• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Catalytic Oxidation of Cyclohexane over ZSM-5 Catalyst in N-alkyl-N-methylimidazolium Ionic Liquids*

    2009-05-14 03:04:40HUYongqi胡永琪WANGJianying王建英ZHAORuihong趙瑞紅LIUYumin劉玉敏LIURunjing劉潤(rùn)靜andLIYongdan李永丹

    HU Yongqi (胡永琪), WANG Jianying (王建英), ZHAO Ruihong (趙瑞紅), LIU Yumin (劉玉敏), LIU Runjing (劉潤(rùn)靜) and LI Yongdan (李永丹)

    ?

    Catalytic Oxidation of Cyclohexane over ZSM-5 Catalyst in-alkyl--methylimidazolium Ionic Liquids*

    HU Yongqi (胡永琪)1,**, WANG Jianying (王建英)1, ZHAO Ruihong (趙瑞紅)1, LIU Yumin (劉玉敏)1, LIU Runjing (劉潤(rùn)靜)1and LI Yongdan (李永丹)2

    1School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China2Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering, Tianjin University, Tianjin 300072, China

    Heterogeneous oxidation of cyclohexane by tert-butyl hydroperoxide (TBHP) was carried out over ZSM-5 catalysts with different Si/Al ratios in ionic liquids and organic molecular solvents. Higher yield and selectivity of the desired products were found in ionic liquids than in molecular solvents. The conversion of cyclohexane exhibits a decrease from 15.8% to 10.8% with the increase of Si/Al ratio of the HZSM-5 catalyst, and all the catalysts exhibit good selectivity of monofunctional oxidation products at around 97%. The activity of catalyst is found strongly dependent on the alkyl chain length of ionic liquid.

    ionic liquid, cyclohexane oxidation, ZSM-5, catalysis

    1 INTRODUCTION

    Recently, the use of heterogeneous catalysts such as molecular sieves or metal-containing molecular sieves has attracted a great interest due to their redox ability, shape-selectivity and recyclability [4-8]. Titanium-containing molecular sieves [9] and metalloporphyrins [3, 10] have been used to catalyze the oxidation of cyclohexane. Transition metal complex [11-14] and transition metals (Sn, Zr, Cr, Fe, Mn, Co, Au, Ce and Cu) incorporated into zeolites [15-20] were also used as catalysts for this reaction. However, most of those reported works used volatile organic solvents such as acetonitrile, acetone, acetic acid and methanol, which resulted in contamination of the products and needed complicated separation procedure, also in some cases led to serious environmental problems [4].

    There has been a growing interest in the use of ionic liquids as environmentally benign solvents in chemical processes [21-23]. The ambient-temperature ionic liquids, especially those based on 1,3-dialkylimidazolium cations coupled with anions such as tetrafluoroborate and hexafluorophosphate, have been emerging as promising green solvents in recent years. There are a number of intriguing properties of ionic liquids including high thermal and chemical stability, no measurable vapor pressure, non-flammability, and friction reducibility. These properties enable them to be significantly advantageous with reusability. Moreover, with ionic liquid used in heterogeneous reactions, the stability of the molecular sieves and other heterogeneous catalysts was found higher than that in the molecular solvents [24]. Sometimes the increase in the stability is accompanied by the increases in the activity and selectivity [25]. In these reactions, ionic liquids offer the opportunity of combining the advantages of both homogeneous reaction,.. catalyst modulation, and heterogeneous reaction,.. catalyst recycling, in one system.

    Recently, we reported the use of ZSM-5 and metal-loading ZSM-5 as catalysts for the cyclohexane oxidation in ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate. The conversion of cyclohexane reached about 9%-21%, with a high selectivity of oxidation of products (>97%), showing that the mixture system of ionic liquid and ZSM-5 has good properties on cyclohexane oxidation reaction [26]. In this work, ZSM-5 molecular sieves with different Si/Al ratios were applied to catalyze the oxidation of cyclohexane in ionic liquids. There catalytic behaviors in cyclohexane oxidation with the use of a series of water-miscible and immiscible ionic liquids were studied in detail using-butyl-hydroperoxide as oxidant.

    2 EXPERIMENTAL

    2.1 Materials

    All chemicals and reagents of analytical grade were used as received without further purification. H-ZSM-5 samples with Si/Al ratio of 25, 38 and 50 were commercial products from Catalyst Plant of Naikai University and were labeled as Z1, Z2 and Z3, respectively.-butyl hydroperoxide [TBHP, 85% (by mass) in water] was a commercial reagent from Guangzhou Weibo Chemical Company.

    The pore structure of the catalysts was characterized by N2adsorption-desorption isotherm measurements. The details of the chemical composition and the pore structure parameters of the catalysts were summarized in Table 1.

    Table 1 Pore structure characteristics of the investigated catalysts

    Hydrophilic room temperature ionic liquids including 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim]BF4), 1-propyl-3-methylimidazolium tetrafluoroborate ([pmim]BF4), 1-butyl-3-methylimidazoliumtetrafluoroborate ([bmim]BF4), and hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF6) were synthesized by alkylation of 1-methylimidazole with 1-bromoalkne or chloroalkne followed by substitution of bromide or chloride anion with tetrafluoroborates or hexafluorophosphate, as given in our previous work [27]. All of the ionic liquids were finally dehydrated under vacuum at 80°C for 12 h and were stored in an inert nitrogen atmosphere. The synthesized ionic liquids were characterized with1H-NMR and no impurities were detected [27]. Water mass content of all the ionic liquid was lower than 0.03%, determined by Karl-Fischer analysis.

    2.2 Catalytic reaction

    Cyclohexane oxidation reaction was performed in a teflon-lined 50 ml stainless-steel autoclave equipped with a magnetic stirrer [27]. Typically, 27.8 mmol cyclohexane, 5 ml (6.25 g) ionic liquid, 0.15 g catalyst, and 55.6 mmol-butyl-hydroperoxide (TBHP, 85% in H2O) were introduced into the reactor. The autoclave was closed and submerged in a thermostatic oil bath at 90°C. The reaction mixture was vigorously stirred at 1000 r·min-1for 12 h. After the reaction, the autoclave was removed from the oil bath and stood in ambient air for about 2 h to cool down. Then, the autoclave was opened and the upper phase of the reaction mixture was collected by using a separating funnel. An Agilent-6890 GC with a flame ionization detector (FID) and a capillary column (PEG-20M, 30 m×0.25 mm) was used for quantitative analysis of the oxidation products with nitrogen as the carrier gas. The conversion was calculated based on the starting cyclohexane. Cyclohexyl hydroperoxide (CHHP) content was determined by decomposition with PPh3followed by quantification of the formed cyclohexanol by gas chromatography (GC) [12, 15, 28].

    To prepare a solution of anhydrous TBHP in cyclohexane as an oxidant, TBHP (85% in H2O) was mixed with cyclohexane, then anhydrous MgSO4was introduced into the solution and magnetically stirred for 3 h. The organic phase was separated and the concentration of TBHP in cyclohexane was determined by titration according to Ref. [20].

    The amount of TBHP consumed, denoted as TBHP cons., was determined by iodometric titration of the unreacted part. The selectivities with respect to THBP were calculated based on the stoichiometry that 1 mol of TBHP is needed to produce 1 mol of cyclohexanol, 1 mol of CHHP or 0.5 mol of cyclohexanone.

    3 RESULTS AND DISCUSSION

    3.1 Catalytic activity of ZSM-5 with different Si/Al ratio

    The oxidation of cyclohexane was carried out at 90°C for 12 h over Z1, Z2 and Z3 catalysts in ionic liquid [emim]BF4with TBHP/cyclohexane molar ratio of 2. The monofunctional oxidation products, including cyclohexanone, cyclohexanol and cyclohexyl hydroperoxide, were formed and the results are given in Table 2. The conversion of cyclohexane exhibits a decrease from 15.8% to 10.8% with the increase of Si/Al ratio of the HZSM-5 catalyst, and the same trend on the yields of cyclohexanone, cyclohexanol and CHHP was observed. All the catalysts exhibit good selectivity of monofunctional oxidation products at around 97%. The results obtained here with HZSM-5 catalysts were much higher than those reported in the commercial process. Cyclohexanone was a favored product on the three catalysts. For Z1, the ratio of cyclohexanone to cyclohexanol was approximately 2.59, whereas for Z2 and Z3, cyclohexanone formation was more favored.

    Table 2 The oxidation of cyclohexane over ZSM-5 catalysts with different Si/Al ratios

    ①Data cited from Ref. [26].

    Note: Reaction conditions (0.15 g catalyst, 27.8 mmol cyclohexane, 55.6 mmol TBHP (85% in H2O), 5 ml ionic liquid, 12 h and 90°C); -one, cyclohexanone; -ol, cyclohexanol; CHHP, cyclohexyl hydroperoxide.

    3.2 Effect of solvents on the reaction

    A comparison of the cyclohexane conversion and the selectivity to monofunctional oxidation products among the reactions in ionic liquids and in molecular organic solvents is given in Table 3. Clearly, higher activities were observed for all catalysts in the ionic liquids than those either in acetone or in the absence of solvent. The activity of catalysts is strongly dependent on the types of the cation of the ionic liquid, and the order of reactivity has been found to be [emim]+>[pmim]+>[bmim]+. This phenomenon is analogous to the oxidation of pyrimidine thioether in ionic liquids reported by Hardacre. [29], where the activity decreases with the increase of the alkyl chain length. In all of the ionic liquids, the selectivity for monofunctional oxidation products remained higher than 96%, even for the conversion higher than 15% for all of the catalysts. However, for the reaction in acetone, the selectivity was sharply decreased and fell in the range of 70.2%-74.7%.

    Compared to conventional solvents, enhanced reaction rates and improved yields were obtained in ionic liquids. The reaction in [emim]BF4afforded 15.3% yield of monofunctional oxidation products, whereas the same reaction in acetone gave a yield of 2.46%.

    In contrast to the reaction in water-miscible ionic liquids,.. [bmim]BF4, cyclohexane oxidation in water-immiscible ionic liquids,. [bmim]PF6, showed lower activity, indicating that the anion has an effect on the activity of the catalysts. Although cyclohexane oxidation was found to proceed for all the catalysts in [bmim]PF6, the lower ionic liquid phase became less viscous after reaction than the fresh [bmim]PF6ionic liquid, and a little amount of white solid was observed on the wall of the reactor. This phenomenon was not observed in the reaction with the other ionic liquids and implies the formation of HF during the reaction through the hydrolysis of the anion [30].

    The cation effect observed with [emim]BF4, [pmim]BF4and [bmim]BF4may be associated with the increasing solvent viscosity as the alkyl chain length increases. The effect of viscosity of ionic liquids on the activity of oxidation reaction has been observed previously in the oxidation of pyrimidine thioether with a mesoporous catalyst [31]. It is also likely that the decrease of activity with the cation size is associated with the reduction of the accessibility of the catalyst pores [29, 31].

    Table 3 Conversion and selectivity to monofunctional oxidation products as a function of solvent and catalyst used after 12 h reaction at 90°C①

    ① Monofunctional oxidation products are cyclohexanone, cyclohexanol and cyclohexyl hydroperoxide; reaction conditions: 0.15 g catalyst, 27.8 mmol cyclohexane, 55.6 mmol TBHP (85% in H2O), 5 ml solvent, 12h and 90°C.

    ② Data cited from Ref. [26].

    3.3 Effect of water on the reaction

    In order to investigate whether the water has an influence on the catalytic activity, another series of experiments on cyclohexane oxidation were performedwith anhydrous TBHP, a solution in cyclohexane, using Z1 catalyst in ionic liquids [emim]BF4, [pmim]BF4and [bmim]BF4under the same experimental conditions. The results are presented in Table 4. It can be seen that a same trend of decreasing activity with the increase of the alkyl chain length of ionic liquid was observed. Compared with the reaction using aqueous TBHP, the cyclohexane oxidation using anhydrous TBHP showed a much lower yield of monofunctional oxidation products in all of the ionic liquids used. These results indicate that little amount of water played an important role on the higher reactivity of cyclohexane. This phenomenon might be explained that the presence of water facilitates the transfer of hydrophilic TBHP to the ionic liquid phase containing HZSM-5, thus increasing the accessibility of oxidant to molecular sieve and improving consequently the catalytic activity.

    Table 4 Comparisons of yields of monofunctional oxidation products on cyclohexane oxidation with aqueous TBHP and anhydrous TBHP as oxidant using Z1 catalyst

    ① Reaction with aqueous TBHP (85% in H2O).

    ② Reaction with anhydrous TBHP.

    ③ Data cited from Ref. [26].

    Note: Reaction conditions (0.15 g catalyst, 27.8 mmol cyclohexane, 55.6 mmol TBHP, 5 ml ionic liquid, 12 h and 90°C).

    3.4 Conversion and selectivity of TBHP

    The conversion and selectivity of TBHP were also examined in cyclohexane oxidation using ZSM-5 catalysts with different Si/Al ratios both in ionic and molecular media. For all the solvents used, the TBHP conversion was high while the efficiency of the oxidant was very low as shown in Table 5. The initial amount of hydroperoxide was one time more than the stoiciometric need, however, about 80%-97% of the oxidant was unselectively decomposed after 12 h. The non-productive conversion of the hydroperoxide may be the reason for the cyclohexane oxidation process was limited to a yield below 15% [32]. The Si/Al ratio of the catalyst influenced the extent of the peroxide decomposition, as shown in Table 5. This might be explained by the different hydrophilicity of the zeolite. The zeolite with high aluminium content,.. low Si/Al ratio, is more hydrophilic. The results reported here are consistent with the Ref. [33]. For both molecular and ionic solvents, the catalyst with higher Si/Al ratios showed a lower TBHP selectivity.

    Table 5 TBHP conversion and selectivity as a function of solvent and catalyst after 12 h reaction

    ① Data cited from Ref. [26].

    Note: Reaction conditions (0.15 g catalyst, 27.8 mmol cyclohexane, 55.6 mmol TBHP (85% in H2O), 5 ml ionic liquid or acetone, 12 h and 90°C).

    3.5 Preliminary study of mechanism of cyclohexane oxidation catalyzed by HZSM-5 in ionic liquids

    Schuchardt. [34] proposed a mechanism for the oxidation reaction. TBHP decomposes with the presence of zeolite, generating-butoxy radicals that abstract a hydrogen atom from cyclohexane forming a cyclohexyl radical, which is the initiating step. The cyclohexyl radical then reacts rapidly with molecular oxygen in air, generating the cyclohexylperoxyl radical which can undergo two different pathways. (1) Reaction with another cyclohexylperoxyl radical to form molecular oxygen and the non radical products, cyclohexnol and cyclohexanone, and (2) reaction with a cyclohexane molecule (substrate) abstracting a hydrogen atom to form cyclohexylhydroperoxide (CHHP) and regenerating its precursor, the cyclohexyl radical [28, 33, 35]. The intermediate CHHP is further decomposed on HZSM-5 to produce cyclohexanol and cyclohexanone [36]. The abstraction of hydrogen from cyclohexane by cyclohexylperoxy accounts for the formation of 40% CHHP in the overall oxidation products.

    The ratio of cyclohexanone to cyclohexanol formed in the reaction with HZSM-5 catalysts in [emim]BF4was around 3.0 (Table 2), which indicates higher cyclohexnone selectivity. It seems likely that the catalyst promote the reaction from cyclohexanol to cyclohexanone. This hypothesis was then tested in the experiments using cyclohexanol as a reactant. The results are shown in Table 6. Cyclohexanol is more active than cyclohexane under the reaction conditions and can be converted to cyclohexanone easily.

    Table 6 Comparison of cyclohexane and cyclohexanol oxidation in [emim]BF4

    ① Data cited from Ref. [26].

    Note: Reaction conditions (0.15 g catalyst, 27.8 mmol substrate, 55.6 mmol TBHP (85% in H2O), 5 ml ionic liquid, 12 h and 90°C).

    4 CONCLUSIONS

    The effect of several ionic liquids solvent on the liquid phase oxidation of cyclohexane over ZSM-5 catalysts with different Si/Al ratios was performed in ionic liquids using-butyl-hydroperoxide as oxidant. Among all the ZSM-5 catalysts, Z1 (low Si/Al ratio of 25) exhibited the highest catalytic activity under the experimental conditions in ionic liquids and achieved 15.8% conversion of cyclohexane and 97.0% overall selectivity of cyclohexanone, cyclohexanol and cyclohexyl hydroperoxide. The comparison with typical molecular solvent acetone indicated that much higher activities were obtained in ionic liquids. Different activities were also found among the investigated ionic liquids. Both cation and anion of ionic liquid contributed to the effects of the ionic liquids. The best ionic solvent was found to be [emim]BF4. Some amount of water in-butyl-hydroperoxide was helpful to the oxidation of cyclohexane. The reaction products can be easily isolated from the ionic liquid phase containing catalyst by decantation.

    1 Shylesh, S., Samuel, P.P., Singh, A.P., “Chromium-containing small pore mesoporous silicas: Synthesis, characterization and catalytic behavior in the liquid phase oxidation of cyclohexane”,.., 318, 128-136 (2007).

    2 Pillai, U.R., Sahle-Demessie, E., “A highly efficient oxidation of cyclohexane over VPO catalysts using hydrogen peroxide”,.., 2142-2143 (2002).

    3 Guo, C.C., Huang, G.., Zhang, X.B., Guo, D.C., “Catalysis of chitosan-supported iron tetraphenylporphyrin for aerobic oxidation of cyclohexane in absence of reductants and solvents”,.., 247, 261-267 (2003).

    4 Yuan, H.X., Xia, Q.H., Zhan, H.J., Lu, X.H., Xu, K.X., “Catalytic oxidation of cyclohexane to cyclohexanone and cyclohexanol by oxygen in a solvent-free system over metal-containing ZSM-5 catalysts”,.., 304, 178-184 (2006).

    5 Zhang, H.J., Li, Y.D., “Preparation and characterization of Beta/MCM-41composite zeolite with a stepwise-distributed pore structure”,., 183, 73-78 (2008).

    6 Liu, H.R., Meng, X.C., Zhao, D.S., Li, Y.D., “The effect of sulfur compound on the hydrogenation of tetralin over a Pd-Pt/HDAY catalyst”,..., 140, 424-431 (2008).

    7 Liu, Y.M., Yang, H.Q., Jin, F., Zhang, Y., Li, Y.D., “Synthesis of pyridine and picolines over Co-modified HZSM-5 catalyst”,..., 136, 282-287 (2007).

    8 Zhang, H.J., Meng, X.C., Li, Y.D., Lin, Y.S., “MCM-41 overgrown on Y composite zeolite as support of Pd-Pt catalyst for hydrogenation of polyaromatic compounds”,...., 46, 4186-4192 (2007)

    9 Spinacé, E.V., Pastore, H.O., Schuchardt, U., “Cyclohexane oxidation catalyzed by titanium silicalite (TS-1): Overoxidation and comparison with other oxidation systems”,.., 157, 631-635 (1995).

    10 Guo, C.C., Chu, M.F., Liu, Q., Liu, Y., Guo, D.C., Liu, X.Q., “Effective catalysis of simple metalloporphyrins for cyclohexane oxidation with air in the absence of additives and solvents”,.., 246, 303-309 (2003).

    11 Morvillo, A., Romanelio, G., “Ruthenium-catalyzed oxygenation of saturated hydrocarbons by-butylhydroperoxide”,..., 77, 283-288 (1992).

    12 Schuchardt, U., Pereira, R., Rufo, M., “Iron (III) and copper (II) catalysed cyclohexane oxidation by molecular oxygen in the presence of tert-butyl hydroperoxide”,..., 135, 257-262 (1998).

    13 Bellifa, A., Lahcene, D., Tchenar, Y.N., Choukchou-Braham, A., Bachir, R., Bedrane, S., Kappenstein, C., “Preparation and characterization of 20 wt.% V2O5–TiO2catalyst oxidation of cyclohexane”,.., 305, 1-6 (2006).

    14 Simo?es, M.M.Q., Conceic?o, C.M.M., Gamelas, J.A.F., Domingues, P.M.D.N., Cavaleiro, A.M.V.J., Cavaleiro, A.S., Ferrer-Correia, A.J.V., Johnbstone, R.A.W., “Keggin-type polyoxotungstates as catalysts in the oxidation of cyclohexane by dilute aqueous hydrogen peroxide”,..., 144, 461-468 (1999).

    15 Tian, P., Liu, Z.M., Wu, Z.B., Xu, L., He, Y.L., “Characterization of metal-containing molecular sieves and their catalytic properties in the selective oxidation of cyclohexane”,., 93-95, 735-742 (2004).

    16 Pires, E.L., Arnold, U., Schuchardt, U., “Amorphous silicates containing cerium: Selective catalysts for the oxidation of cyclohexane”,..., 169, 157-161 (2001).

    17 S?kmen, L., Sevin, F., “Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites”,..., 264, 208-211 (2003).

    18 Sooknoi, T., Limtrakul, J., “Activity enhancement by acetic acid in cyclohexane oxidation using Ti-containing zeolite catalyst”,..., 233, 227-237 (2002).

    19 Zhao, R., Ji, D., Lv, G. M., Qian, G., Yan, L., Wang, X. L., Suo, J. S., “A highly efficient oxidation of cyclohexane over Au/ZSM-5 molecular sieve catalyst with oxygen as oxidant”,.., 904-905 (2004).

    20 Johnson, R.M., Siddiqi, I.W., The Determination of Organic Peroxides, Pergamon Press, Oxford (1970).

    21 Law, M.C., Wong, K.Y., Chan, T.H., “Solvent-free route to ionic liquid precursors using a water-moderated microwave process”,.., 4, 328-330 (2002).

    22 Yang, X., Fei, Z.F., Zhao, D.B., Ang, W.H., Li, Y.D., Dyson, P.J., “Palladium nanoparticles stabilized by an ionic polymer and ionic liquid: A versatile system for C-C cross coupling reactions”,.., 47, 3292-3297 (2008).

    23 Zhao, H., “Innovative applications of ionic liquids as 'Green' engineering liquids”,..., 193, 1660-1677 (2006).

    24 Chhikara, B.S., Chandra, R., Tandon, V., “Oxidation of alcohols with hydrogen peroxide catalyzed by a new imidazolium ion based phosphotungstate complex in ionic liquid”,.., 230, 436-439 (2005).

    25 Cimpeanu, V., Parvulescu, V., Parvulescu, V. I., Thompson, J.M., Hardacre, C., “Thioethers oxidation on dispersed Ta-silica mesoporous catalysts in ionic liquids”,., 117, 126-132 (2006).

    26 Wang, J.Y., Zhao, F.Y., Liu, R.J., Hu, Y.Q., “Oxidation of cyclohexane catalyzed by metal-containing ZSM-5 in ionic liquid”,..., 279, 153-158 (2007).

    27 Wang, J.Y., Zhao, F.Y., Liu, Y.M., Hu, Y.Q., “Study on surface tension of a series of-alkyl--methyimidazolium room temperature ionic liquids”,.., 65, 1443-1448 (2007).

    28 Pires, E.L., Arnold, U., Schuchardt, U., “Amorphous silicates containing cerium: selective catalysts for the oxidation of cyclohexane”,..., 169, 157-161 (2001).

    29 Hardacre, C., Katdare, S. P., Milroy, D., Nancarrow, P., Rooney, D.W., Thompson, J. M., “A catalytic and mechanistic study of the Friedel-Crafts benzoylation of anisole using zeolites in ionic liquids”,.., 227, 44-52 (2004).

    30 Swatloski, R.P., Holbrey, J.D., Rogers, R.D., “Ionic liquids are not always green: Hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate”,.., 5, 361-363 (2003).

    31 Cimpeanu, V., Parulescu, A.N., Parulescu, V. I., On, D.T., Kaliaguine, S., Thompson, J. M., Hardacre, C., “Liquid-phase oxidation of a pyrimidine thioether on Ti-SBA-15 and UL-TS-1 catalysts in ionic liquids”,.., 232, 60-67 (2005).

    32 Luts, T., Frank, R., Suprun, W., Fritzsche, S., Hey-Hawkins, E., Papp, H., “Epoxidation of olefins catalyzed by novel Mn(III) and Mo(IV)-Salen complexes immobilized on mesoporous silica gel (2) Study of the catalytic epoxidation of olefins”,..., 273, 250-258 (2007).

    33 Pires, E.L., Wallau, M., Schuchardt, U., “Cyclohexane oxidation over rare earth exchanged zeolite Y”,..., 136, 69-74 (1998).

    34 Schuchardt, U., Cardoso, D., Sercheli, R., Pereira, R., da Cruz, R.S., Guerreiro, M.C., Mandelli, D., Spinacé, E.V., Pires, E.L., “Cyclohexane oxidation continues to be a challenge”,.., 211, 1-17 (2001).

    35 Pires, E.L., Magalh?es, J.C., Schuchardt, U., “Effects of oxidant and solvent on the liquid-phase cyclohexane oxidation catalyzed by Ce-exchanged zeolite Y”,.., 203, 231-237 (2000).

    36 Sun, Z.Q., Xu, J., Du, Z.T., Zhang, W., “Decomposition of cyclohexyl hydroperoxide over transition metal-free zeolite H-beta”,.., 323, 119-126 (2007).

    2008-10-20,

    2009-02-27.

    the National Natural Science Foundation of China (20776037, 20425619), the Program for Changjiang Scholars and Innovative Research Teams in Universities (IRT0641), and the Research Foundation of Hebei University of Science and Technology (XL200716).

    ** To whom correspondence should be addressed. E-mail: yongqi_h@yahoo.com.cn

    丝袜喷水一区| 亚洲天堂av无毛| 伦理电影大哥的女人| av线在线观看网站| 五月天丁香电影| 成人18禁高潮啪啪吃奶动态图| 成人毛片a级毛片在线播放| 国产在线免费精品| 男女午夜视频在线观看 | 9191精品国产免费久久| 在线观看三级黄色| 哪个播放器可以免费观看大片| 亚洲欧美精品自产自拍| 久久久欧美国产精品| 国产精品国产三级国产专区5o| 多毛熟女@视频| 免费高清在线观看视频在线观看| a级片在线免费高清观看视频| 久久精品久久久久久久性| 国产精品女同一区二区软件| 国产精品成人在线| 国产精品不卡视频一区二区| 国产精品国产三级国产专区5o| 国精品久久久久久国模美| 亚洲天堂av无毛| 成人亚洲精品一区在线观看| 乱码一卡2卡4卡精品| 亚洲国产毛片av蜜桃av| 女性被躁到高潮视频| 国产男女内射视频| 亚洲色图 男人天堂 中文字幕 | 日韩,欧美,国产一区二区三区| 午夜精品国产一区二区电影| 丝袜美足系列| 国产一区二区在线观看日韩| 伦理电影大哥的女人| 久久久精品区二区三区| 国产精品久久久久成人av| 亚洲欧洲精品一区二区精品久久久 | 人人妻人人添人人爽欧美一区卜| 男女下面插进去视频免费观看 | 国产一区二区三区av在线| 免费在线观看完整版高清| 丝袜在线中文字幕| 丰满少妇做爰视频| 国产片内射在线| 日韩精品有码人妻一区| 美女脱内裤让男人舔精品视频| 天天影视国产精品| 国产乱来视频区| 精品卡一卡二卡四卡免费| 国产亚洲欧美精品永久| 久久99精品国语久久久| 国产精品.久久久| 精品国产一区二区三区四区第35| 水蜜桃什么品种好| 国产精品女同一区二区软件| a 毛片基地| 亚洲激情五月婷婷啪啪| 亚洲精品久久久久久婷婷小说| 亚洲人与动物交配视频| 日韩不卡一区二区三区视频在线| 一边亲一边摸免费视频| 黄色配什么色好看| 久久久欧美国产精品| 天天影视国产精品| 国产成人欧美| 欧美精品亚洲一区二区| 丝袜美足系列| 欧美精品av麻豆av| 日韩中文字幕视频在线看片| 久久精品久久久久久噜噜老黄| 美女大奶头黄色视频| 插逼视频在线观看| 深夜精品福利| 美女中出高潮动态图| 久久人人97超碰香蕉20202| 热re99久久精品国产66热6| 亚洲五月色婷婷综合| 久久久久网色| 国产精品熟女久久久久浪| 国产精品久久久久久av不卡| av在线播放精品| 精品第一国产精品| 欧美另类一区| 国产亚洲欧美精品永久| 免费不卡的大黄色大毛片视频在线观看| 69精品国产乱码久久久| av在线观看视频网站免费| 大香蕉久久网| 亚洲人成网站在线观看播放| 丝袜喷水一区| av黄色大香蕉| 久久人人97超碰香蕉20202| 日韩一区二区三区影片| 国产av国产精品国产| 日本猛色少妇xxxxx猛交久久| 黄片无遮挡物在线观看| 欧美精品一区二区大全| 免费看光身美女| 国产精品人妻久久久久久| 亚洲第一av免费看| 黄色 视频免费看| 一二三四在线观看免费中文在 | 精品卡一卡二卡四卡免费| av在线播放精品| 欧美精品av麻豆av| 久久 成人 亚洲| 男女国产视频网站| 国产熟女午夜一区二区三区| 91午夜精品亚洲一区二区三区| 午夜福利在线观看免费完整高清在| 久久女婷五月综合色啪小说| 看十八女毛片水多多多| 中国美白少妇内射xxxbb| 巨乳人妻的诱惑在线观看| 高清在线视频一区二区三区| av线在线观看网站| 三上悠亚av全集在线观看| 国产精品蜜桃在线观看| 一边摸一边做爽爽视频免费| 久久国内精品自在自线图片| 一二三四中文在线观看免费高清| 精品久久国产蜜桃| 我的女老师完整版在线观看| 精品国产乱码久久久久久小说| 日韩人妻精品一区2区三区| 人成视频在线观看免费观看| 亚洲欧美一区二区三区黑人 | 丝瓜视频免费看黄片| 韩国高清视频一区二区三区| 女性被躁到高潮视频| 久久久久网色| 国产1区2区3区精品| 观看美女的网站| 校园人妻丝袜中文字幕| 观看美女的网站| 91在线精品国自产拍蜜月| 亚洲 欧美一区二区三区| 最近中文字幕高清免费大全6| 国产精品女同一区二区软件| 久久久久久久精品精品| 黄色怎么调成土黄色| 午夜免费鲁丝| 两个人看的免费小视频| 免费大片18禁| 黄色毛片三级朝国网站| 最近2019中文字幕mv第一页| 欧美精品亚洲一区二区| 日韩一区二区三区影片| 热re99久久精品国产66热6| 亚洲国产欧美日韩在线播放| 久久久久久久大尺度免费视频| 如何舔出高潮| 欧美成人午夜免费资源| 精品人妻一区二区三区麻豆| 国产在线一区二区三区精| 国产成人精品一,二区| 国产xxxxx性猛交| 国产成人精品一,二区| 久热这里只有精品99| 日韩电影二区| 在线观看免费视频网站a站| 免费看不卡的av| 亚洲精品美女久久av网站| 亚洲国产日韩一区二区| 国产男女超爽视频在线观看| 狠狠婷婷综合久久久久久88av| 国产成人精品无人区| 亚洲激情五月婷婷啪啪| 国产 一区精品| 国产 一区精品| 久久精品久久久久久噜噜老黄| 国产麻豆69| 少妇的丰满在线观看| 国国产精品蜜臀av免费| 精品第一国产精品| 国产成人免费无遮挡视频| 精品久久久精品久久久| a 毛片基地| 激情视频va一区二区三区| 国产欧美日韩一区二区三区在线| 狠狠精品人妻久久久久久综合| 中文字幕制服av| videos熟女内射| 天天影视国产精品| 欧美激情国产日韩精品一区| 国产成人精品在线电影| 最近最新中文字幕大全免费视频 | 久久亚洲国产成人精品v| 国产精品.久久久| 天天操日日干夜夜撸| 少妇的逼好多水| 人人妻人人添人人爽欧美一区卜| 丝袜美足系列| 亚洲人与动物交配视频| 欧美成人精品欧美一级黄| 亚洲欧美色中文字幕在线| 五月开心婷婷网| 免费观看av网站的网址| 午夜日本视频在线| 久久99精品国语久久久| 99热网站在线观看| 国产国拍精品亚洲av在线观看| 丰满迷人的少妇在线观看| 亚洲,一卡二卡三卡| 日本欧美国产在线视频| 亚洲伊人色综图| 久久精品aⅴ一区二区三区四区 | 狂野欧美激情性xxxx在线观看| 人人澡人人妻人| 日韩免费高清中文字幕av| 男人爽女人下面视频在线观看| 久久精品久久久久久久性| 高清在线视频一区二区三区| 亚洲精品久久成人aⅴ小说| 不卡视频在线观看欧美| 国产熟女欧美一区二区| 2022亚洲国产成人精品| 久久这里只有精品19| 大片电影免费在线观看免费| 国产日韩一区二区三区精品不卡| 久久青草综合色| 欧美人与性动交α欧美软件 | 美女脱内裤让男人舔精品视频| 久久免费观看电影| 少妇被粗大猛烈的视频| 777米奇影视久久| 日本爱情动作片www.在线观看| 欧美日韩国产mv在线观看视频| 欧美国产精品va在线观看不卡| 中文字幕制服av| 在线观看免费视频网站a站| 性高湖久久久久久久久免费观看| 交换朋友夫妻互换小说| 日韩中字成人| 久久人人爽人人爽人人片va| 热re99久久国产66热| 欧美xxxx性猛交bbbb| 欧美亚洲日本最大视频资源| 日韩视频在线欧美| 女性生殖器流出的白浆| 亚洲精品自拍成人| av片东京热男人的天堂| 久久ye,这里只有精品| 午夜老司机福利剧场| 建设人人有责人人尽责人人享有的| 老熟女久久久| 18+在线观看网站| 大话2 男鬼变身卡| 欧美bdsm另类| 好男人视频免费观看在线| 亚洲国产精品成人久久小说| 丝袜在线中文字幕| 夜夜爽夜夜爽视频| 久久精品人人爽人人爽视色| 国产精品国产三级专区第一集| www.色视频.com| 久久综合国产亚洲精品| www日本在线高清视频| 成年av动漫网址| av视频免费观看在线观看| 亚洲欧美精品自产自拍| 免费播放大片免费观看视频在线观看| xxx大片免费视频| 少妇猛男粗大的猛烈进出视频| 人妻系列 视频| 亚洲第一av免费看| 久久久久久久久久久免费av| 18在线观看网站| 亚洲综合色网址| 夜夜骑夜夜射夜夜干| 内地一区二区视频在线| 深夜精品福利| 高清黄色对白视频在线免费看| 久久久久精品久久久久真实原创| 丰满乱子伦码专区| 色婷婷久久久亚洲欧美| 亚洲av在线观看美女高潮| kizo精华| 人成视频在线观看免费观看| 桃花免费在线播放| 久久 成人 亚洲| 美女视频免费永久观看网站| 国产又色又爽无遮挡免| 寂寞人妻少妇视频99o| 少妇人妻久久综合中文| 久久97久久精品| 在线免费观看不下载黄p国产| 国产色爽女视频免费观看| 老司机影院毛片| 久久精品国产自在天天线| 久久ye,这里只有精品| 亚洲欧美一区二区三区国产| 国产成人精品一,二区| 夫妻性生交免费视频一级片| 免费观看a级毛片全部| 成人漫画全彩无遮挡| 亚洲欧美一区二区三区国产| 精品亚洲乱码少妇综合久久| 国产成人欧美| 色视频在线一区二区三区| 国产在线视频一区二区| 国产免费视频播放在线视频| 国产一区二区三区综合在线观看 | 国产女主播在线喷水免费视频网站| 亚洲精品日韩在线中文字幕| 久久久久视频综合| 中文字幕av电影在线播放| 国内精品宾馆在线| 内地一区二区视频在线| 尾随美女入室| 91午夜精品亚洲一区二区三区| 一本色道久久久久久精品综合| 啦啦啦视频在线资源免费观看| 欧美xxxx性猛交bbbb| 黑人巨大精品欧美一区二区蜜桃 | 国产成人免费观看mmmm| 最近手机中文字幕大全| 国产欧美日韩一区二区三区在线| 另类亚洲欧美激情| 日本免费在线观看一区| 国产极品粉嫩免费观看在线| 国产亚洲最大av| 精品一区二区三区视频在线| av在线app专区| 国产精品.久久久| 69精品国产乱码久久久| 丰满迷人的少妇在线观看| 久久久久国产精品人妻一区二区| 国产亚洲av片在线观看秒播厂| 亚洲国产日韩一区二区| 一级,二级,三级黄色视频| 中文精品一卡2卡3卡4更新| 丝袜美足系列| 亚洲精品456在线播放app| 亚洲欧美成人精品一区二区| 日本免费在线观看一区| 日韩制服骚丝袜av| 91精品国产国语对白视频| 国产一级毛片在线| 免费大片黄手机在线观看| 母亲3免费完整高清在线观看 | 久久久久久久亚洲中文字幕| 伦理电影大哥的女人| 哪个播放器可以免费观看大片| 黑人欧美特级aaaaaa片| 日韩一区二区三区影片| 国产精品人妻久久久久久| 男的添女的下面高潮视频| 成人国产av品久久久| 伊人亚洲综合成人网| 汤姆久久久久久久影院中文字幕| 在线观看三级黄色| 欧美日韩av久久| 午夜免费男女啪啪视频观看| 成人毛片a级毛片在线播放| 五月玫瑰六月丁香| 美国免费a级毛片| 精品亚洲成国产av| 亚洲第一区二区三区不卡| 中国三级夫妇交换| 国语对白做爰xxxⅹ性视频网站| 中文天堂在线官网| 草草在线视频免费看| 黄片播放在线免费| 久久久精品区二区三区| 欧美激情 高清一区二区三区| 视频在线观看一区二区三区| 国产精品三级大全| av女优亚洲男人天堂| 午夜福利视频在线观看免费| 黄色一级大片看看| 搡女人真爽免费视频火全软件| 好男人视频免费观看在线| 亚洲精品一区蜜桃| 国产男女超爽视频在线观看| 一区二区av电影网| 精品久久久精品久久久| 国产爽快片一区二区三区| 亚洲精品美女久久久久99蜜臀 | 99精国产麻豆久久婷婷| 极品人妻少妇av视频| 国产亚洲精品久久久com| 青春草视频在线免费观看| 交换朋友夫妻互换小说| 久久久精品94久久精品| 国产日韩欧美视频二区| 欧美+日韩+精品| 日本午夜av视频| 男男h啪啪无遮挡| 国产乱人偷精品视频| 国产av精品麻豆| 亚洲av福利一区| 丝袜脚勾引网站| 久久这里有精品视频免费| 欧美精品人与动牲交sv欧美| 免费av中文字幕在线| 激情视频va一区二区三区| 日韩,欧美,国产一区二区三区| 男人操女人黄网站| 热re99久久国产66热| 夜夜爽夜夜爽视频| 男女啪啪激烈高潮av片| 欧美性感艳星| 免费黄网站久久成人精品| 日本免费在线观看一区| 一级a做视频免费观看| 丰满饥渴人妻一区二区三| 精品酒店卫生间| 日日撸夜夜添| 熟女人妻精品中文字幕| 亚洲性久久影院| 国产精品无大码| 国产免费一区二区三区四区乱码| 极品少妇高潮喷水抽搐| 天堂中文最新版在线下载| 日本猛色少妇xxxxx猛交久久| 少妇 在线观看| 岛国毛片在线播放| 国产成人免费观看mmmm| 下体分泌物呈黄色| 97超碰精品成人国产| 又大又黄又爽视频免费| 日韩免费高清中文字幕av| 午夜视频国产福利| 69精品国产乱码久久久| 国产精品久久久久成人av| 男人添女人高潮全过程视频| 日本av免费视频播放| 一级毛片我不卡| 午夜视频国产福利| 波多野结衣一区麻豆| 卡戴珊不雅视频在线播放| 国产免费又黄又爽又色| 免费人妻精品一区二区三区视频| 黄色毛片三级朝国网站| 国产日韩欧美在线精品| 日韩av不卡免费在线播放| 一区二区三区四区激情视频| 男女午夜视频在线观看 | 黄色毛片三级朝国网站| 天天影视国产精品| 69精品国产乱码久久久| 精品国产国语对白av| 欧美人与善性xxx| 最近最新中文字幕大全免费视频 | 2018国产大陆天天弄谢| 国产一级毛片在线| 亚洲欧美一区二区三区黑人 | 观看美女的网站| av黄色大香蕉| 大香蕉久久成人网| 美女福利国产在线| 国产色婷婷99| 日韩伦理黄色片| 精品一区二区三区视频在线| www.av在线官网国产| xxx大片免费视频| 国产成人欧美| 午夜福利网站1000一区二区三区| av在线播放精品| 精品国产一区二区三区四区第35| 视频在线观看一区二区三区| 亚洲 欧美一区二区三区| 十八禁高潮呻吟视频| 婷婷色麻豆天堂久久| 少妇猛男粗大的猛烈进出视频| 久久精品aⅴ一区二区三区四区 | 在线观看免费视频网站a站| av免费观看日本| 男人爽女人下面视频在线观看| 捣出白浆h1v1| 日韩大片免费观看网站| 欧美亚洲日本最大视频资源| 人体艺术视频欧美日本| 成人18禁高潮啪啪吃奶动态图| 成人二区视频| 亚洲成av片中文字幕在线观看 | 男人添女人高潮全过程视频| 久久99蜜桃精品久久| 亚洲综合精品二区| 亚洲精品一二三| www.色视频.com| 激情视频va一区二区三区| 狠狠婷婷综合久久久久久88av| 综合色丁香网| 精品视频人人做人人爽| av福利片在线| 欧美日韩av久久| 亚洲中文av在线| 欧美精品av麻豆av| 新久久久久国产一级毛片| 街头女战士在线观看网站| 热99国产精品久久久久久7| 精品少妇黑人巨大在线播放| 亚洲国产欧美在线一区| 中文字幕亚洲精品专区| 国产免费一级a男人的天堂| 亚洲欧洲精品一区二区精品久久久 | 国产精品99久久99久久久不卡 | 制服人妻中文乱码| 国产成人精品一,二区| 国产 一区精品| 97人妻天天添夜夜摸| 人体艺术视频欧美日本| 大片电影免费在线观看免费| 亚洲精品456在线播放app| 久久人妻熟女aⅴ| 啦啦啦中文免费视频观看日本| 免费人成在线观看视频色| 亚洲国产av新网站| 免费看av在线观看网站| 交换朋友夫妻互换小说| 美国免费a级毛片| 亚洲精品美女久久久久99蜜臀 | 亚洲国产欧美在线一区| 欧美成人午夜免费资源| 在线观看免费日韩欧美大片| 在线观看免费高清a一片| 亚洲,欧美精品.| 亚洲内射少妇av| 亚洲国产精品国产精品| 免费人妻精品一区二区三区视频| 高清欧美精品videossex| 久久久久久久久久久免费av| 美女xxoo啪啪120秒动态图| 国产精品久久久av美女十八| 欧美日韩精品成人综合77777| 亚洲精品成人av观看孕妇| 欧美xxⅹ黑人| 丰满少妇做爰视频| 精品酒店卫生间| 午夜免费鲁丝| a级片在线免费高清观看视频| 又粗又硬又长又爽又黄的视频| 亚洲国产欧美日韩在线播放| 亚洲精品视频女| 色婷婷久久久亚洲欧美| 天堂中文最新版在线下载| 91精品国产国语对白视频| 尾随美女入室| 多毛熟女@视频| 又黄又爽又刺激的免费视频.| 久久这里只有精品19| 18禁动态无遮挡网站| 国产精品国产三级专区第一集| 老司机亚洲免费影院| 久久国产精品大桥未久av| 午夜福利视频精品| 女性生殖器流出的白浆| 久久青草综合色| 免费看不卡的av| 男女国产视频网站| 精品一品国产午夜福利视频| 各种免费的搞黄视频| 精品亚洲乱码少妇综合久久| 欧美bdsm另类| 婷婷成人精品国产| av播播在线观看一区| 韩国av在线不卡| 日韩av在线免费看完整版不卡| 国产精品熟女久久久久浪| 女性生殖器流出的白浆| 在线观看美女被高潮喷水网站| 久久亚洲国产成人精品v| 国产精品一区二区在线不卡| 欧美变态另类bdsm刘玥| 男女边吃奶边做爰视频| 亚洲人成网站在线观看播放| 成人漫画全彩无遮挡| 成人午夜精彩视频在线观看| 2018国产大陆天天弄谢| 男人添女人高潮全过程视频| 777米奇影视久久| 欧美97在线视频| 啦啦啦在线观看免费高清www| 亚洲精品一区蜜桃| 极品人妻少妇av视频| 亚洲精品一区蜜桃| www.色视频.com| 丝瓜视频免费看黄片| 99热国产这里只有精品6| 亚洲精品国产av蜜桃| 久久精品国产自在天天线| 晚上一个人看的免费电影| 哪个播放器可以免费观看大片| 欧美亚洲日本最大视频资源| 中文欧美无线码| 性色av一级| 一区在线观看完整版| 国产精品久久久久久久久免| 成人黄色视频免费在线看| 国产乱来视频区| 国产黄色免费在线视频| 五月天丁香电影| 亚洲成人av在线免费| 国精品久久久久久国模美| 日韩精品免费视频一区二区三区 | 亚洲精品视频女| 热re99久久国产66热| 国产日韩欧美亚洲二区| 成人毛片a级毛片在线播放| 热99国产精品久久久久久7| 亚洲欧美一区二区三区黑人 | 又黄又粗又硬又大视频| 寂寞人妻少妇视频99o| 九色亚洲精品在线播放| 免费高清在线观看视频在线观看| 国产乱来视频区| 五月伊人婷婷丁香| 韩国精品一区二区三区 | 亚洲图色成人| 各种免费的搞黄视频| 久久狼人影院|