文開庭, 李和睿
(貴州工程應用技術(shù)學院 土木建筑工程學院, 貴州 畢節(jié) 551700)
?
GFC-空間中的GFS-KKM定理及其對極大元的應用
文開庭,李和睿
(貴州工程應用技術(shù)學院 土木建筑工程學院, 貴州 畢節(jié) 551700)
摘要:引入GFC-空間中的GFS-KKM映射、G(KS)-映射和G(KS)-優(yōu)化映射,建立GFC-空間的GFS-KKM定理,作為應用,獲得G(KS)-映射和G(KS)-優(yōu)化映射的極大元定理.結(jié)論統(tǒng)一、改進和推廣一些近期文獻的已知結(jié)果.
關(guān)鍵詞:GFC-空間; GFS-KKM映射; G(KS)-映射; G(KS)-優(yōu)化映射; 極大元
1預備知識
2009年,P. Q. Khanh等[1-2]引入了GFC-空間,2010年,P. Q. Khanh等[3]建立了GFC-空間中新的極大元定理、重合定理和相交定理.2011年,K. T. Wen等[4-5]得到了GFC-空間中新的相交定理、變分不等式、不動點定理和帶上下界的廣義平衡問題解的存在定理.文獻[6]獲得了GFC-空間中的KKM定理、Browder不動點定理等,文獻[7-9]研究了GFC-空間中的匹配定理、不動點定理、極大極小不等式、鞍點定理、截口定理、重合定理、乘積GFC-空間中的極大元定理、廣義混合擬平衡問題系統(tǒng)解的存在定理.文獻[10-12]研究了H-度量空間和L-凸空間的KKM定理.文獻[13-14]研究了FC-空間中的不動點.本文的目的是引入GFC-空間中的GFS-KKM映射、GKS-映射和GKS-優(yōu)化映射;建立GFC-空間中GFS-KKM映射的GFS-KKM定理,作為應用,獲得了GKS-映射和GKS-優(yōu)化映射的極大元定理.我們的結(jié)論統(tǒng)一、改進和推廣了一些近期文獻的已知結(jié)果.
本文沿用文獻[1-9]的相關(guān)記號、概念和術(shù)語,并引入如下概念.
定義 1.1設(shè)(X,Y,Φ)為GFC-空間,Z≠?,S:X→Z為單值映射.F:Y→2Z稱為GFS-KKM映射,若對
有
定義 1.2設(shè)(X,Y,Φ)為GFC-空間,Z為拓撲空間,K為Z中的非空緊集,S:X→Z為單值映射.F:Z→2Y稱為GKS-映射,若F有相對于K的弱緊局部交性質(zhì),且對
有
注 1.1定義1.2統(tǒng)一推廣了文獻[15-16]的W-映射、文獻[17]的定義1、文獻[18]的定義1.1.
定義 1.3設(shè)(X,Y,Φ)為GFC-空間,Z為拓撲空間,K為Z中的非空緊集,S:X→Z為單值映射.F:Z→2Y稱為GKS-優(yōu)化映射,若對?z∈Z滿足F(z)≠?,存在Fz:Z→2Y和z在Z中的開鄰域N(z)使得:
2) ?t∈N(z),F(t)?Fz(t);
3) ?N={y0,y1,…,yn}∈〈Y〉,?{yi0,yi1,…,yik}∈〈N〉,
2主要結(jié)果
證明因F為GFS-KKM映射,故對
有
進而
設(shè)
首先,因F是緊閉值的,故對?i∈{0,1,…,n},F(yi)是緊閉集,而S連續(xù),故(S-1F)(yi)是緊閉集.又因φN(△n)緊,故對
為閉集.據(jù)φN的連續(xù)性,對
為閉集.
其次,因φN(△k)?φN(△n)且
故
于是
所以
進而
注 2.1定理2.1統(tǒng)一改進和推廣了文獻[24]的定理2.1、文獻[25]的引理2.6、文獻[26]的定理3.2、文獻[27]的定理1、文獻[28]的定理1.1、文獻[29]的定理2.1,等.
定理 2.2設(shè)(X,Y,Φ)為GFC-空間,Z為拓撲空間,K為Z中的非空緊集,S∈C(X,Z),F:Z→2Y為GKS-映射.若存在M∈〈Y〉使得
有
于是
即
于是
注 2.2定理2.2統(tǒng)一改進和推廣了文獻[15]的定理1、文獻[16]的定理1、文獻[17]的定理1、文獻[18]的定理2.1,等.
證明若結(jié)論不然,即
1) ?z∈K,F(z)≠?.
因F為GKS-優(yōu)化映射,故對?z∈K,存在Fz:Z→2Y和z在Z中的開鄰域N(z)使得
3) ?t∈N(z),F(t)?Fz(t);
4) ?N={y0,y1,…,yn}∈〈Y〉,?{yi0,yi1,…,yik}∈〈N〉,
設(shè)F在K上的限制為FK:K→2Y定義為FK(z)=F(z),?z∈K.對?z∈K,設(shè)Fz在K上的限制為FzK:K→2Y定義為FzK(x)=Fz(x),?x∈K.由于K緊,據(jù)2)得
6) ?t∈N(z),FK(t)?FzK(t).
據(jù)K緊知
據(jù)4)得
7) ?z∈K,?N={y0,y1,…,yn}∈〈Y〉,?{yi0,yi1,…,yik}∈〈N〉,
因Z是Hausdorff拓撲空間,K是Z中的緊子空間,故K是緊Hausdorff拓撲空間,因而,K是正規(guī)拓撲空間.故對?z∈K和z在K中的開鄰域N(z),存在z在K中的開鄰域U(z)使得
據(jù)K的緊性知
8) 存在{z0,z1,…,zm}∈〈K〉使得
對?p∈{0,1,…,m},定義Fp:K→2Y為:
則有
必有
若不然,假設(shè)存在
使得
任取
據(jù)8),存在p0∈{0,1,…,m}使得
注意到
故存在z*在K中的開鄰域O(z*)使得
對
有
故
因此
于是
所以
與7)矛盾.
故
注2.3定理2.3統(tǒng)一改進和推廣了文獻[16]的定理2、文獻[17]的定理2、文獻[18]的定理2.2,等.
參考文獻
[1] KHANH P Q, QUAN N H, YAO J C. Generalized KKM-type theorems in GFC-spaces and applications[J]. Nonlinear Anal,2009,71(3/4):1227-1234.
[2] HAI N X, KHANH P Q, QUAN N H. Some existence theorems in nonlinear analysis for mappings on GFC-spaces and applications[J]. Nonlinear Anal,2009,71(12):6170-6181.
[3] PHAN Q K, NGUYEN H Q. General existence theorems,alternative theorems and applications to minimax problems[J]. Nonlinear Anal,2010,72(5):2706-2715.
[4] WEN K T. A new intersection theorem in topological spaces with applications to variational inequalities and fixed points[C]//2nd International Conference on Artificial Intelligence. Management Science and Electronic Commerce,2011,2:923-926.
[5] WEN K T, LI H R. A new T-KKM theorem in GFC-spaces and its application to generalized equilibrium problems with lower and upper bounds[C]//2011 World Congress on Engineering and Technology,2011,1:543-546.
[6] 文開庭. GFC-空間中的KKM定理及其對一般擬平衡問題系統(tǒng)的應用[J]. 應用泛函分析學報,2012,14(3):292-297.
[7] WEN K T, LI H R. A matching theorem in GFC-spaces with application to saddle points[J]. Advanced Materials Research,2013,734-737(4):2867-2870.
[8] WEN K T. A new maximal theorem in product GFC-spaces with application to systems of generalized mixed vector quasiequilibrium problems[J]. Applied Mechanics and Materials,2013:405-408(4):3151-3154.
[9] 文開庭. GFC-空間中的Browder不動點定理及其對重合問題的應用[J]. 畢節(jié)學院學報,2013(4):26-32.
[10] 劉學文. H-度量空間中的一個新型KKM定理及其應用[J]. 四川師范大學學報(自然科學版),2003,26(2):154-157.
[11] 何蓉華,丁協(xié)平. L-凸空間的乘積空間內(nèi)廣義R-KKM型定理及其應用[J]. 四川師范大學學報(自然科學版),2004,27(1):27-30.
[12] 方敏,丁協(xié)平. L-凸空間內(nèi)的廣義L-R-KKM型定理及其應用[J]. 四川師范大學學報(自然科學版),2003,26(5) 461-463.
[13] 丁協(xié)平. 局部FC-空間內(nèi)的Himmelberg型不動點定理[J]. 四川師范大學學報(自然科學版),2005,28(2):127-130.
[14] 丁協(xié)平. 局部FC-空間內(nèi)Himmelberg型不動點定理的推廣[J]. 四川師范大學學報(自然科學版),2006,29(1):1-6.
[15] ZHANG H L, WU X. A new existence theorem of maximal elements in non-compact H-spaces with applications to minimax inequalities and variational inequalities[J]. Acta Math Hungar,1998,80:115-127.
[16] WU X. New existence theorem for maximal elements in noncompact H-spaces with applications to equilibrium of games[J]. Comput Math Appl,2000,40:1097-1106.
[17] WEN K T. New maximal element theorems in L-convex spaces with application to equilibrium of games[J]. Math Appl China,2008,21(2):239-244.
[18] WEN K T. Maximal element theorems forWK-majorized mappings in FC-spaces and the application to equilibrium of abstract economies[J]. Adv Math China,2013,42(4):527-534.
[19] YANG M G, Deng L. Equilibria of nonparacompact generalized games withLcmajorized correspondences in FC-spaces[J]. Nonlinear Anal,2009,70(2):890-903.
[21] CHOWDHURY M S R, TARAFDAR E, TAN K K. Minimax inequalities on G-convex spaces with applications to generalized games[J]. Nonlinear Anal,2001,43(2):253-275.
[22] DING X P, XIA F Q. Equilibria of noncompact generalized games withLFCmajorized correspondences in G-convex spaces[J]. Nonlinear Anal,2004,56(6):831-849.
[23] SHEN Z F. Maximal element theorems of H-majorized correspondence and existence of equilibrium for abstract economies[J]. J Math Anal Appl,2001,256(1):67-79.
[24] DING X P. Generalized L-KKM type theorems in L-convex spaces with applications[J]. Comput Math Appl,2002,43(10/11):1249-1256.
[25] KIRK W A, SIMS B, YUAN X Z. The Knaster-Kuratowski and Mazurkiewicz theory in hyperconvex metric spaces and some of its applications[J]. Nonlinear Anal,2000,39(5):611-627.
[26] DING X P. Generalized G-KKM theorems in generalized convex spaces and their application[J]. J Math Anal Appl,2002,266(1):21-37.
[27] PARK S. Fixed point theorems in locally G-convex spaces[J]. Nonlinear Anal:TMA,2002,48(6):869-879.
[28] CHOWDHURY M S R, TARAFDER E, TAN K K. Minimax inequalities on G-convex spaces with applications to generalized game[J]. Nonlinear Anal,2001,43(2):253-275.
[29] WEN K T. New GRKKM theorems in FC-spaces with application to fixed points[J]. Adv Math China,2010,39(3):331-337.
2010 MSC:47H04; 47H10; 52A99
(編輯李德華)
A GFS-KKM Theorem in GFC-Spaces with the Application to Maximal Elements
WEN Kaiting,LI Herui
(SchoolofCivilEngineeringandArchitecture,GuizhouUniversityofEngineeringScience,Bijie551700,Guizhou)
Abstract:In this paper, GFS-KKM mappings, G(KS)-mappings and G(KS)-majorized mappings are introduced, a GFS-KKM theorem is established in GFC-spaces. As applications, maximal element theorems for G(KS)-mappings and G(KS)-majorized mappings are obtained. Our results unify, improve and generalize some known results in recent references.
Key words:GFC-space; GFS-KKM mapping; G(KS)-mapping; G(KS)-majorized mapping; maximal element
doi:10.3969/j.issn.1001-8395.2016.01.016
中圖分類號:O177.91
文獻標志碼:A
文章編號:1001-8395(2016)01-0093-05
作者簡介:文開庭(1962—),男,教授,主要從事非線性分析的研究,E-mail:wenkaiting_2004@sina.com
基金項目:國家自然科學基金(11361003)、貴州省自然科學基金([2011]2093)和貴州省教育廳自然科學重點基金([2012]058)
收稿日期:2014-05-05