盛亞娟
汪國真在《熟悉的地方沒有風景》一詩中這樣說道:“熟悉的地方沒有風景,有的只是熟悉的回憶,而這回憶卻是想遺忘的.”是的,如果熟悉的回憶是錯誤的,我們應該徹底地遺忘,在錯誤的廢墟上重新建立“新的風景”,讓這樣的風景遠離錯誤.不要在熟悉的地方陷入錯誤的慣性中.當我們責備學生“這道題我都講了八百遍了,你還錯”的時候,我們應該提醒學生在最熟悉的地方挖掘“真知”,我們要讓學生看到在他們最熟悉的地方有“真金”,并鼓勵他們把這樣的真金挖掘出來,在思維的陽光下,照一照、鑒定一下,讓學生們真真切切地感受到“熟悉的地方也是最神奇的地方”,“熟悉的地方風景可能會更美”!對于數學而言,在學生看似熟悉的地方其實潛伏著“無知”,只要教師能夠善加利用,帶領學生識破熟悉所帶來的陷阱,那么就會發(fā)現這些看似的“熟知”其實也隱藏著巨大的學習資源.從學生熟知的數學知識中挖掘,更能實現學生對數學知識本質的理解.
一、在熟知中發(fā)現無知,催生學生的求知欲
在教學中我們常常會發(fā)現,當學生學習了某一知識點后,認為自己已經了解、掌握了這部分內容時,往往會在繼續(xù)學習中表現得馬虎、浮躁.其實,學生對這部分數學概念僅僅是對知識表面現象的了解而已,談不上熟練掌握.為此,教師可以將教學內容以學生熟知的知識予以呈現,適時追問和反思,從而引導學生積極主動地去尋求自己想要探究的真知.
例如在教學《年、月、日》一課時,很多學生都覺得年、月、日的知識自己早就已經知道了,認為自己已經“熟知”了年、月、日的相關內容:一年有12個月,1、3、5、7、8、10、12是大月份,每個月31天,4、6、9、11月是小月,每個月30天,2月份有28天,也有29天的,一年有365天,還有的366天.那么,這節(jié)課還用學嗎?面對學生一臉的得意和對新課一副無所謂的樣子,筆者設計了如下問題情境:
1.任何一年都只有12個月嗎?有沒有可能會發(fā)生一年只有11個月或有13個月的現象呢?
2.任何一年,1~12個月的天數都是固定不變的嗎?你有什么好方法來探索嗎?
3.為什么2月份有時28天,有時卻是29天呢?
通過這樣的問題情境,一下子讓學生意識到學習的無止境,發(fā)現自己在生活中對年、月、日相關知識的了解只是皮毛而已,在這熟知的背后原來隱藏著諸多的陌生,這些陌生正是自己的無知之處,這不僅增加了學生對學習數學的興趣,也催生了學生想要繼續(xù)探究的動力.
二、在無知中探求真知,促使學生積極思考
知識的建構是一個循序漸進的從無到有的過程.在教學中,教師可以立足學生的無知精心設計教學內容和過程,從無知出發(fā),逐漸地由現象深入本質,從中探尋到宏偉的知識,揭示熟知背后隱藏的數學本質特征,引領學生積極主動地參與探究活動,享受知識帶來的快樂.
以加減法教學為例,這是小學數學最為基礎的知識,對學生以后的數學能力的培養(yǎng)都有著舉足輕重的作用.為此,筆者將教學內容以習題的形式進行巧妙設計,引導學生在思考中練習,在練習中引導學生找出自己的無知,從而催生學生繼續(xù)深入學習的求知欲望,并在此基礎上,引導學生在習題中步入探究的軌道中來.筆者選擇了這樣一道習題:甲、乙、丙三位客人同住一房間,房租為30元/天,甲、乙、丙每人拿出10元,共30元交給老板,正值店慶,房租從每天30元降價到25元,老板交由服務生退還客戶5元錢.客人協(xié)商后同意給服務生2元錢為小費,剩下的3元分給甲、乙、丙,每人各得1元.這樣三個人每人付出的錢為9元共27元,再加上服務生的2元,一共為29元.那么另外的一元錢在哪里?
初看題目時,大部分學生都覺得很奇怪,對另外的一元錢感到不知所措.為此,我引導學生從排除干擾信息入手重新思考.按照我的提示,學生發(fā)現,原來客戶每人支出的9元中已經包含了給服務生的2元小費,因此,在計算這30元的組成時不能算上店小二的那2元錢,這正是本題的干擾信息所在.
通過這樣的習題練習,一下子讓學生意識到學習的無止境,發(fā)現在數量關系的計算方面自己仍有很多的無知之處,這不僅增加了學生對學習數學的興趣,也促使學生能夠積極地去思考.
三、在熟知中理性拓展,提升學生的數學能力
知識的學習在于應用,只有將所學知識應用于實際生活工作中,才能體現知識的真正價值.在教學時,教師可以聯(lián)系學生的生活實際進行適度拓展,從學生熟知的實際生活中去尋找突破,這不僅能體現數學的理性,也能由點到面地提升學生的數學能力.
例如在學習“小數乘法”的內容時,在幾次練習后,學生開始認為自己已經“熟知”了小數乘法的計算方法,覺得這樣的練習根本不存在困難,在細微之處開始表現出馬虎的態(tài)度,甚至不屑一顧.為了幫助學生強化對小數乘法意義的認識,筆者以網上的一道求證題作為本課的拓展題:
求證:1元=1分.
解:1元=100分=10分×10分=1角×1角=0.1元×0.1元=0.01元=1分.
這樣的解題過程貌似沒有錯,那么究竟是哪里出錯了?引導學生以課堂討論的形式進行找錯.終于,有學生提出疑問:100分=10分×10分是不是應該改為100分=10分×10呢?另一位同學則補充道:“1米=10厘米×10;而不是1米=10厘米×10厘米.因此,100分=10分×10.”通過討論學生們一致發(fā)現,求證過程中的計算過程并沒有錯,但是在計算過程中單位也應遵循運算規(guī)則.
可見,教師以這樣的拓展題幫助學生在熟悉中得到了真知,使學生意識到在解決數學問題的過程中,不僅要注意正確的計算方法、計算過程,更不能忽略了計算過程中的單位,關注計算在生活中的實際意義.
綜上所述,所謂的“熟知”有時其實只是一種表象,“熟知”的背后依然隱藏著有待進一步深入探究的“無知”,“熟知”并非“真知”.在教學中,教師應讓學生在自己的“熟知”處不驕傲、不馬虎,并在學生“熟悉的地方”善加挖掘,巧妙設計,以“熟知”追問“無知”,讓學生的數學思維在進一步的追問和探究中綻放光彩,真正提高課堂教學實效.