• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Low Temperature on Laser Transmission Efficiency in Laser Initiation Subsystem

    2016-05-08 08:18:34HEAifengCHUEnyiCAOChunqiangJINGBoXUFengyiLIMingZHAODongya
    含能材料 2016年7期

    HE Ai-feng, CHU En-yi, CAO Chun-qiang, JING Bo, XU Feng-yi, LI Ming, ZHAO Dong-ya

    (Shaanxi Applied Physics-Chemistry Research Institute (SAPC), Xi′an 710061, China)

    1 Introduction

    For coal mining engineering or weapon applications, the laser diode initiation (LDI) subsystem should be able to work at low temperature as -40 ℃[1]. Because of the loss of LDI subsystem at low temperature, thermal sensitivity of the tetraammine bis(5-nitro-tetrazolato)cobalt(Ⅲ) perchlorate (BNCP) reagent, the transmission loss of optical fiber elements is remarkable, the driving current of the semiconductor laser is changed with temperature, so the LDI subsystem is sensitive to low temperature. All these sensitive factors make the laser energy less than the design value, which affect the firing reliability of the subsystem. Many literatures[2-5]mention the optical fiber devices and semiconductor lasers in the LDI were sensitive to temperature, will cause the laser energy loss and may make the subsystem failure. In literatures [2-3], the effect of temperature variation on the laser power was studied. In literatures [4-5], the temperature sensitivity of various fiber optic line configurations was studied. However, the effect of low temperature on laser transmission efficiency in the whole laser initiation subsystem has not been studied.

    In this work, the high reliability of the subsystem was verified via study about the effect of low temperature on the dual-way subsystem. Study on quantitative fitting of experimental results was performed. The results obtained can be used to guide the design and application of laser initiating device at low temperature.

    2 Dual-way LDI Subsystem

    A dual-way LDI subsystem composed of laser diode, optical fiber, optical switch, dual-way fiber optic splitter, and laser initiators in Fig.1 was developed. The function process is that: when laser source 1 receives a command to fire, it first gives the optical switch 5 a signal to remove the interrupter and makes the path unblocked, then laser source 1 emits a 10 ms laser pulse, the laser transmits to laser initiators 7 via fiber pigtail 2, fiber optic adaptors 3, dual-way fiber optic splitter 4, unblocked optical switch 5 and fiber optic cables 6, making laser initiators initiate.

    Fig.1 Schematic diagram of dual-way laser initiation system

    1—laser, 2—fiber pigtail, 3—fiber optic adaptor, 4—dual-way fiber optic splitter with two ports, 5—optical switch, 6—fiber optic cable, 7—laser initiator, 8—controlling electrical cable

    2.1 Laser Initiator

    A laser initiator was designed using grad-index optical component, standard optical connecting technique and BNCP(tetraammine bis (5-nitro-tetrazolato)cobalt(Ⅲ) perchlorate)[6-7], the pyrotechnic composition being sensitive to laser. The initial energetic material of the laser initiator was the fine BNCP composition doped with 3% photo-sensitizer, next to it was DDT and output coarse BNCP column.

    2.2 Laser Source

    The laser source employed in the laser initiation subsystem was a multimode laser diode with wavelength of 2 W and power of 976 nm (K976D06FN-3.00 W from BWT Beijing LTD.). It had a threshold current of 0.2 A and a peak laser power of 2 W under a driving current of 2.5 A. The laser source was driven by electrical circuit to output a 10 ms single laser pulse, with pulse energy of 15 mJ.

    2.3 Transmitting and Coupling Fiber Optic Network

    It was proved by analysis and experiment that a higher coupling efficiency could be gained between fiber optic pairs with same or similar specification. Accordingly, in the transmitting and coupling network of laser initiation subsystem, coupled fiber optic cable pairs should be made with same specification, in this work a grad-index 100/140 μm core multimode fiber with NA(numerical aperture)=0.29 (GI 100/140-29/250 type from YOFC) was employed.

    Each optical fiber element intransmitting and coupling fiber optic network had a cable part. For example, laser diode′ pigtail cable was its cable part. The fiber optic cable had only cable part. While the dual-way fiber optic splitter and optical switch were composed of cable part and coupling part. The cable part was composed of GI 100/140-29/250, PVC inner jacket with diameter of 0.9 mm, Kevlar, buffer coating, outer jacket and FC/PC fiber optic connector.

    Coupling part of dual-way fiber optic splitter was made by fusion of two large diameter optic fibers. In the condition of laboratory, a total coupling and transmitting efficiency of about 80%, with a splitting uniformity of 50/50 was obtained with a 976nm laser diode.

    The barrier-moving mode optical switch[8]was designed comprising of two GRIN lenses separated by an electrically driven barrier, each GRIN lens coupled with a pigtail fiber of FC/PC connectors. When switched on, the barrier between two lenses was driven to move away by a DC 5V signal, the laser entered from the INPUT fiber was aligned to parallel light by the aligning lens and arrived at the focusing lens, laser light was in turn focused to the OUTPUT fiber. When switched off, the barrier returned to its original position, no light could be coupled to the OUTPUT fiber pigtail.

    3 Experimental Method and Set-up

    3.1 Sensitivity Test Method for Laser Initiator

    By using Bruceton sensitivity test method[9], firing tests to the BNCP laser initiator were carried out with a 976 nm 10 ms laser diode at 20 ℃ and -40 ℃ separately, their results were used to analyze whether there are significant performance differences.

    3.2 Environmental Test Method and Set-up

    The environmental test chamber used in this research was an EXCAL5423-H type chamber. The operating temperature range for the environmental test chamber is from -75 ℃ to +180 ℃, with a cooling rate of 5 K·min-1and a heating rate of 10 K/min according with IEC 60068-3-5. In order to be cooled adequately, the LDI subsystem or its individual part was put into the environmental test chamber at least 20 min.

    3.3 Initiation Experimental Set-up

    Fig.2 provides an experimental set-up for dual-way laser initiation network, by which the character parameters of the initiation system can be acquired. The testing process is described as following. At the same time of laser emitting, the synchronous signal is sent out by laser to data collection apparatus. The laser energy transmits to laser initiators via fiber pigtail, fiber optic adaptor and dual-way fiber optic transmitting network. Laser initiators are then initiated. The exploding output of laser initiator is transformed to electric signal by probe. The laser wave signal and transformed exploding signal are recorded and analyzed by the data collection apparatus. Function time for each laser initiator is calculated by time difference between the two signals of corresponding way.

    Fig.2 Schematic diagram of experimental set-up for dual-way laser initiation system

    1—test probe, 2—explosion protecting box, 3—multi-way data collection apparatus or oscilloscope, 4—electrical testing cable, 5—synchronous or trigger controlling cable

    4 Results and Discussion

    4.1 Environmental Performance of LDI Subsystem under Low Temperature

    4.1.1 Laser Initiator

    Two groups of sensitivity test results for BNCP laser initiators are shown in Table 1.

    Table 1 Sensitivity results of the BNCP laser initiators at 20 ℃ and -40 ℃

    temperature/℃averagefiringlaserenergy/mJamountsstandarddeviation99.9%firinglaserenergyat0.95confidencelevel/mJ0.1%firinglaserenergyat0.95confidencelevel/mJ200.525290.0830.7830.267-400.505300.0650.7470.263

    From Table 1, we can find that at 20 ℃, 99.9% firing laser energy of the BNCP laser initiator at 95% confidence level is estimated as 0.783 mJ from laser sensitivity test. After exposure to -40 ℃, 99.9% firing laser energy of the BNCP laser initiator at 95% confidence level is estimated as 0.747 mJ. No significant performance decrease of the laser initiator is found.

    4.1.2 Laser Source

    As is well known in the art, laser diode is variable to its working temperature. The LD output power falls down as temperature rises up and vice versa. Consequently, when working under a lower temperature, the LD power may excess its upper limit, which may partially or completely cause the damage of the laser emitting surface, i.e., the damage of LD. To keep the LD from damage, the laser source is driven under a much lower current with the output power of about 1.4 W in this work. Temperature compensation design[3]to laser source makes it have an output of 1.322-1.413 W at -40-20 ℃, shown in Fig.3.

    Fig.3 Temperature vs. power and fitted curve for diode laser generator

    Using a cubic model, the LD power data were interpolated in Fig.3, with the norm of residuals=0.015586 W. An experiential formula (1) describing the curve of laser output versus temperature of the diode fiber generator is obtained.

    P(LD)=2.3×10-6T3+7.4×10-5T2-0.0028T+1.3

    (1)

    4.1.3 Fiber Optic Cable

    At -40-20 ℃, transmitting and coupling test to fiber optic cable is conducted(Fig.4). The mismatch between fiber and outer jacket may cause micro-bending and in turn can cause coupling loss increase if they are adhered together tightly. In our research, there is a 1 mm gap left between theΦ0.9 mm PVC inner jacket and the FC/PC fiber optic connector, which is helpful to eliminate or reduce the mismatch between GI 100/140-29/250 fiber and inner jacket while temperature decreases.

    Fig.4 Experimental results and fitted curve of fiber optic cable under low temperature environment

    Through mathematical analysis to the experimental results in Fig.4, an experiential formula (2) describing the curve of efficiency versus temperature of the fiber optic cable is obtained.

    ηT(fiber)=-0.0048T2-0.016T+96

    (2)

    In design of laser initiation subsystem, a transmitting efficiency withTcan be calculated by Eqn.(2).

    4.1.4 Dual-way Fiber Optic Splitter

    Fig.5 and Table 2 show the results by transmitting and coupling test under low temperature for dual-way fiber optic splitter. The splitting ratio for the two ports remains as 50/50. Under -40 ℃, the total efficiency has a decrease of about 7% compared to efficiency at 20 ℃. Stress due to temperature in the fusion coupling part will cause the increase of coupling energy loss under low temperature.

    Through mathematical analysis to the experimental results in Fig.5, an experiential formula (3) describing the curve of total efficiency versus temperature of the fiber optic splitter is obtained.

    ηT(splitter)=0.00018T3+0.0056T2+0.016T+79

    (3)Table 2 Results for influence of low temperature on optical splitter

    Fig.5 Experimental result and fitted curve of fiber optic splitter under low temperature environment

    4.1.5 Optical Switch

    In the temperature range of -40 ℃ to +20 ℃, transmitting and coupling test to fiber optic switch is conducted. Experimental results are shown in Fig.6. The coupling part of the optical switch is GRIN lens coupled with a pigtail fiber, stress due to temperature in this part will cause the increase of coupling loss under low temperature.

    Fig.6 Experimental results and fitted curve of optical switch under low temperature environment

    Through mathematical analysis to the experimental results in Fig.6, an experiential formula (4) describing the curve of efficiency versus temperature of the optical switch is obtained.

    ηT(switch)=0.00035T3+0.014T2-0.0044T+65

    (4)

    4.2 System Margin Analysis

    The system margin is defined as:

    Margin=E(fire,T)min/E99.9%@95%max

    (5)

    WhereE(fire,T)minstands for the minimum delivered firing energy to each laser initiator, andE99.9%@95%maxstands for the maximum 99.9% firing laser energy of the BNCP laser initiator at 95% confidence level (from Table 1,E99.9%@95%max=0.783 mJ).

    For LDI subsystem in this work, the delivered firing energy to each laser initiator can be expressed as equation (6).

    E(fire, T)=Elaser·ηsplitter·ηswitch·ηcable

    (6)

    WhereP(LD)×10 stands for the total energy of a 10 ms single laser pulse from the laser source.

    Fig.7 shows the relationship between firing laser energy of each initiator and temperature calculated from equation (6). The minimum delivered firing laser energy to each laser initiator occurs at -40 ℃. Then it can be calculated with equation (6) as:

    E(fire,T)min=E(fire,-40)=3.035(mJ)

    (7)

    Fig.7 Relationship between firing laser energy of each initiator and temperature

    For LDI subsystem in this work, the system margin can be calculated with equation (5) as:

    Margin =E(fire,T)min/E99.9%@95%

    =3.035/0.783

    =3.876

    (8)

    4.3 Initiation Experimental Comparison between before and after Environmental Tests

    The initiation experiment was carried out on the dual-way LDI subsystem before and after the environmental tests of low temperature exposure(-40 ℃ for 4 h). The results of the experiment are listed in the Table 3.

    Table 3 Initiation results of the dual-way LDI subsystem before and after low temperature tests

    temperature/℃splittingportproductnumberfunctiontime/μsdepthofthedentonsteelplate/mm 20A2009?4131390.74B2009?4151460.68-40A2009?1141440.63B2009?1201510.65

    From experimental results in Table 3, it can be seen that compared with performances at 20 ℃, the function time of the subsystem and the output dent of the initiator do not change significantly under -40 ℃. Fig.8 shows the typical explosion results acquired by the multi-way data collection apparatus.

    Fig.8 Explosion results of the LDI subsystem

    5 Conclusions

    According to the sensitivity test results of BNCP laser initiator, 99.9% firing laser energy at 95% confidence level is estimated as 0.783 mJ at 20 ℃ and 0.747 mJ at -40 ℃. No significant performance difference is found.

    At -40-20 ℃, a cubic fitting is introduced to mathematically analyze the influences on LDI subsystems and its parts.

    Reliability and firing margin of the LDI subsystem are ana-lyzed, with a result of more than 3, meaning that an off-the-shelf LD of 2 W can meet the dual-way initiation acquirements for coal mining or weapons.

    The successful initiation experiment for the dual-way LDI subsystem confirms a high reliability of subsystem.

    Acknowledgement:The authors wish to thank Profs. LU Jian-cun, LIU Ju-peng, and ZHANG Rui for their given guidance in the laser energy transmission and subsystem designs, Mr. LIU Yan-yi for his suggestions in the power control of the laser source and FU Dong-xiao for his help in the laser ignition test data analysis.

    [1] Denis Dilhan, Christian Wallstein, Claude Carron. Laser Diode Initiated Systems for Satellite Applications[C]∥31st International Pyrotechnics Seminar, 2004: 455-472.

    [2] Richard R Craig, William Gignac, Philip Worland. Laser Diodes for Pyrotechnic Applications[C]∥AIAA-93-2359.

    [3] HE Ai-feng, LIU Yan-yi, LU Jian-cun, et al. Temperature compensation of laser diode operating in pulse mode[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2004(Supplement): 618-621.

    [4] Larry A Andrews, Randy J Williams. Characteriazation of Commercial Fiber Optic Connectors: Preliminary Report[R]. SAND98-1951.

    [5] Thomas J Blachowski, Christopher W Brown, Dr. Peter Ostrowski. A Temperature Sensitivity Study of various Fiber Optic Line Configurations[C]∥AIAA 99-2415.

    [6] Everett S Hafenrichter, Bill Marshall Jr, Kevin J Fleming. Fast Laser Diode Ignition of CP and BNCP[C]∥29thIPS, 2002: 787-793.

    [7] LAO Yun-liang, SHENG Di-lun. The Science of Initiating Expolosives and Relative Composition[M]. Beijing: Beijing Institute of Technology Press, 2011.

    [8] HE Ai-feng, LU Jian-cun, LIU Ju-peng, et al. Energy Interrupting Control for Laser Ordnance Firing System[C]∥25th International Symposium on Ballistics, 2010.

    [9] Barry T. Neyer, James Gageby. ISO 14304 Annex B All-Fire/No-Fire Test and Analysis Methods [C]∥Proceedings of the Seventeenth Symposium on Explosives and Pyrotechnics,1999.

    久久人妻熟女aⅴ| 日本一区二区免费在线视频| 久久热在线av| 亚洲五月色婷婷综合| 亚洲伊人色综图| 99re6热这里在线精品视频| 永久免费av网站大全| 极品人妻少妇av视频| 亚洲国产精品一区三区| 亚洲三区欧美一区| 久久天堂一区二区三区四区| 亚洲精品久久久久久婷婷小说| 中文精品一卡2卡3卡4更新| 久久国产亚洲av麻豆专区| 国产日韩欧美视频二区| 亚洲第一青青草原| 久久久亚洲精品成人影院| 777米奇影视久久| 9191精品国产免费久久| 中文字幕制服av| 欧美激情 高清一区二区三区| 国产成人精品久久二区二区91 | 成人漫画全彩无遮挡| 色婷婷久久久亚洲欧美| 精品一品国产午夜福利视频| 成年美女黄网站色视频大全免费| 一本—道久久a久久精品蜜桃钙片| 久久韩国三级中文字幕| 亚洲伊人色综图| 精品酒店卫生间| 亚洲美女黄色视频免费看| 欧美少妇被猛烈插入视频| a级毛片黄视频| 丁香六月天网| 一级毛片黄色毛片免费观看视频| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩视频高清一区二区三区二| 美女国产高潮福利片在线看| 久热这里只有精品99| 最近最新中文字幕大全免费视频 | 日韩欧美精品免费久久| 亚洲成人免费av在线播放| 久久精品人人爽人人爽视色| 一级毛片 在线播放| 国产成人免费无遮挡视频| 欧美 日韩 精品 国产| 十八禁网站网址无遮挡| 别揉我奶头~嗯~啊~动态视频 | 久久久久国产一级毛片高清牌| 国产免费一区二区三区四区乱码| 亚洲少妇的诱惑av| 国产熟女欧美一区二区| 99热网站在线观看| 午夜91福利影院| 晚上一个人看的免费电影| 亚洲精品一二三| 十八禁人妻一区二区| 国产片内射在线| 国产 精品1| avwww免费| 国产免费福利视频在线观看| 亚洲精品国产一区二区精华液| 亚洲精品日本国产第一区| 十八禁人妻一区二区| 777米奇影视久久| 欧美国产精品va在线观看不卡| 女人高潮潮喷娇喘18禁视频| 国产成人精品久久久久久| 可以免费在线观看a视频的电影网站 | 久久人人爽人人片av| 国产淫语在线视频| 丝袜人妻中文字幕| 国产99久久九九免费精品| 飞空精品影院首页| 午夜福利免费观看在线| 中文精品一卡2卡3卡4更新| 色婷婷久久久亚洲欧美| 一区福利在线观看| 麻豆av在线久日| 亚洲国产中文字幕在线视频| 侵犯人妻中文字幕一二三四区| 午夜免费观看性视频| 天天操日日干夜夜撸| 夫妻午夜视频| 97精品久久久久久久久久精品| 午夜免费观看性视频| 日韩一本色道免费dvd| √禁漫天堂资源中文www| 又黄又粗又硬又大视频| tube8黄色片| 欧美日韩一区二区视频在线观看视频在线| 18禁裸乳无遮挡动漫免费视频| 一本大道久久a久久精品| 亚洲国产精品国产精品| 一区二区三区四区激情视频| 丝袜喷水一区| 国产福利在线免费观看视频| 欧美精品av麻豆av| 国产无遮挡羞羞视频在线观看| 99国产精品免费福利视频| 亚洲熟女精品中文字幕| 日韩欧美精品免费久久| 国产日韩欧美在线精品| 亚洲精品久久久久久婷婷小说| 久久热在线av| 亚洲伊人色综图| 免费观看人在逋| 各种免费的搞黄视频| 美国免费a级毛片| 精品人妻一区二区三区麻豆| 久久99一区二区三区| 亚洲国产欧美在线一区| 亚洲精品成人av观看孕妇| 国产精品国产av在线观看| 日韩av不卡免费在线播放| 国产亚洲午夜精品一区二区久久| 99热全是精品| 九草在线视频观看| 一本—道久久a久久精品蜜桃钙片| 夜夜骑夜夜射夜夜干| 免费黄频网站在线观看国产| 1024视频免费在线观看| 午夜免费鲁丝| 欧美亚洲日本最大视频资源| 国产精品一区二区在线观看99| 日本wwww免费看| 色播在线永久视频| 80岁老熟妇乱子伦牲交| 一区在线观看完整版| 久久99热这里只频精品6学生| 如何舔出高潮| 成年美女黄网站色视频大全免费| 久久人人爽av亚洲精品天堂| 久久精品国产a三级三级三级| 欧美最新免费一区二区三区| 一级片'在线观看视频| a级毛片黄视频| 精品一品国产午夜福利视频| 国产精品一国产av| 欧美日韩国产mv在线观看视频| 97在线人人人人妻| 亚洲激情五月婷婷啪啪| 黑人欧美特级aaaaaa片| 九九爱精品视频在线观看| 国产成人精品福利久久| 中文精品一卡2卡3卡4更新| 老司机在亚洲福利影院| 亚洲久久久国产精品| 久久精品久久久久久噜噜老黄| 毛片一级片免费看久久久久| 男人添女人高潮全过程视频| 免费观看a级毛片全部| 啦啦啦在线免费观看视频4| 中文字幕亚洲精品专区| 制服丝袜香蕉在线| av天堂久久9| 一边摸一边做爽爽视频免费| 看十八女毛片水多多多| svipshipincom国产片| 国产精品一二三区在线看| 亚洲中文av在线| 久久久久视频综合| 亚洲av综合色区一区| 亚洲成色77777| 亚洲免费av在线视频| 国产精品久久久久成人av| 青春草视频在线免费观看| 久久天躁狠狠躁夜夜2o2o | 欧美精品亚洲一区二区| 精品少妇黑人巨大在线播放| 日韩大片免费观看网站| 国产亚洲一区二区精品| 国产有黄有色有爽视频| 国产精品女同一区二区软件| 亚洲成人免费av在线播放| 亚洲av欧美aⅴ国产| 国产亚洲午夜精品一区二区久久| 乱人伦中国视频| 成人亚洲欧美一区二区av| 国产成人欧美在线观看 | 男女午夜视频在线观看| 亚洲精品自拍成人| 美女福利国产在线| 久久精品aⅴ一区二区三区四区| 青草久久国产| 不卡av一区二区三区| 欧美黄色片欧美黄色片| 精品久久蜜臀av无| 悠悠久久av| 美女脱内裤让男人舔精品视频| 又粗又硬又长又爽又黄的视频| 在线观看www视频免费| 国产高清不卡午夜福利| 青春草亚洲视频在线观看| av线在线观看网站| 只有这里有精品99| 日本欧美国产在线视频| 在线天堂中文资源库| 久久久久国产一级毛片高清牌| 国产乱来视频区| 久久国产精品大桥未久av| 日本猛色少妇xxxxx猛交久久| 黄色 视频免费看| 精品国产露脸久久av麻豆| 日本猛色少妇xxxxx猛交久久| 悠悠久久av| 51午夜福利影视在线观看| 在线观看国产h片| 免费黄网站久久成人精品| 国产精品久久久久久人妻精品电影 | 涩涩av久久男人的天堂| 两性夫妻黄色片| 99九九在线精品视频| 一区福利在线观看| 99热网站在线观看| 日韩中文字幕欧美一区二区 | 91国产中文字幕| 一区二区三区四区激情视频| 国产淫语在线视频| 国产一区二区在线观看av| 成年人午夜在线观看视频| 欧美激情 高清一区二区三区| 精品国产一区二区久久| 亚洲欧美激情在线| 99国产综合亚洲精品| 国产成人啪精品午夜网站| 热re99久久精品国产66热6| 欧美日韩综合久久久久久| 国产亚洲午夜精品一区二区久久| 亚洲成人免费av在线播放| 母亲3免费完整高清在线观看| 国产成人av激情在线播放| 亚洲av在线观看美女高潮| 你懂的网址亚洲精品在线观看| 少妇被粗大猛烈的视频| 九色亚洲精品在线播放| 国产精品麻豆人妻色哟哟久久| 亚洲精品久久久久久婷婷小说| 一本久久精品| 精品酒店卫生间| www.熟女人妻精品国产| 91成人精品电影| 在线观看免费日韩欧美大片| a级毛片黄视频| 国产在线免费精品| 国产成人av激情在线播放| 国产免费又黄又爽又色| 精品一区二区三区四区五区乱码 | 黑人巨大精品欧美一区二区蜜桃| 国产 一区精品| 美女国产高潮福利片在线看| 黑丝袜美女国产一区| 国产成人av激情在线播放| 男女无遮挡免费网站观看| 日本一区二区免费在线视频| 婷婷成人精品国产| 亚洲av欧美aⅴ国产| netflix在线观看网站| 亚洲成av片中文字幕在线观看| 七月丁香在线播放| 狠狠精品人妻久久久久久综合| 天天躁夜夜躁狠狠久久av| 亚洲国产最新在线播放| 国产探花极品一区二区| 日韩av免费高清视频| 免费黄网站久久成人精品| 十八禁人妻一区二区| 热99国产精品久久久久久7| 国产欧美亚洲国产| 观看美女的网站| 美女中出高潮动态图| 亚洲av成人精品一二三区| 麻豆精品久久久久久蜜桃| 香蕉丝袜av| 啦啦啦在线免费观看视频4| 另类亚洲欧美激情| 日韩大片免费观看网站| 亚洲图色成人| 欧美日韩福利视频一区二区| 亚洲精品中文字幕在线视频| 久久天躁狠狠躁夜夜2o2o | 无遮挡黄片免费观看| 亚洲熟女精品中文字幕| 久久精品久久久久久久性| 亚洲七黄色美女视频| 亚洲精品av麻豆狂野| 久热这里只有精品99| 亚洲成国产人片在线观看| 国产一级毛片在线| 午夜av观看不卡| 国产老妇伦熟女老妇高清| 亚洲视频免费观看视频| av.在线天堂| av片东京热男人的天堂| 自拍欧美九色日韩亚洲蝌蚪91| 99久久99久久久精品蜜桃| 91老司机精品| 国产精品蜜桃在线观看| 如何舔出高潮| 亚洲成av片中文字幕在线观看| 1024视频免费在线观看| 熟女少妇亚洲综合色aaa.| 卡戴珊不雅视频在线播放| 国产在视频线精品| 妹子高潮喷水视频| 国产精品香港三级国产av潘金莲 | 亚洲精品国产色婷婷电影| 免费黄色在线免费观看| 欧美变态另类bdsm刘玥| 国产成人精品在线电影| 这个男人来自地球电影免费观看 | 久久人人爽av亚洲精品天堂| 我的亚洲天堂| 天天躁日日躁夜夜躁夜夜| 欧美av亚洲av综合av国产av | 国产精品一区二区精品视频观看| 国产成人精品久久久久久| 亚洲精品国产色婷婷电影| 日韩 欧美 亚洲 中文字幕| 91国产中文字幕| 久热爱精品视频在线9| 久久鲁丝午夜福利片| 国产成人免费观看mmmm| 狠狠精品人妻久久久久久综合| 欧美日韩亚洲综合一区二区三区_| 男女国产视频网站| 九九爱精品视频在线观看| 欧美在线一区亚洲| 美女福利国产在线| 日韩电影二区| 亚洲国产中文字幕在线视频| 免费黄网站久久成人精品| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色视频在线播放观看不卡| 90打野战视频偷拍视频| 精品少妇内射三级| 精品国产一区二区三区四区第35| 国产极品粉嫩免费观看在线| 国产成人欧美| 在线看a的网站| 成人漫画全彩无遮挡| av视频免费观看在线观看| 看非洲黑人一级黄片| 曰老女人黄片| 一级,二级,三级黄色视频| 日日摸夜夜添夜夜爱| 久久婷婷青草| 美女主播在线视频| 亚洲国产欧美日韩在线播放| 国产成人精品久久久久久| 亚洲精品久久午夜乱码| 亚洲,欧美精品.| 视频区图区小说| 成年人午夜在线观看视频| 亚洲欧美精品自产自拍| 91精品国产国语对白视频| 国产精品香港三级国产av潘金莲 | 国产精品欧美亚洲77777| 婷婷色av中文字幕| 一级片免费观看大全| 丝袜脚勾引网站| 欧美激情极品国产一区二区三区| 国产亚洲最大av| 亚洲人成网站在线观看播放| 日日撸夜夜添| 丰满饥渴人妻一区二区三| 亚洲av国产av综合av卡| 婷婷色综合www| 国产又色又爽无遮挡免| 国产精品一区二区在线不卡| 国产亚洲精品第一综合不卡| 女人精品久久久久毛片| 狠狠精品人妻久久久久久综合| 日韩人妻精品一区2区三区| 亚洲一区中文字幕在线| 伦理电影大哥的女人| 欧美中文综合在线视频| 少妇被粗大的猛进出69影院| 可以免费在线观看a视频的电影网站 | 美女中出高潮动态图| 啦啦啦在线观看免费高清www| 欧美亚洲日本最大视频资源| 捣出白浆h1v1| 精品少妇内射三级| 午夜福利,免费看| 人人妻人人添人人爽欧美一区卜| 国产免费又黄又爽又色| 少妇人妻久久综合中文| 国产精品一国产av| av不卡在线播放| 一本一本久久a久久精品综合妖精| 日韩大片免费观看网站| 在线观看一区二区三区激情| 精品国产一区二区久久| 久久久久国产精品人妻一区二区| 五月开心婷婷网| 国产片内射在线| 精品人妻一区二区三区麻豆| 国产97色在线日韩免费| 18禁动态无遮挡网站| 亚洲精品视频女| 美女福利国产在线| 国产精品二区激情视频| 一级片'在线观看视频| 一区二区日韩欧美中文字幕| 免费观看a级毛片全部| 亚洲精品日本国产第一区| 日韩视频在线欧美| 国产精品国产三级专区第一集| www日本在线高清视频| 十八禁网站网址无遮挡| 丁香六月欧美| 久久天堂一区二区三区四区| 亚洲伊人久久精品综合| 国产色婷婷99| 日日撸夜夜添| 国产日韩欧美在线精品| 菩萨蛮人人尽说江南好唐韦庄| 一二三四在线观看免费中文在| 午夜日本视频在线| 婷婷色综合www| 国产成人精品久久二区二区91 | 嫩草影视91久久| av网站免费在线观看视频| 欧美日韩av久久| 欧美日韩一区二区视频在线观看视频在线| 久久精品亚洲熟妇少妇任你| 90打野战视频偷拍视频| 日韩成人av中文字幕在线观看| 亚洲中文av在线| 在线观看国产h片| 国产精品麻豆人妻色哟哟久久| 免费久久久久久久精品成人欧美视频| 一本一本久久a久久精品综合妖精| 日韩制服骚丝袜av| 丝袜在线中文字幕| 久久久精品国产亚洲av高清涩受| 久久精品久久久久久久性| 国产免费福利视频在线观看| 秋霞在线观看毛片| 国产免费福利视频在线观看| 国产日韩欧美视频二区| 亚洲av欧美aⅴ国产| 一本大道久久a久久精品| 男的添女的下面高潮视频| 王馨瑶露胸无遮挡在线观看| 亚洲精品久久成人aⅴ小说| 精品一区在线观看国产| 久久狼人影院| 精品第一国产精品| 80岁老熟妇乱子伦牲交| 亚洲av成人精品一二三区| 在线观看免费午夜福利视频| 欧美日韩国产mv在线观看视频| 深夜精品福利| 青青草视频在线视频观看| 80岁老熟妇乱子伦牲交| 精品久久久久久电影网| 午夜福利乱码中文字幕| 亚洲成国产人片在线观看| 免费看av在线观看网站| 菩萨蛮人人尽说江南好唐韦庄| 激情视频va一区二区三区| 久久人妻熟女aⅴ| 精品一区在线观看国产| 午夜福利乱码中文字幕| 成人国产av品久久久| 性少妇av在线| 亚洲欧美中文字幕日韩二区| 香蕉国产在线看| 久久久久国产精品人妻一区二区| 99精品久久久久人妻精品| 日韩中文字幕欧美一区二区 | 51午夜福利影视在线观看| 国产黄色视频一区二区在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲欧美精品综合一区二区三区| 51午夜福利影视在线观看| 亚洲成人手机| 老鸭窝网址在线观看| 人妻人人澡人人爽人人| 丝袜人妻中文字幕| 日韩 亚洲 欧美在线| 成人亚洲欧美一区二区av| 在线 av 中文字幕| 亚洲欧美精品自产自拍| 国产精品一二三区在线看| 久久久亚洲精品成人影院| 欧美 日韩 精品 国产| 国产 一区精品| 久久久精品区二区三区| 亚洲国产av影院在线观看| 国产精品久久久久久精品古装| a级毛片在线看网站| 欧美日韩亚洲高清精品| 少妇被粗大猛烈的视频| 欧美在线黄色| 中国三级夫妇交换| 免费看不卡的av| 欧美少妇被猛烈插入视频| 巨乳人妻的诱惑在线观看| 制服人妻中文乱码| kizo精华| 大片免费播放器 马上看| videosex国产| 啦啦啦中文免费视频观看日本| 99国产综合亚洲精品| 日韩欧美精品免费久久| 亚洲av国产av综合av卡| 一级a爱视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线| 女人爽到高潮嗷嗷叫在线视频| 女性生殖器流出的白浆| 老司机亚洲免费影院| 在线看a的网站| 婷婷成人精品国产| 婷婷色综合大香蕉| 亚洲三区欧美一区| 最新在线观看一区二区三区 | 在线亚洲精品国产二区图片欧美| 久久久亚洲精品成人影院| 国产爽快片一区二区三区| 美女大奶头黄色视频| 久久精品久久精品一区二区三区| 不卡视频在线观看欧美| 国产精品成人在线| svipshipincom国产片| 韩国高清视频一区二区三区| 成人免费观看视频高清| 2018国产大陆天天弄谢| 欧美日韩精品网址| 久久久精品免费免费高清| 中文欧美无线码| 看免费av毛片| 九九爱精品视频在线观看| 国产黄色免费在线视频| 免费久久久久久久精品成人欧美视频| 飞空精品影院首页| 狠狠婷婷综合久久久久久88av| 女人精品久久久久毛片| 日本爱情动作片www.在线观看| 男女午夜视频在线观看| 久久精品亚洲av国产电影网| 天天躁日日躁夜夜躁夜夜| 丝瓜视频免费看黄片| 精品国产一区二区久久| 99久国产av精品国产电影| 亚洲成人国产一区在线观看 | 亚洲专区中文字幕在线 | 亚洲七黄色美女视频| 男女边吃奶边做爰视频| 国产爽快片一区二区三区| 欧美亚洲 丝袜 人妻 在线| 卡戴珊不雅视频在线播放| 久热这里只有精品99| 这个男人来自地球电影免费观看 | 久久久精品区二区三区| 亚洲av国产av综合av卡| 久久99热这里只频精品6学生| 精品一区二区三卡| 午夜老司机福利片| 国产免费视频播放在线视频| 国产色婷婷99| 国产欧美日韩综合在线一区二区| 欧美人与性动交α欧美软件| 午夜免费男女啪啪视频观看| 亚洲av日韩在线播放| 国语对白做爰xxxⅹ性视频网站| kizo精华| 亚洲av男天堂| 丝袜在线中文字幕| 国产精品无大码| 亚洲欧美清纯卡通| 欧美xxⅹ黑人| 亚洲成人一二三区av| 亚洲一卡2卡3卡4卡5卡精品中文| 国产xxxxx性猛交| 久久久精品94久久精品| 亚洲图色成人| 亚洲av男天堂| 无遮挡黄片免费观看| 91老司机精品| 人妻一区二区av| 夜夜骑夜夜射夜夜干| 高清黄色对白视频在线免费看| 国产精品国产三级国产专区5o| 大话2 男鬼变身卡| 美女视频免费永久观看网站| 看非洲黑人一级黄片| 久久毛片免费看一区二区三区| 欧美精品av麻豆av| 久久久精品免费免费高清| 国产免费一区二区三区四区乱码| 精品国产一区二区三区久久久樱花| 天堂俺去俺来也www色官网| 亚洲色图 男人天堂 中文字幕| 国产色婷婷99| www.熟女人妻精品国产| 成人免费观看视频高清| 2021少妇久久久久久久久久久| 亚洲精品日韩在线中文字幕| 超碰97精品在线观看| 最近最新中文字幕免费大全7| 巨乳人妻的诱惑在线观看| 精品少妇内射三级| 久久女婷五月综合色啪小说| 黄网站色视频无遮挡免费观看| 国产精品成人在线| 亚洲欧美色中文字幕在线| 欧美人与性动交α欧美精品济南到| 国产野战对白在线观看| 日韩中文字幕视频在线看片| 女人高潮潮喷娇喘18禁视频| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品999|