• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A necessary and sufficient stabilization condition for discrete time-varying stochastic system s with multiplicative noise

    2016-05-14 03:40:36RongGAOXiaohuaLIUHuanshuiZHANG
    Control Theory and Technology 2016年2期
    關(guān)鍵詞:靜秋全因額頭

    Rong GAO ,Xiaohua LIU ,Huanshui ZHANG

    1.School of Control Science and Engineering,Shandong University,Jinan Shandong 250061,China;

    2.School of Mathematics and Statistics Science,Ludong University,Yantai Shandong 264025,China

    1 Introduction

    Linear stochastic system s with multiplicative noise in the state and control channels are quite important in practice.Many system s can be modeled by stochastic differential equations or difference equations with multiplicative noise such as system s with hum an operator,mechanical system s,aerospace system s and network system s[1–3],etc.Hence over the past decades,considerable attention has been devoted to the study of different issues related to the linear stochastic system s with multiplicative noise.The mean-square stabilization problem,as one of a fundamental stochastic control problem,has been studied by many researchers in[3–12].For instance,based on linear quadratic method,different results for mean-square stabilization were given in[3–8].Ghaoui[9]gave the stabilization conditions using linear matrix inequality(LM I).In[10]Zhang et al.studied the mean-square stabilization based on generalized Lyapunov equation.In[11,12]the uncertain network system w as modeled by stochastic multiplicative noise model and the necessary and sufficient conditions for mean-square stabilization of the network control system were given.In recent years,stabilizing control of time-varying stochastic system s has been a hot area of research,see for example[13,14]and references therein.It should be noted that for time-varying stochastic system s a necessary and sufficient stabilization condition remains to be investigated.

    In order to solve stabilization problem for time varying stochastic system s,receding horizon control(RHC)was adopted.The essence of the RHC is to solve an optimization problem on the finite horizon at the current time and implement only the first solution as a current control.This procedure then repeats at the next time.Due to its many advantages,such as good tracking performance,effective control for time-varying system s and I/O constraint hand ling capability,a great deal of attention has been devoted to RHC.RHC was first pioneered for dealing with the stabilization of time-varying system s by Kwon et al.[15].Since then,it has been widely investigated as a successful feedback strategy for deterministic system s,especially for time-varying deterministic system s[15–19].

    In this paper different from the previous literatures on stochastic RHC [20, 21], which focus on constraind linear time-invariant stochastic systems, we consider unconstrained linear time-varying stochastic systems. The main contribution of this paper is as follows: By defining the optimal cost value as a Lyapunov function, the necessary and sufficient RHC stabilization condition for time-varying stochastic system with multiplicative noise is presented for the first time. In the previous literature,even for deterministic systems the RHC stabilization condition is only sufficient as far as we know.

    The remainder of this paper is organized as follow s:Section 2 gives the formulation of the problem for stochastic system s with multiplicative noise.The corresponding RHC law and the necessary and sufficient condition for the asymptotic mean-square stability of the closed system are obtained in Section 3.In Section 4 RHC for stochastic system s with multiple multiplicative noises is studied.Three examples are provided in Section 5 to validate the performance of the proposed receding horizon control.Finally,conclusions are given in Section 6.

    NotationRnstands for then-dimensional Euclidean space.The subscript“′”represents the matrix transpose;a symmetric matrixM>0(≥0)means that it is strictly positive definite(positive semi-definite);{Ω,F,P,{Fk}k≥0}denotes a complete probability space on which a scalar white noise ωkis defined such that{Fk}k≥0is the natural filtration generated by ωk,i.e.,Fk=σ{ω0...ωk}.

    2 Problem statement

    Consider the following linear discrete time-varying stochastic system

    For simplicity,letthen system(1)becomes

    wherexk∈Rnis the state;uk∈Rmis the control input;andBkare matrices of appropriate dimensions;and ωkis a scalar random white noise with zero mean and variance σ.

    Rem ark 1It should be noted that the results to be presented in this paper are applicable to more general stochastic system s with multiple multiplicative noises with no substantial difference

    where the variance of the noise is given by

    3 Asymptotic mean-square stability of discrete time-varying stochastic system s via RHC

    In this section,we shall present our main result on asymptotic mean-square stability for the discrete time varying stochastic system s(1).

    3.1 Receding horizon control

    In order to solve the problem formulated in Section 2,we define the following cost function:

    where E is the mathematical expectation over the noise{ωk,...,ωk+N}.Qk+i≥0,Rk+i>0,Ψk+N+1>0 andNis a finite positive integer.xk+i|kanduk+i|kdenote the state and control sequence with initial timekin the finite horizon optimal control.

    We apply Pontryagin’s maximum principle[22,23]to system(1)with cost function(4).Then the optimal controller is given by

    wherePj(k+N)satisfies the following generalized Ric-cati equation:

    with the terminal value

    The receding horizon control at timekis given as

    whereHkis as in(8)withj=k.

    3.2 Asymptotic mean-square stability

    In this section,firstly we present a matrix inequality on the terminal weighting matrix Ψk,under which the optimal costJ*(xk,k)is nonincreasing with the increasing ofk.Then a necessary and sufficient condition for mean-square stabilization is obtained.

    Lemma1Assume there exists Ψk>0 in(4)satisfying the following matrix inequality for someHk,

    The optimal costJ*(xk,k)satisfies the following relation:

    ProofLetJ*(xk,k)be the optimal cost resulting from the optimal control(5)with the initial statexk.

    whereare optimal controls minimizing the cost function(4)with initial state,respectively.are optimal state trajectories generated when the system is controlled by

    Let us rep lace the controlin(12)with

    whereHk+N+1is the control gain to be selected.Then,it follows from(12),(13)that

    Further,note that the termin(14)can be rewritten as

    where(2)has been used in the above equalities.

    Thus it follow s from(14)that

    where the facthas been used.By using the property of conditional expectation,we have

    Therefore,

    According to(10),we obtain

    By using Lemma1,the main result of the paper is presented in the following Theorem 1.

    Theorem 1GivenQk>0 andRk>0,then system(1)with the receding horizon control(9)is asymptotically mean square stable if and only if there exists Ψk>0 andHksatisfying(10).

    Proof(Sufficiency)According to Lemma 1,there exists Ψksatisfying(10),then we obtainSinceJ*(xk,k)is nonincreasing andJ*(xk,k)>0,thus

    exists,and

    By virtue of(16),(17)and(10),we obtain

    Com bined with(20),it yields

    Note thatRk>0,thus we get

    Combining(23)and(22),one has

    Note thatQk>0,then

    (Necessity)System(1)is mean-square stabilizable.There existuk=Hkxksuch that the closed-loop system is mean-square stability.Then according to stochastic Lyapunov stability theorem[24],for each sequence of positive definite matrices Θ(k)>0,the following matrix difference equation

    has positive definite solutions Π(k).let Θk=Qk+we obtain

    which im p ly(10)holds.

    Rem ark 2If w e letsystem(1)reduces to a deterministic system.The corresponding stabilizability condition(10)becomes

    Com pared with the result in[16]and[17],where only sufficient stabilization condition has been considered,we give the necessary and sufficient RHC stabilization condition in this paper.Further,we have generalized the result from deterministic system to stochastic system s with multiplicative noise in this paper.

    因?yàn)槌贿@么看。他與靜秋相戀兩年,除了吻過(guò)她的額頭,兩個(gè)人從沒(méi)有越雷池一步。他認(rèn)為靜秋對(duì)他越來(lái)越冷淡全因了康芳。——康芳有一個(gè)需要照顧的丈夫,康芳只有一個(gè)女兒,自私的她希望女兒和女婿能夠守在她的身邊。

    In the following the time-invariant stochastic system is considered.If we letin(1),then system(1)reduced to a time-invariant stochastic system

    Consider the cost function as:

    The result analogous to Theorem 1 is expressed as follow s:

    Corollary 1GivenQ>0 andR>0 in(28),then system(27)with the receding horizon control is asymptotically mean square stable if and only if there exists Ψ>0 andHsatisfying

    Rem ark 3Note that inequality(29)is equivalent to the following LMI,which is easier to be tested.

    where

    4 RHC for stochastic system s with multiple multiplicative noises

    In this section,w e shall generalize the results in the previous section to stochastic system s with multiple multiplicative noises.Consider the more general system(3)and cost function(4).We first generalize the backwards recursion in(6)–(8)as follows:Forj=k,...,k+N,

    with the terminal valueThe receding horizon control at timekis

    Theorem 2GivenQk>0 andRk>0,then system(3)with the receding horizon control(31)is asymptotically mean square stable if and only if there exists Ψk>0 andHksatisfying

    ProofAs the proof is similar to that for Theorem 1,we have omitted it.□

    5 Simulation

    In this section,three examples are presented to illustrate the proposed method.

    Example 1Consider a discrete time-varying stochastic system with multiplicative noise whose model parameters are given by

    The weighting matricesQk,Rk,and Ψkin(10)are chosen to be 5,1,and 10,respectively.Hkin(10)is chosen to be?1.The horizon lengthNis chosen to be 3.According to Theorem 1 the stabilization condition(10)is satisfied.The corresponding receding horizon control gain curve is drawn in Fig.1 according to(9).

    Fig.1 Control gain curve.

    with the controller the state trajectory of the closed-loop system is drawn in Fig.2.From Fig.2,we can see that the proposed RHC stabilizes the discrete-time multiplicative noise system with differentQk,Rk,and Ψkof the cost.

    Fig.3 represents the optimal receding horizon costsJ*against time.It can be seen that the optimal receding horizon costsJ*decrease monotonically with time and converge to zero.This cost monotonicity implies that the proposed RHC stabilizes the time-varying stochastic system.

    Exam p le 2Consider the network control system depicted in[25].Suppose there is only data packet dropout in the network control system,then the overall network control system can be described as

    w herexk∈Rnis the state,uk∈Rpis the control input.{γk}k≥0is modeled as a i.i.d Bernoulli process with probability distribution P(γk=0)=pand P(γk=1)=1?p,w herep∈(0,1)is named as the packet dropout rate.It can be seen that(32)is the special case of(1)with

    Suppose system(32)withG=1.2,L=0.4,x0=0.1,p=0.5,and the cost function withQk=1,Rk=1,N=5,Ψk=10.By applying Theorem 1,it is easy to verify that condition(10)is satisfied.The state trajectoryof the closed-loop system with the controller is drawn in Fig.4.It can be seen that the proposed RHC stabilizes the network control system from Fig.4.

    Fig.2 State trajectory E(x(k)′x(k))due to the proposed RHC.

    Fig.3 Optimal receding horizon cost.

    Fig.4 State trajectory E(x(k)′x(k))of network control system due to the proposed RHC.

    Example 3Consider the two dimensional stochastic system with multiplicative noise whose parameters are given by

    The weighting matrixesQandRin(29)are chosen to beI2andI1.The weighting matrixes Ψ and feedback gainHin(29)are decided by solving the linear matrix inequality(30)using MATLAB LM I toolbox which are given as

    According to(9)the receding horizon controller is given as

    The state trajectory of the closed loop system with the controller(33)is drawn in Fig.5.It is shown that the proposed RHC stabilizes the stochastic system with multiplicative noise.

    Fig.5 State trajectory E(x(k)′x(k))due to the proposed RHC.

    6 Conclusions

    The paper has proposed a receding horizon control approach for stabilization of discrete time-varying stochastic system s.Explicit stabilization controller has been obtained by solving a generalized Riccati equation.By applying the tools of stochastic stability,a necessary and sufficient condition on the terminal weighting matrix has been proposed to guarantee the asymptotic mean-square stability of the closed-loop system.Some desirable extensions would be to time-varying stochastic system s with state or control delay.

    References

    [1]X.R.Mao.Stochastic Differential Equations and Applications.2nd ed.Chichester,U.K.:Horwood Publication,2007.

    [2]L.Li,H.Zhang.Linear quadratic regultion for discrete-time systems with state delays and multiplicative noise.Control Theory and Technology,2015,13(4):348–359.

    [3]J.L.willems,J.C.willems.Feedback stabilizability for stochastic system s with state and control dependent noise.Automatica,1976,12(3):277–283.

    [4]U. Haussmann. Stability of linear systems with control dependent noise. SIAM Journal on Control, 1973, 11(2): 382 – 394.

    [5]T.Morozan.Stabilization of some stochastic discrete-timecontrol system s.Stochastic Analysis and Applications,1983,1(1):89–116.

    [6]E.Yaz.Stabilization of discrete-time system s with stochastic parameters.System s&Control Letters,1985,5(5):321–326.

    [7]E.Yaz.Certainty equivalent control of stochastic system s:stability property.IEEE Transactions on Automatic Control,1986,3(12):178–180.

    [8]M.A.Ram i,X.Zhou.Linear matrix inequalities,Riccati equations,and indefinite stochastic linear quadratic controls.IEEE Transactions on Automatic Control,2000,45(6):1131–1143.

    [9]L.E.Ghaoui.State-feedback control of systems with multiplicative noise via linear matrix inequalities.System s&Control Letters,1995,24(3):223–228.

    [10]W.Zhang,H.Zhang,B.Chen.Generalized Lyapunov equation app roach to state-dependent stochastic stabilization/detectability criterion.IEEE Transactions on Automatic Control,2008,53(7):1630–1642.

    [11]N.Elia.Remote stabilization over fading channels.System s&Control Letters,2005,54(3):237–249.

    [12]K.Y.You,L.H.Xie.Minimum data rate for mean square stabilization of discrete LTI system s over lossy channels.IEEE Transactions on Automatic Control,2010,55(10):2373–2378.

    [13]S.Aberkane,V.Dragan.Robust stability and robust stabilization of a class of discrete-time time-varying linear stochastic system s.SAIM Journal on Control and Optimization,2015,53(1):30–57.

    [14]L.Sheng,W.Zhang,M.Gao.Mixed H2/H∞control of time-varying stochastic discrete-time system s under uniform detectability.IET Control Theory and Application,2014,8(17):1866–1874.

    [15]W.H.Kwon,A.E.Pearson.A modified quadratic cost problem and feedback stabilization of a linear system.IEEE Transactions on Automatic Control,1977,22(5):838–842.

    [16]J.W.Lee,W.H.Kwon,J.H.Choi.On stability of constrained receding horizon control with finite terminal weighting matrix.Automatica,1998,34(12):1607–1612.

    [17]W.H.Kwon,K.B.Kim.On stabilizing receding horizon controls for linear continuous time-invariant system s.IEEE Transactions on Automatic Control,2000,45(7):1329–1334.

    [18]G.D.Nicolao,L.Magni,R.Scattolini.Stabilizing receding horizon control of nonlinear time-varying system s.IEEE Transactions on Automatic Control,1998,43(7):1030–1036.

    [19]M.A.Mohammadkhani,F.Bayat,A.A.Jalali.Design of explicit model predictive control for constrained linear system s with disturbances.International Journal of Control,Automation,and System s,2014,12(2):294–301.

    [20]J.A.Primbs,C.H.Sung.Stochastic receding horizon control of constrained linear system s with state and control multiplicative noise.IEEE Transactions on Automatic Control,2009,54(2):221–230.

    [21]D.Bernardini,A.Bemporad.Stabilizing model predictive control of stochastic constrained linear system s.IEEE Transactions on Automatic Control,2012,57(6):1468–1480.

    [22]H.Zhang,H.Wang,L.Li.Adapted and casual maxim um principle and analytical solution to optimal control for stochastic multiplicative noise systems with multiplt input-delays.Proceedings of the 51st IEEE Annual Conference on Decision and Control,Hawaii:IEEE,2012:2122–2177.

    [23]L.Chen,Z.Wu.Maxim um principle for the stochastic optimal control problem with delay and application.Automatica,2010,46(6):1074–1080.

    [24]S.Niwa,M.Hayase,I.Sugiura.Stability of linear time-varying system s with state dependent noise.IEEE Transactions on Automatic Control,1976,21(5):775–776.

    [25]C.Tan,L.Li,H.Zhang.Stabilization of networked control system s with both network-induced delay and packet dropout.Automatica,2015,59:194–199.

    猜你喜歡
    靜秋全因額頭
    全人群補(bǔ)維生素D并非必要
    為什么發(fā)燒時(shí)要給額頭降溫
    烏司他丁聯(lián)合連續(xù)性腎臟替代療法治療重癥燒傷患者的效果及對(duì)炎癥因子、28d全因死亡率的影響
    老年缺血性腦卒中急性期血壓與預(yù)后的關(guān)系
    兩張小紙片
    一束光在孩子的額頭上
    夷陵那棵山楂樹(shù)
    周冬雨 找到真我
    山楂樹(shù)之戀》:文革歲月中的純愛(ài)
    額頭上的數(shù)字
    亚洲国产精品sss在线观看| av天堂在线播放| 色噜噜av男人的天堂激情| 国产黄a三级三级三级人| 国产黄色小视频在线观看| 精品久久久久久久末码| 性插视频无遮挡在线免费观看| 99九九线精品视频在线观看视频| 色精品久久人妻99蜜桃| 美女高潮的动态| 国内精品久久久久精免费| 亚洲av二区三区四区| 亚洲真实伦在线观看| 久久精品国产自在天天线| 最近视频中文字幕2019在线8| 精品免费久久久久久久清纯| 亚洲欧美激情综合另类| 国产又黄又爽又无遮挡在线| 波野结衣二区三区在线| av中文乱码字幕在线| 亚州av有码| 中国美女看黄片| 亚洲欧美精品综合久久99| 欧美高清性xxxxhd video| 在线播放无遮挡| 国产女主播在线喷水免费视频网站 | 免费看a级黄色片| 男女边吃奶边做爰视频| 99精品久久久久人妻精品| 九九爱精品视频在线观看| 欧美日韩国产亚洲二区| 18禁黄网站禁片免费观看直播| 国产精品日韩av在线免费观看| 高清毛片免费观看视频网站| 亚洲av成人精品一区久久| av天堂中文字幕网| 国产三级在线视频| 欧美日韩中文字幕国产精品一区二区三区| 久久精品国产亚洲网站| 日韩大尺度精品在线看网址| 日本-黄色视频高清免费观看| 国产蜜桃级精品一区二区三区| а√天堂www在线а√下载| xxxwww97欧美| 18+在线观看网站| 99久久久亚洲精品蜜臀av| 91麻豆精品激情在线观看国产| 成人午夜高清在线视频| 亚洲图色成人| 小说图片视频综合网站| 国产精品一及| 嫁个100分男人电影在线观看| 国产美女午夜福利| 尾随美女入室| 一a级毛片在线观看| 国产高清有码在线观看视频| 一进一出抽搐动态| av专区在线播放| 国产高清视频在线播放一区| 国产精品爽爽va在线观看网站| 天美传媒精品一区二区| 国产亚洲欧美98| a级一级毛片免费在线观看| 永久网站在线| 亚洲国产欧洲综合997久久,| 三级毛片av免费| 国产精品电影一区二区三区| 在线观看av片永久免费下载| 国产精品精品国产色婷婷| 一级黄片播放器| 欧美最黄视频在线播放免费| 亚洲电影在线观看av| 久久精品夜夜夜夜夜久久蜜豆| 少妇裸体淫交视频免费看高清| 乱系列少妇在线播放| 国产精品野战在线观看| 日日啪夜夜撸| 美女xxoo啪啪120秒动态图| x7x7x7水蜜桃| 日韩一区二区视频免费看| 亚洲色图av天堂| 国产av在哪里看| 欧美性猛交黑人性爽| 亚洲人成伊人成综合网2020| 亚洲av中文字字幕乱码综合| 国产高清不卡午夜福利| 国产一区二区在线观看日韩| 在线观看美女被高潮喷水网站| 成人鲁丝片一二三区免费| 国产成人一区二区在线| 久久婷婷人人爽人人干人人爱| videossex国产| 国产av一区在线观看免费| 日韩中文字幕欧美一区二区| 成人特级av手机在线观看| 可以在线观看的亚洲视频| 免费人成在线观看视频色| 亚洲专区中文字幕在线| 免费大片18禁| 成人亚洲精品av一区二区| 成人高潮视频无遮挡免费网站| 国产精品福利在线免费观看| 国产精品精品国产色婷婷| 国产69精品久久久久777片| 中国美白少妇内射xxxbb| 人人妻人人澡欧美一区二区| 欧美性感艳星| 中文字幕免费在线视频6| 在线播放无遮挡| 一个人观看的视频www高清免费观看| 国产精品伦人一区二区| 免费人成视频x8x8入口观看| 成人无遮挡网站| 99热这里只有是精品50| 久久精品人妻少妇| 校园人妻丝袜中文字幕| 观看免费一级毛片| av天堂在线播放| 两个人视频免费观看高清| 成熟少妇高潮喷水视频| av福利片在线观看| 麻豆国产97在线/欧美| 男人和女人高潮做爰伦理| 直男gayav资源| 在线观看免费视频日本深夜| 亚洲成人中文字幕在线播放| 亚洲精华国产精华精| av在线老鸭窝| 亚洲乱码一区二区免费版| 日本爱情动作片www.在线观看 | 午夜日韩欧美国产| 国产主播在线观看一区二区| 国产亚洲精品久久久com| 窝窝影院91人妻| 日本与韩国留学比较| av在线天堂中文字幕| 亚洲一区高清亚洲精品| 国产精品亚洲美女久久久| 男人舔奶头视频| 有码 亚洲区| 久久午夜亚洲精品久久| 精品久久久久久久人妻蜜臀av| 精品人妻偷拍中文字幕| 欧美一区二区国产精品久久精品| 亚洲av不卡在线观看| 黄色一级大片看看| 亚洲精品成人久久久久久| 观看美女的网站| 干丝袜人妻中文字幕| 国产毛片a区久久久久| 日本色播在线视频| 在线观看午夜福利视频| 啦啦啦韩国在线观看视频| 国产精品综合久久久久久久免费| 天美传媒精品一区二区| 久久人妻av系列| 不卡一级毛片| 欧美一区二区国产精品久久精品| 国产精品伦人一区二区| 国产乱人伦免费视频| 国产精品av视频在线免费观看| 日韩av在线大香蕉| 亚洲在线自拍视频| 日韩人妻高清精品专区| 免费搜索国产男女视频| 99精品在免费线老司机午夜| 午夜影院日韩av| 综合色av麻豆| 婷婷丁香在线五月| 国产精品久久久久久久电影| 亚洲av免费在线观看| 国产亚洲av嫩草精品影院| 窝窝影院91人妻| 神马国产精品三级电影在线观看| 日本 欧美在线| 九色国产91popny在线| 两个人的视频大全免费| 国产精品日韩av在线免费观看| 夜夜夜夜夜久久久久| 老司机深夜福利视频在线观看| 成人三级黄色视频| 国产精华一区二区三区| 成人精品一区二区免费| 久久人人精品亚洲av| 狠狠狠狠99中文字幕| 一卡2卡三卡四卡精品乱码亚洲| h日本视频在线播放| 久久中文看片网| 在线观看午夜福利视频| 国产伦在线观看视频一区| 成人三级黄色视频| 色精品久久人妻99蜜桃| 在线观看舔阴道视频| avwww免费| 午夜老司机福利剧场| 国产综合懂色| 在线观看av片永久免费下载| 男女视频在线观看网站免费| 欧美最黄视频在线播放免费| 欧美日本亚洲视频在线播放| 午夜福利视频1000在线观看| 美女被艹到高潮喷水动态| 欧美又色又爽又黄视频| 日韩欧美精品免费久久| 日韩欧美国产在线观看| 日韩欧美国产一区二区入口| 一个人观看的视频www高清免费观看| 又黄又爽又刺激的免费视频.| 又粗又爽又猛毛片免费看| 在线观看美女被高潮喷水网站| 精品久久久久久成人av| 亚洲av中文av极速乱 | 国产毛片a区久久久久| 香蕉av资源在线| 中亚洲国语对白在线视频| 亚洲在线观看片| 成人国产一区最新在线观看| 国产伦人伦偷精品视频| 午夜视频国产福利| 国产伦精品一区二区三区视频9| 国产人妻一区二区三区在| 成人高潮视频无遮挡免费网站| 长腿黑丝高跟| 精品人妻一区二区三区麻豆 | 男人舔女人下体高潮全视频| 亚洲成人久久爱视频| 色综合色国产| 俄罗斯特黄特色一大片| 精品久久久久久久久久免费视频| 国产高清激情床上av| 午夜激情欧美在线| 日本-黄色视频高清免费观看| 精品免费久久久久久久清纯| 亚洲成av人片在线播放无| 国产私拍福利视频在线观看| 日本黄色片子视频| 男女啪啪激烈高潮av片| 真人一进一出gif抽搐免费| 亚洲国产精品合色在线| 欧美性感艳星| 小蜜桃在线观看免费完整版高清| 免费电影在线观看免费观看| 亚洲男人的天堂狠狠| 久久久午夜欧美精品| 国产成人影院久久av| 日韩在线高清观看一区二区三区 | 亚州av有码| 国产单亲对白刺激| 人人妻人人澡欧美一区二区| 亚洲最大成人手机在线| 免费av不卡在线播放| 我要看日韩黄色一级片| 午夜视频国产福利| 变态另类丝袜制服| 成人美女网站在线观看视频| 国产91精品成人一区二区三区| 亚洲一区高清亚洲精品| 亚洲精品在线观看二区| 人妻少妇偷人精品九色| 999久久久精品免费观看国产| 91在线精品国自产拍蜜月| 国产欧美日韩精品一区二区| 亚洲综合色惰| 蜜桃亚洲精品一区二区三区| 男人舔奶头视频| 给我免费播放毛片高清在线观看| 黄色日韩在线| 超碰av人人做人人爽久久| 免费观看精品视频网站| 亚洲av美国av| 黄色丝袜av网址大全| 人人妻人人澡欧美一区二区| 在线免费观看不下载黄p国产 | 热99re8久久精品国产| 国产老妇女一区| 狠狠狠狠99中文字幕| 久久久久久久久中文| 亚洲精品色激情综合| 国产v大片淫在线免费观看| 久久精品人妻少妇| 日韩高清综合在线| 日韩,欧美,国产一区二区三区 | 亚洲,欧美,日韩| 国产一区二区亚洲精品在线观看| 欧美一级a爱片免费观看看| 国内揄拍国产精品人妻在线| 老司机午夜福利在线观看视频| 欧美一区二区精品小视频在线| 亚洲精品久久国产高清桃花| 亚洲色图av天堂| 在线观看美女被高潮喷水网站| 国产伦精品一区二区三区四那| 国产精品久久久久久精品电影| 日本黄色片子视频| 日韩精品青青久久久久久| 两个人视频免费观看高清| 真实男女啪啪啪动态图| 日本与韩国留学比较| 久久国内精品自在自线图片| 亚洲av成人av| 可以在线观看的亚洲视频| 亚洲专区国产一区二区| 久久久久久国产a免费观看| 亚洲不卡免费看| 国产精品福利在线免费观看| 一本一本综合久久| 日日摸夜夜添夜夜添小说| 最新中文字幕久久久久| 午夜精品久久久久久毛片777| 国产白丝娇喘喷水9色精品| 久久精品影院6| 精品午夜福利视频在线观看一区| 免费在线观看影片大全网站| 国产高清有码在线观看视频| 可以在线观看毛片的网站| 3wmmmm亚洲av在线观看| 成人av在线播放网站| 国产乱人伦免费视频| 久久久久久久午夜电影| 欧美日韩亚洲国产一区二区在线观看| 一区二区三区激情视频| 国产一区二区在线av高清观看| 一本久久中文字幕| 婷婷亚洲欧美| 99九九线精品视频在线观看视频| 亚洲av成人精品一区久久| 97人妻精品一区二区三区麻豆| 精品久久久久久久末码| 国产伦在线观看视频一区| 日韩欧美三级三区| 色av中文字幕| 日日啪夜夜撸| 亚洲四区av| 伦理电影大哥的女人| 欧美一区二区国产精品久久精品| 九九爱精品视频在线观看| 久久人人精品亚洲av| 国产人妻一区二区三区在| 国产精品一区二区三区四区免费观看 | 天堂网av新在线| 日本与韩国留学比较| 久久久国产成人免费| 亚洲av二区三区四区| 免费观看人在逋| 午夜久久久久精精品| 久久热精品热| av在线天堂中文字幕| 亚洲天堂国产精品一区在线| 亚洲乱码一区二区免费版| 禁无遮挡网站| 中国美白少妇内射xxxbb| АⅤ资源中文在线天堂| 内地一区二区视频在线| 久久久久久九九精品二区国产| 我要搜黄色片| 九色国产91popny在线| 精品久久久久久,| 91在线精品国自产拍蜜月| 天堂网av新在线| 日韩精品有码人妻一区| 人妻少妇偷人精品九色| 国语自产精品视频在线第100页| 女生性感内裤真人,穿戴方法视频| 91精品国产九色| 欧美最新免费一区二区三区| or卡值多少钱| 久久国产精品人妻蜜桃| 亚洲精品日韩av片在线观看| 在线免费十八禁| 亚洲经典国产精华液单| 成年女人永久免费观看视频| 级片在线观看| 午夜免费成人在线视频| 亚洲真实伦在线观看| 亚洲国产欧美人成| 在线看三级毛片| 免费观看在线日韩| 欧美在线一区亚洲| 国产成人a区在线观看| 中文亚洲av片在线观看爽| 男女之事视频高清在线观看| 精品午夜福利视频在线观看一区| 欧美+亚洲+日韩+国产| 春色校园在线视频观看| h日本视频在线播放| 日韩强制内射视频| 午夜久久久久精精品| 亚洲美女黄片视频| 国内精品宾馆在线| 欧美激情久久久久久爽电影| 国产av不卡久久| 别揉我奶头 嗯啊视频| 此物有八面人人有两片| 毛片女人毛片| 日韩,欧美,国产一区二区三区 | 神马国产精品三级电影在线观看| 嫁个100分男人电影在线观看| 成人高潮视频无遮挡免费网站| 色哟哟·www| 九色国产91popny在线| 成人国产麻豆网| 日韩欧美国产在线观看| 午夜福利欧美成人| 99热这里只有是精品在线观看| 成人毛片a级毛片在线播放| 亚洲欧美日韩高清专用| 久久精品91蜜桃| 久久久久国内视频| 日本熟妇午夜| a级毛片a级免费在线| 国产精品一区二区免费欧美| 色噜噜av男人的天堂激情| 精品无人区乱码1区二区| 成人av一区二区三区在线看| 精品无人区乱码1区二区| 无遮挡黄片免费观看| 如何舔出高潮| 色吧在线观看| 日日夜夜操网爽| 有码 亚洲区| 91在线观看av| 成人午夜高清在线视频| 亚洲成人免费电影在线观看| av女优亚洲男人天堂| 亚洲精品亚洲一区二区| 蜜桃亚洲精品一区二区三区| 精品一区二区免费观看| 免费在线观看日本一区| 亚洲性夜色夜夜综合| 日韩,欧美,国产一区二区三区 | 国产乱人视频| 免费看av在线观看网站| 国产高清激情床上av| 久久人妻av系列| 亚洲精品粉嫩美女一区| 亚洲,欧美,日韩| 夜夜爽天天搞| 三级国产精品欧美在线观看| 国产麻豆成人av免费视频| av天堂在线播放| 人妻久久中文字幕网| 亚洲综合色惰| 国产激情偷乱视频一区二区| 午夜精品一区二区三区免费看| 长腿黑丝高跟| 91狼人影院| av视频在线观看入口| av福利片在线观看| 别揉我奶头~嗯~啊~动态视频| 欧美又色又爽又黄视频| 校园春色视频在线观看| 久久精品国产清高在天天线| 日韩一区二区视频免费看| 亚洲av一区综合| 亚洲av二区三区四区| 男人和女人高潮做爰伦理| 欧美又色又爽又黄视频| 国产精品久久电影中文字幕| 亚洲av成人av| 欧美激情国产日韩精品一区| 琪琪午夜伦伦电影理论片6080| 欧美激情国产日韩精品一区| 午夜老司机福利剧场| 一进一出抽搐gif免费好疼| 在线看三级毛片| 久久精品久久久久久噜噜老黄 | 久久久久久大精品| 又黄又爽又免费观看的视频| 日韩高清综合在线| 国产三级中文精品| 精品久久久久久成人av| 长腿黑丝高跟| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久九九精品影院| 国产免费一级a男人的天堂| 一进一出抽搐动态| 国产不卡一卡二| 真实男女啪啪啪动态图| 中文字幕熟女人妻在线| 亚洲精品一卡2卡三卡4卡5卡| 久久国内精品自在自线图片| 人人妻人人澡欧美一区二区| 久久久久精品国产欧美久久久| 国产国拍精品亚洲av在线观看| ponron亚洲| 69人妻影院| 在线天堂最新版资源| 热99re8久久精品国产| 少妇被粗大猛烈的视频| 亚洲三级黄色毛片| 最近中文字幕高清免费大全6 | 狂野欧美激情性xxxx在线观看| 免费看光身美女| 国模一区二区三区四区视频| 97碰自拍视频| 久久草成人影院| 国产私拍福利视频在线观看| 亚洲成av人片在线播放无| 性插视频无遮挡在线免费观看| 国产高潮美女av| 如何舔出高潮| 国产av不卡久久| 免费看光身美女| 成年人黄色毛片网站| 亚洲美女黄片视频| 十八禁国产超污无遮挡网站| 久久久久久大精品| 波野结衣二区三区在线| 热99re8久久精品国产| 久久亚洲精品不卡| 波多野结衣巨乳人妻| 久久久久久久精品吃奶| 老熟妇仑乱视频hdxx| 如何舔出高潮| 天堂√8在线中文| 欧美精品啪啪一区二区三区| 性色avwww在线观看| 日韩精品青青久久久久久| 99久国产av精品| 国产男人的电影天堂91| 成人高潮视频无遮挡免费网站| 精品欧美国产一区二区三| 亚洲精品日韩av片在线观看| 亚洲在线观看片| 国产黄色小视频在线观看| 日本黄色视频三级网站网址| x7x7x7水蜜桃| 国产精品一及| 国产精品亚洲美女久久久| 男插女下体视频免费在线播放| 人人妻人人澡欧美一区二区| 久久人妻av系列| 一级毛片久久久久久久久女| av天堂中文字幕网| 亚洲av免费高清在线观看| 免费在线观看影片大全网站| 久久久色成人| 国产激情偷乱视频一区二区| 长腿黑丝高跟| 99热这里只有是精品50| 亚洲av成人av| 午夜视频国产福利| 俄罗斯特黄特色一大片| 欧美绝顶高潮抽搐喷水| 免费人成视频x8x8入口观看| 国产老妇女一区| 久久久色成人| 欧美+亚洲+日韩+国产| 97超级碰碰碰精品色视频在线观看| 亚洲真实伦在线观看| 国产v大片淫在线免费观看| 精品国产三级普通话版| 国产又黄又爽又无遮挡在线| 十八禁网站免费在线| 小蜜桃在线观看免费完整版高清| 免费大片18禁| 网址你懂的国产日韩在线| 性色avwww在线观看| 两个人的视频大全免费| 99热6这里只有精品| 村上凉子中文字幕在线| 亚洲人成网站在线播| 99热只有精品国产| 日韩一区二区视频免费看| 欧美性感艳星| 免费无遮挡裸体视频| 午夜福利视频1000在线观看| 成人毛片a级毛片在线播放| 九九爱精品视频在线观看| 露出奶头的视频| 一级黄色大片毛片| 免费看av在线观看网站| 亚洲熟妇熟女久久| 看免费成人av毛片| 热99re8久久精品国产| 国产精品一及| 亚洲欧美日韩东京热| 国产精品美女特级片免费视频播放器| 丰满的人妻完整版| 搡老熟女国产l中国老女人| 99久久精品国产国产毛片| eeuss影院久久| 日韩一区二区视频免费看| 一边摸一边抽搐一进一小说| 精品人妻视频免费看| 日韩一区二区视频免费看| 日韩欧美精品免费久久| 美女大奶头视频| 美女被艹到高潮喷水动态| 一边摸一边抽搐一进一小说| 精品人妻视频免费看| 日韩一区二区视频免费看| www.www免费av| 婷婷色综合大香蕉| 人人妻人人看人人澡| 美女cb高潮喷水在线观看| 欧美bdsm另类| 免费av观看视频| 日韩高清综合在线| 黄片wwwwww| 中文字幕高清在线视频| 毛片女人毛片| 国产精品av视频在线免费观看| 亚洲性久久影院| 久9热在线精品视频| 热99在线观看视频| 亚洲,欧美,日韩| 日韩 亚洲 欧美在线| 日韩欧美一区二区三区在线观看| 日韩在线高清观看一区二区三区 | 日韩,欧美,国产一区二区三区 | 国产精品一区二区三区四区久久| 日韩,欧美,国产一区二区三区 | 免费av毛片视频| 一个人看视频在线观看www免费|