665?670.
[21] 周小平,方勇,汪敏.MIMO?OFDM 快衰落信道的稀疏自適應(yīng)感知估計[J].信號處理,2010,26(12):1833?1839.
[22] 王妮娜,桂冠,蘇泳濤,等.基于壓縮感知的 MIMO?OFDM系統(tǒng)稀疏信道估計方法[J].電子科技大學(xué)學(xué)報,2013,42(1):58?62.
[23] 戴瓊海,付長軍,季向陽.壓縮感知研究[J].計算機(jī)學(xué)報,2011,34(3):425?434.
[24] 王紅亮,王帥,劉文怡.壓縮感知實(shí)現(xiàn)方法及應(yīng)用綜述[J].探測與控制學(xué)報,2014,36(4):53?61.
[25] 余愷,李元實(shí),王智,等.基于壓縮感知的新型聲信號采集方法[J].儀器儀表學(xué)報,2012,33(1):105?112.
[26] 許國平,張欣,楊大成.一種低復(fù)雜度的 MIMO?OFDM 信道估計新方法[J].電子與信息學(xué)報,2008,30(4):797?800.
[27] 王德勝,朱光喜,林宏志.MIMO?OFDM最優(yōu)導(dǎo)頻設(shè)置與優(yōu)化的信道估計方法[J].通信學(xué)報,2005,26(1):34?39.
[28] 王晗,汪晉寬.MIMO?OFDM系統(tǒng)信道估計中的最優(yōu)導(dǎo)頻設(shè)計[J].電波科學(xué)學(xué)報,2008,23(3):501?505.
[29] 周鵬,趙春明,盛彬.MIMO?OFDM系統(tǒng)中基于導(dǎo)頻輔助的信道估計[J].電子與信息學(xué)報,2007,29(1):133?137.