寧仁德,孔令超,周業(yè)金,王祥
(1安徽醫(yī)科大學(xué)第三附屬醫(yī)院,合肥230031;2上海交通大學(xué)醫(yī)學(xué)院附屬第三人民醫(yī)院)
·論著·
慢病毒介導(dǎo)siRNA沉默ERK2對(duì)創(chuàng)傷性骨性關(guān)節(jié)炎大鼠軟骨退變的影響及其機(jī)制
寧仁德1,孔令超1,周業(yè)金1,王祥2
(1安徽醫(yī)科大學(xué)第三附屬醫(yī)院,合肥230031;2上海交通大學(xué)醫(yī)學(xué)院附屬第三人民醫(yī)院)
目的 觀察慢病毒介導(dǎo)siRNA沉默細(xì)胞外信號(hào)調(diào)節(jié)激酶2(ERK2)對(duì)創(chuàng)傷性骨性關(guān)節(jié)炎大鼠軟骨退變的影響,并探討其機(jī)制。方法 將30只右膝創(chuàng)傷性骨性關(guān)節(jié)炎大鼠隨機(jī)分為三組,每組10只,分別于右膝關(guān)節(jié)腔注射無(wú)菌PBS(模型組)、ERK2 siRNA陰性慢病毒溶液(對(duì)照組)及ERK2 siRNA慢病毒溶液(觀察組)。8周后處死大鼠,取其右膝關(guān)節(jié)觀察膝關(guān)節(jié)軟骨形態(tài)并進(jìn)行評(píng)分,行HE、甲苯胺藍(lán)及番紅“O”染色后觀察軟骨組織病理形態(tài),采用Mankin半定量法進(jìn)行關(guān)節(jié)軟骨評(píng)分。采用Real-time PCR法檢測(cè)各組軟骨組織MMP3、MMP13及Col2a mRNA相對(duì)表達(dá)量。結(jié)果 觀察組軟骨面潰瘍、缺損程度均輕于模型組和對(duì)照組。HE、甲苯胺藍(lán)、番紅“O”染色均顯示,觀察組軟骨面較光滑,裂隙出現(xiàn)、表面組織丟失、基質(zhì)染色減輕、軟骨細(xì)胞增生和排列紊亂程度均輕于模型組和對(duì)照組。模型組、對(duì)照組軟骨形態(tài)評(píng)分、關(guān)節(jié)軟骨評(píng)分均高于觀察組(P均<0.05),模型組和對(duì)照組比較無(wú)統(tǒng)計(jì)學(xué)差異(P均>0.05)。觀察組MMP3、MMP13 mRNA相對(duì)表達(dá)量均低于模型組和對(duì)照組,Col2a mRNA相對(duì)表達(dá)量均高于模型組和對(duì)照組(P均<0.01);模型組和對(duì)照組MMP3、MMP13及Col2a mRNA相對(duì)表達(dá)量比較無(wú)統(tǒng)計(jì)學(xué)差異(P均>0.05)。結(jié)論 慢病毒介導(dǎo)siRNA沉默ERK2能夠減輕創(chuàng)傷性骨性關(guān)節(jié)炎大鼠的軟骨退變,機(jī)制可能與降低MMP3、MMP13表達(dá)及增加Col2a表達(dá)有關(guān)。
骨性關(guān)節(jié)炎;軟骨退變;慢病毒;小干擾RNA;細(xì)胞外信號(hào)調(diào)節(jié)激酶2;大鼠
骨性關(guān)節(jié)炎是最常見的關(guān)節(jié)疾病,關(guān)節(jié)創(chuàng)傷后發(fā)生的骨性關(guān)節(jié)炎占12%,其發(fā)病機(jī)理尚未完全明確[1,2]。研究表明,創(chuàng)傷性骨性關(guān)節(jié)炎的發(fā)生、發(fā)展與多種細(xì)胞炎性因子的調(diào)控密切相關(guān),如IL-1β和TNF-α等[3]。RNA干擾是由雙鏈RNA誘發(fā)的導(dǎo)致同源mRNA高效特異性降解的一種基因沉默現(xiàn)象,能夠快速、有效地阻斷相應(yīng)基因的表達(dá)[4]。直接轉(zhuǎn)染合成的小干擾RNA(siRNA)亦能阻斷相應(yīng)基因表達(dá),但存在體內(nèi)容易降解的缺點(diǎn)[5]。慢病毒載體技術(shù)是近年發(fā)展起來的,其介導(dǎo)的siRNA能夠穩(wěn)定、持久和高效地阻斷相應(yīng)基因表達(dá),目前已證實(shí)其在骨性關(guān)節(jié)炎、類風(fēng)濕性關(guān)節(jié)炎和假體周圍骨溶解等許多關(guān)節(jié)疾病的治療方面具有重要價(jià)值[6~8]。2014年10月~2015年5月,本研究參照前期試驗(yàn)的方法[5],構(gòu)建和包裝慢病毒介導(dǎo)沉默大鼠細(xì)胞外信號(hào)調(diào)節(jié)激酶2(ERK2)基因的siRNA,觀察其對(duì)創(chuàng)傷性骨性關(guān)節(jié)炎大鼠軟骨退變的影響,并探討其機(jī)制。
1.1 材料 雌性Wistar大鼠30只,12周齡,體質(zhì)量180~200 g,購(gòu)于上海實(shí)驗(yàn)動(dòng)物研究中心。人胚腎293T細(xì)胞(上海生命科學(xué)院)。TRIzol試劑、Lipofectamine 2000(美國(guó)Invitrogen公司),SYBR Green Ⅰ Real-time PCR 試劑盒、反轉(zhuǎn)錄試劑盒(日本TaKaRa公司),DMEM、胎牛血清(美國(guó)Gibco公司),攜帶綠色熒光蛋白的慢病毒載體系統(tǒng)(pshRNA-H1-Luc質(zhì)粒,上海吉?jiǎng)P基因公司)。7500實(shí)時(shí)熒光定量PCR儀(美國(guó)ABI公司),低溫超速離心機(jī)(美國(guó)BD公司),熒光倒置顯微鏡(IX51型,日本Olympus公司)。
1.2 ERK2 siRNA慢病毒載體的轉(zhuǎn)染及滴度測(cè)定 參照前期試驗(yàn)方法[5],體外構(gòu)建大鼠ERK2 siRNA慢病毒載體,并對(duì)慢病毒進(jìn)行包裝。大鼠ERK2 siRNA序列:5′-GCACCTCAGCAATGATCAT-3′,ERK2 siRNA陰性對(duì)照序列:5′-TGCAGTTCGGAATCAGCTT-3′。體外合成后,通過攜帶綠色熒光蛋白的pshRNA-H1-Luc質(zhì)粒構(gòu)建慢病毒載體,取對(duì)數(shù)生長(zhǎng)期的人胚腎293T細(xì)胞進(jìn)行慢病毒包裝。取感染復(fù)數(shù)(MOI)為10、25、50的慢病毒載體濃縮液轉(zhuǎn)染人胚腎293T細(xì)胞,熒光倒置顯微鏡下觀察轉(zhuǎn)染情況。鏡下可明顯觀察到293T細(xì)胞內(nèi)有綠色熒光,表明慢病毒載體成功轉(zhuǎn)染293T細(xì)胞。當(dāng)MOI為10、25、50時(shí),其轉(zhuǎn)染率分別為60%、75%、90%。以MOI為50時(shí)的慢病毒載體濃縮液進(jìn)行轉(zhuǎn)染,制備慢病毒溶液,經(jīng)系列稀釋法計(jì)算出ERK2 siRNA慢病毒及其陰性慢病毒的滴度。ERK2 siRNA慢病毒滴度為1×108tu/mL,ERK2 siRNA陰性慢病毒滴度為0.5×109tu/mL,將慢病毒溶液置于-80 ℃保存?zhèn)溆谩?/p>
1.3 模型制作與分組處理 將30只大鼠分籠飼養(yǎng),0.5%水合氯醛按0.35 g/100 g體質(zhì)量腹腔內(nèi)注射麻醉。參照Baragi等[9]的方法,選擇右膝關(guān)節(jié)制備創(chuàng)傷性骨性關(guān)節(jié)炎模型:于無(wú)菌狀態(tài)下行髕骨外側(cè)旁切口暴露右膝關(guān)節(jié),切除內(nèi)側(cè)半月板,縫合關(guān)節(jié)囊與皮膚,關(guān)閉切口。手術(shù)后不固定肢體,肌注青霉素20萬(wàn)U/d,連用3 d。術(shù)后1周,將30只大鼠隨機(jī)分為模型組、對(duì)照組和觀察組,各10只。無(wú)菌條件下取21號(hào)無(wú)菌注射針行右膝髕骨旁穿刺,進(jìn)行關(guān)節(jié)腔內(nèi)藥物注射。模型組注射0.1 mL無(wú)菌PBS,對(duì)照組注射0.1 mL ERK2 siRNA陰性慢病毒溶液,觀察組注射0.1 mL ERK2 siRNA慢病毒溶液。注射后適當(dāng)伸屈膝關(guān)節(jié)5 min,使注射液體均勻分布于膝關(guān)節(jié)腔。
1.4 相關(guān)指標(biāo)觀察
1.4.1 軟骨退變情況 各組注射后第8周,處死大鼠,取右膝關(guān)節(jié)。首先觀察右膝關(guān)節(jié)軟骨形態(tài),參照董剛等[10]的方法進(jìn)行軟骨形態(tài)評(píng)分。切取右股骨內(nèi)側(cè)髁軟骨組織,生理鹽水沖洗后依次行4%甲醛固定、甲酸-甲醛脫鈣、梯度乙醇脫水,封蠟后制成軟骨組織切片。分別行HE、甲苯胺藍(lán)及番紅“O”染色,于50倍光鏡下觀察關(guān)節(jié)軟骨組織病理形態(tài),番紅“O”染色后采用Mankin半定量法進(jìn)行關(guān)節(jié)軟骨評(píng)分[11]。
1.4.2 軟骨組織基質(zhì)金屬蛋白酶3(MMP3)、MMP13及Ⅱ型膠原酶(Col2a)mRNA表達(dá) 采用Real-time PCR法檢測(cè)。取大鼠右股骨內(nèi)側(cè)髁退變區(qū)軟骨組織,根據(jù)TRIzol試劑盒說明提取總RNA,逆轉(zhuǎn)錄后合成cDNA第一鏈。逆轉(zhuǎn)錄反應(yīng)體系:5×M-MLV逆轉(zhuǎn)錄酶緩沖液5 μL,M-MLV逆轉(zhuǎn)錄酶1 μL,dNTP 2 μL,RNAase抑制劑0.5 μL,Oligdt 2 μL,加入DEPC去離子水補(bǔ)至20 μL。充分混勻后42 ℃反應(yīng)60 min,75 ℃持續(xù)15 min滅活逆轉(zhuǎn)錄酶,cDNA鏈合成后-20 ℃?zhèn)溆?。參照So等[12]的方法設(shè)計(jì)MMP3、MMP13、Col2a及內(nèi)參基因β-actin的上下游引物,見表1。PCR反應(yīng)體系:SYBR GreenⅠ混合物10 μL,上、下游引物各0.4 μL,cDNA 2 μL,ddH2O補(bǔ)至25 μL。置入Prism 7500熒光定量PCR儀,設(shè)定擴(kuò)增程序:95 ℃ 10 s,60 ℃ 20 s,62 ℃ 20 s,重復(fù)35個(gè)循環(huán)。每個(gè)樣品重復(fù)3次且設(shè)置3個(gè)平行孔。目的基因mRNA相對(duì)表達(dá)量以2-ΔΔCt表示。
表1 MMP3、MMP13、Col2a及內(nèi)參基因β-actin引物序列
2.1 各組軟骨退變情況比較 各組右膝關(guān)節(jié)內(nèi)側(cè)脛骨平臺(tái)均較外側(cè)退變嚴(yán)重,其中模型組和對(duì)照組膝關(guān)節(jié)軟骨面無(wú)光澤,潰瘍明顯,缺損深達(dá)軟骨深層,部分可見軟骨剝脫,有骨贅形成;觀察組膝關(guān)節(jié)軟骨面欠光滑,光澤稍灰暗,部分區(qū)域軟骨面毛糙有糜爛,有少量骨贅形成。模型組軟骨形態(tài)評(píng)分為(3.50±0.55)分,對(duì)照組為(3.33±0.52)分,觀察組為(2.50±0.55)分;模型組、對(duì)照組均高于觀察組(P均<0.05),模型組和對(duì)照組比較無(wú)統(tǒng)計(jì)學(xué)差異(P均>0.05)。
HE染色可見,模型組和對(duì)照組軟骨面大部分區(qū)域粗糙不平滑,基質(zhì)染色明顯且不均勻,軟骨細(xì)胞排列嚴(yán)重紊亂,組織重度增生,潮線模糊;觀察組軟骨面部分區(qū)域不光滑,基質(zhì)染色、軟骨細(xì)胞排列紊亂程度、組織增生程度均明顯輕于模型組和對(duì)照組,潮線隱約可見。
甲苯胺藍(lán)染色可見,模型組和對(duì)照組關(guān)節(jié)表面軟骨組織丟失明顯,軟骨面較多區(qū)域可見裂隙,軟骨細(xì)胞增多,基質(zhì)染色明顯減輕且不均勻;觀察組關(guān)節(jié)表面軟骨組織輕度丟失,軟骨面部分區(qū)域可見裂隙,軟骨細(xì)胞輕度增生,基質(zhì)染色輕于模型組和對(duì)照組。
番紅“O”染色可見,模型組和對(duì)照組軟骨面明顯粗糙不平,較多區(qū)域連續(xù)性中斷,軟骨細(xì)胞排列紊亂且染色不明顯,部分潮線可見血管穿過;觀察組軟骨面輕度粗糙,少許區(qū)域連續(xù)性中斷,軟骨細(xì)胞排列輕度紊亂,基質(zhì)染色較輕。模型組關(guān)節(jié)軟骨評(píng)分為(12.50±1.05)分,對(duì)照組為(12.33±1.21)分,觀察組為(7.33±1.03)分;模型組、對(duì)照組均高于觀察組(P均<0.05),模型組和對(duì)照組比較無(wú)統(tǒng)計(jì)學(xué)差異(P>0.05)。
2.2 各組軟骨組織MMP3、MMP13及Col2a mRNA表達(dá)比較 觀察組MMP3、MMP13 mRNA相對(duì)表達(dá)量均低于模型組和對(duì)照組,Col2a mRNA相對(duì)表達(dá)量均高于模型組和對(duì)照組(P均<0.01);模型組和對(duì)照組MMP3、MMP13及Col2a mRNA相對(duì)表達(dá)量比較無(wú)統(tǒng)計(jì)學(xué)差異(P均>0.05)。見表1。
表1 各組軟骨組織MMP3、MMP13及Col2a mRNA表達(dá)比較(相對(duì)表達(dá)量
注:與模型組比較,*P<0.01;與對(duì)照組比較,#P<0.01。
關(guān)節(jié)創(chuàng)傷后形成骨性關(guān)節(jié)炎的病理過程涉及眾多因素,目前其確切的發(fā)生機(jī)理尚未完全明確[12]。研究表明,細(xì)胞炎性因子在創(chuàng)傷性骨性關(guān)節(jié)炎的發(fā)生、發(fā)展過程中具有重要作用,關(guān)節(jié)創(chuàng)傷后其關(guān)節(jié)液IL-1β水平顯著升高,而IL-1β目前被認(rèn)為是導(dǎo)致關(guān)節(jié)軟骨退變和破壞的最重要的細(xì)胞因子之一[3,13]。前期試驗(yàn)顯示,ERK2通路是IL-1β誘導(dǎo)軟骨細(xì)胞分泌MMP3、MMP13,并抑制Col2a表達(dá)的一個(gè)重要信號(hào)轉(zhuǎn)導(dǎo)通路[9]。研究顯示,MMP13能夠分解軟骨基質(zhì)中的Ⅱ型膠原酶,MMP3可降解軟骨組織細(xì)胞外基質(zhì)成分,如纖維連接蛋白和層粘連蛋白。而關(guān)節(jié)軟骨組織中Ⅱ型膠原酶、纖維連接蛋白以及層粘連蛋白等對(duì)于維持正常軟骨組織的修復(fù)重建和新陳代謝十分重要,如果這些成分發(fā)生異常,將會(huì)嚴(yán)重影響軟骨組織的新陳代謝平衡,最終可導(dǎo)致關(guān)節(jié)軟骨組織的退變和破壞[14,15]。
關(guān)節(jié)創(chuàng)傷后發(fā)生的骨性關(guān)節(jié)炎早期臨床表現(xiàn)與傳統(tǒng)骨性關(guān)節(jié)炎明顯不同,當(dāng)其發(fā)展到伴隨關(guān)節(jié)疼痛、畸形等傳統(tǒng)骨性關(guān)節(jié)炎典型的臨床表現(xiàn)時(shí),患者一般處于骨性關(guān)節(jié)炎的晚期,此時(shí)可采取的外科手段只能是關(guān)節(jié)置換、截骨和融合等方式[3,14]。針對(duì)創(chuàng)傷后激活關(guān)節(jié)軟骨退變和破壞的信號(hào)轉(zhuǎn)導(dǎo)機(jī)制,在不同時(shí)間點(diǎn)采取特別干預(yù)信號(hào)轉(zhuǎn)導(dǎo)措施來控制其演變,可能成為預(yù)防和治療其發(fā)生和發(fā)展的方向[3,14]。早期研究顯示,一些能夠?qū)е萝浌羌?xì)胞死亡、控制炎癥因子釋放和蛋白多糖丟失等的小分子物質(zhì),能夠明顯減少軟骨細(xì)胞死亡,修復(fù)破損的軟骨細(xì)胞膜,清除氧自由基,從而延緩創(chuàng)傷后骨性關(guān)節(jié)炎的炎性發(fā)展過程,但此類小分子物質(zhì)具有易降解、持續(xù)效果時(shí)間短等不足[16,17]。
慢病毒載體技術(shù)是近年發(fā)展起來的一項(xiàng)新技術(shù),具有轉(zhuǎn)染率高、在傳代和靜止期細(xì)胞中表達(dá)穩(wěn)定的特性,而慢病毒載體介導(dǎo)的siRNA能夠穩(wěn)定、持久和高效地阻斷相應(yīng)基因的表達(dá)[6]。本研究參考以往的研究[10],切除大鼠內(nèi)側(cè)半月板制備大鼠創(chuàng)傷性骨性關(guān)節(jié)炎動(dòng)物模型,并于其膝關(guān)節(jié)腔內(nèi)注射前期構(gòu)建包裝好的慢病毒介導(dǎo)的ERK2 siRNA,觀察沉默ERK2基因后對(duì)創(chuàng)傷性骨性關(guān)節(jié)炎軟骨退變的影響。結(jié)果顯示,觀察組軟骨面潰瘍、缺損程度均輕于模型組和對(duì)照組。HE、甲苯胺藍(lán)、番紅“O”染色均顯示觀察組軟骨面較光滑,裂隙出現(xiàn)、表面組織丟失、基質(zhì)染色、軟骨細(xì)胞增生和排列紊亂程度均輕于模型組和對(duì)照組。模型組、對(duì)照組軟骨形態(tài)評(píng)分、關(guān)節(jié)軟骨評(píng)分及MMP3、MMP13 mRNA相對(duì)表達(dá)量均明顯高于觀察組,Col2a mRNA相對(duì)表達(dá)量均明顯低于觀察組,而模型組、對(duì)照組上述指標(biāo)比較無(wú)明顯統(tǒng)計(jì)學(xué)差異。
綜上所述,慢病毒介導(dǎo)siRNA沉默ERK2能夠減輕創(chuàng)傷性骨性關(guān)節(jié)炎大鼠的軟骨退變,機(jī)制可能與降低MMP3、MMP13表達(dá)及增加Col2a表達(dá)有關(guān)。本研究為未來臨床基因治療創(chuàng)傷性骨性關(guān)節(jié)炎提供了一個(gè)新的藥物治療靶點(diǎn),值得借鑒。
[1] Brown TD, Johnston RC, Saltzman CL, et al. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease[J]. J Orthop Trauma, 2006,20(10):739-744.
[2] Anderson DD, Chubinskaya S, Guilak F, et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention[J]. J Orthop Res, 2011,29(6):802-809.
[3] Riordan EA, Little C, Hunter D. Pathogenesis of post-traumatic OA with a view to intervention[J]. Best Pract Res Clin Rheumatol, 2014,28(1):17-30.
[4] Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature, 2001,411(6836):494-498.
[5] Li F, Fan C, Cheng T, et al. Efficient inhibition of fibroblast proliferation and collagen expression by ERK2 siRNAs[J]. Biochem Biophys Res Commun, 2009,382(2):259-263.
[6] Matrai J, Chuah MK, Vanden Driessche T. Recent advances in lentiviral vector development and applications[J]. Mol Ther, 2010,18(3):477-490.
[7] Miller AD. Delivery of RNAi therapeutics: work in progress[J]. Expert Rev Med Devices, 2013,10(6):781-811.
[8] Li F, Ruan H, Fan C, et al. Efficient inhibition of the formation of joint adhesions by ERK2 small interfering RNAs[J]. Biochem Biophys Res Commun, 2010,391(1):795-799.
[9] Baragi VM, Becher G, Bendele AM, et al. A new class of potent matrix metalloproteinase 13 inhibitors for potential treatment of osteoarthritis: evidence of histologic and clinical efficacy without musculoskeletal toxicity in rat models[J]. Arthritis Rheum, 2009,60(7):2008-2018.
[10] 董剛,樂軍,周輝,等.PDTC關(guān)節(jié)腔注射對(duì)兔創(chuàng)傷性O(shè)A軟骨MMP-1、MMP-9 mRNA表達(dá)的影響[J].浙江中西醫(yī)結(jié)合雜志,2013,23(8):609-612.
[11] Mankin HJ, Dorfman H, Lippiello L, et al. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips Ⅱ. Correlation of morphology with biochemical and metabolic data[J]. J Bone Joint Surg Am, 1971,53(3):523-537.
[12] So JS, Song MK, Kwon HK, et al. Lactobacillus casei enhances type Ⅱ collagen/glucosamine-mediated suppression of inflammatory responses in experimental osteoarthritis[J]. Life Sci, 2011,88(7-8):358-366.
[13] Kramer WC, Hendricks KJ, Wang J. Pathogenetic mechanisms of posttraumatic osteoarthritis: opportunities for early intervention[J]. Int J Clin Exp Med, 2011,4(4):285-298.
[14] Wang X, Li F, Fan C, et al. Effects and relationship of ERK1 and ERK2 in interleukin-1beta-induced alterations in MMP3, MMP13, type Ⅱ collagen and aggrecan expression in human chondrocytes[J]. Int J Mol Med, 2011,27(4):583-589.
[15] Klatt AR, Paul-Klausch B, Klinger G, et al. A critical role for collagen Ⅱ in cartilage matrix degradation: collagen Ⅱ induces pro-inflammatory cytokines and MMPs in primary human chondrocytes[J]. J Orthop Res, 2009,27(1):65-70.
[16] Moon SJ, Jeong JH, Jhun JY, et al. Ursodeoxycholic Acid ameliorates pain severity and cartilage degeneration in monosodium iodoacetate-induced osteoarthritis in rats[J]. Immune Netw, 2014,14(1):45-53.
[17] 劉憲民,杜明昌,柳椰,等.豬膝關(guān)節(jié)軟骨全層缺損、軟骨下骨損傷后滑液中炎性因子水平變化[J].創(chuàng)傷與急危重病醫(yī)學(xué),2015,3(1):9-12.
Effect of siRNA mediated by lentivirus silencing ERK2 on cartilage degeneration in rat models of post traumatic osteoarthritis and its mechanism
NINGRende1,KONGLingchao,ZHOUYejin,WANGXiang
(1TheThirdAffiliatedHospitalofAnhuiMedicalUniversity,Hefei230031,China)
Objective To observe the effect of siRNA mediated by lentivirus silencing extracellular signal-regulated kinase 2 (ERK2) on cartilage degeneration in rat models of post-traumatic osteoarthritis and to investigate its mechanism. Methods Thirty light knees of traumatic osteoarthritis model rats were randomly divided into 3 groups with 10 rats in each group, then the right knee joint cavities of theirs were injected with sterile PBS (PBS group), negative ERK2 siRNA lentivirus solution (negative control group) and ERK2 siRNA lentivirus solution (observation group), respectively. After 8 weeks, the rats were sacrificed and the general morphology of the articular cartilage was observed and scored, then the articular cartilage pathological changes were observed under the optical microscope with HE, toluidine blue and safranin "O" staining, respectively, and the degree of cartilage degeneration was analyzed by Mankin semi-quantitative method. Meanwhile, the relative mRNA expression of matrix metalloproteinase 3 (MMP3), MMP13 and Col2a of cartilage tissues was analyzed by real-time fluorescence quantitative PCR. Results The articular cartilage surface ulcers and defects in the observation group were significantly lighter than those of the PBS group and negative control group, the extent of smooth articular surface of cartilage, crack area, loss of tissue, matrix staining, the proliferation of chondrocytes and the disorder of arrangement in the cartilage tissues of the observation group were lighter than those of the PBS group and negative control group; and the normal morphology and articular cartilage score in the observation group were significantly lower than those in the PBS group and negative control group (allP<0.05), there was no significant difference between the PBS and negative control groups (P>0.05). In addition, the relative mRNA expression levels of MMP3 and MMP13 in the observation group were lower than those in the PBS group and negative control group, while the relative mRNA expression level of Col2a was higher than that in the PBS group and negative control group (allP<0.01); there was no significant difference in the expression of MMP3, MMP13 and Col2a mRNA between the PBS group and negative control group (allP>0.05). Conclusion siRNA mediated by lentivirus silencing ERK2 can significantly reduce the cartilage degeneration of post-traumatic osteoarthritis, whose mechanism may be related with the decreased expression of MMP3 and MMP13 and increased expression of Col2a.
osteoarthritis; cartilage degeneration; lentivirus; small interfering RNA; extracellular signal-regulated kinase 2; rats
國(guó)家自然科學(xué)基金資助項(xiàng)目(81101380)。
寧仁德(1972-),男,博士,副主任醫(yī)師,研究方向?yàn)楣桥c關(guān)節(jié)損傷。E-mail: nrd192@qq.com
王祥(1978-),男,博士,副主任醫(yī)師,研究方向?yàn)楣桥c關(guān)節(jié)損傷。E-mail: doctorwangxiang@sohu.com
10.3969/j.issn.1002-266X.2016.16.001
R684.3
A
1002-266X(2016)16-0001-04
2015-10-21)