王 越,王士博,于曉雯,楊 玲,拓西平
?
胎鼠海馬神經(jīng)元培養(yǎng)方法的改進(jìn)及鑒定
王 越,王士博,于曉雯,楊 玲,拓西平*
(第二軍醫(yī)大學(xué)附屬長(zhǎng)海醫(yī)院老年病科,上海 200433)
優(yōu)化海馬神經(jīng)元原代培養(yǎng)方法。取孕17~18d胎鼠海馬,經(jīng)過剪碎、消化、離心和吹打過濾后種板,根據(jù)孵育后更換為無血清培養(yǎng)基的時(shí)間不同分為A組和B組。A組4h后更換,B組12h后更換。觀察并記錄第2、3、4、5天兩組神經(jīng)元生長(zhǎng)狀況,并于第7d用神經(jīng)元特異性烯醇化酶熒光染色法鑒定神經(jīng)元,計(jì)算其純度。(1)4~6h后細(xì)胞已貼壁生長(zhǎng),2d后胞體增大,3d時(shí)突起長(zhǎng)出,5d后突起變長(zhǎng)變粗并有分支形成,相互連接呈網(wǎng)狀。(2)7d后行免疫熒光染色,為陽(yáng)性結(jié)果,證實(shí)為神經(jīng)元,且A組神經(jīng)元純度顯著高于B組(<0.05)。改進(jìn)后的方法可培養(yǎng)出生長(zhǎng)狀況良好且純度更高的神經(jīng)元。
神經(jīng)元;培養(yǎng);胎鼠
醫(yī)學(xué)科研工作離不開相關(guān)的疾病模型,用于探究神經(jīng)元功能障礙和退化機(jī)制的模型主要有動(dòng)物和細(xì)胞培養(yǎng)模型兩種。動(dòng)物模型可用于神經(jīng)元發(fā)育[1]和退化方面[2]的研究,但由于神經(jīng)系統(tǒng)內(nèi)在的復(fù)雜性,無法從分子學(xué)、生物學(xué)和結(jié)構(gòu)觀察上進(jìn)行詳細(xì)的研究。原代神經(jīng)元培養(yǎng)所形成的細(xì)胞模型可彌補(bǔ)這方面的缺陷,是進(jìn)行深入研究的合適工具。本研究在傳統(tǒng)培養(yǎng)方法的基礎(chǔ)上,通過實(shí)驗(yàn)進(jìn)一步改進(jìn)完善,建立了一種簡(jiǎn)單可行的原代神經(jīng)元培養(yǎng)方法,可進(jìn)一步應(yīng)用于制造神經(jīng)系統(tǒng)疾病細(xì)胞模型。
孕齡17~18d的SD大鼠,由第二軍醫(yī)大學(xué)實(shí)驗(yàn)動(dòng)物中心提供。特級(jí)胎牛血清(BIOSUN公司),Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12(DMEM/F-12)、Neurobasal Medium、B27添加劑(均Gibco公司),胰蛋白酶和多聚?L?賴氨酸(均Sigma公司),青霉素?鏈霉素溶液(雙抗;HyClone公司,4’,6?二脒基?2?苯基吲哚(4’,6-diamidino-2-phenylindole,DAPI)、神經(jīng)元特異性烯醇化酶(neuron specific enolase,NSE)一抗和熒光二抗(均谷歌生物公司)。
1.2.1 培養(yǎng)板的預(yù)處理 海馬取材前將無菌蓋玻片放入6孔板內(nèi),用0.1mg/ml的多聚賴氨酸包被6孔板,置于37℃,5%CO2孵箱內(nèi),2h后吸出多余多聚賴氨酸,無菌磷酸鹽緩沖液(phosphate buffer saline,PBS)洗2次,超凈臺(tái)內(nèi)晾干備用。
1.2.2 試劑配制 種植培養(yǎng)基:含10%胎牛血清的DMEM/F-12。維持培養(yǎng)基:含2% B27的Neurobasal Medium。兩種培養(yǎng)基內(nèi)均加有雙抗,終濃度為1%。
1.2.3 海馬取材和原代培養(yǎng) 高溫消毒手術(shù)器械。紫外線燈消毒細(xì)胞培養(yǎng)室和超凈臺(tái)45min后,打開解剖顯微鏡,鋪上無菌手術(shù)巾。孕鼠用10%水合氯醛腹腔麻醉后,打開腹腔,取出胎鼠,置于托盤中,用75%乙醇消毒后,斷頭處死。打開顱骨,取出全腦,置入加有PBS的60mm培養(yǎng)皿中(放于冰上)。解剖顯微鏡下剝離大腦皮質(zhì),取出海馬,在解剖顯微鏡下仔細(xì)去除被膜及血管。用組織剪將其剪碎成1mm×1mm×1mm的組織塊,然后加入等量的0.25%胰酶,置于37℃、5%CO2孵箱中消化20min。再加入種植培養(yǎng)基終止消化,用藍(lán)槍頭緩慢均勻吹打約20次后,以800轉(zhuǎn)/min離心4min,棄上清液,再加入種植培養(yǎng)基,用100μm篩網(wǎng)過濾后,使用細(xì)胞計(jì)數(shù)器調(diào)整懸液密度為1×106/ml。然后將細(xì)胞接種在預(yù)先鋪有多聚賴氨酸的6孔板上,將其置于孵箱中。根據(jù)孵育后更換培養(yǎng)基的時(shí)間不同分為兩組。(1)A組:4h后去除種植培養(yǎng)基,換用維持培養(yǎng)基。(2)B組:12h后更換培養(yǎng)基,之后每2d更換半量培養(yǎng)基。使用倒置顯微鏡觀察神經(jīng)元生長(zhǎng)狀況并拍照。
1.2.4 神經(jīng)元特異性烯醇化酶染色 將培養(yǎng)至第7天的神經(jīng)元用PBS洗3次后,加入4%多聚甲醛固定20min,再用PBS洗3次,5min/次。爬片稍甩干后加破膜工作液,室溫孵育10min后PBS洗3次。輕輕甩掉封閉液,加入一抗,4℃濕盒過夜。PBS洗3次后加入二抗,室溫避光孵育50min。PBS洗3次后,加入DAPI染液,室溫避光孵育10min。PBS洗3次,晾干后將有細(xì)胞的一面朝下,用抗熒光淬滅封片劑將玻片封固在載玻片上。在正置熒光顯微鏡下取5個(gè)視野,觀察DAPI和NSE表達(dá)情況并采集圖像,分別計(jì)算兩組神經(jīng)元的純度。
倒置顯微鏡下可見,兩組細(xì)胞接種4~6h后已經(jīng)貼壁生長(zhǎng),胞體呈小圓形。第2天胞體增大,有些胞體已有短突起長(zhǎng)出。第3天胞體稍有增大,突起明顯增長(zhǎng),約為胞體的2倍,相互連接,但尚未形成網(wǎng)狀。第4天胞體折光性明顯增強(qiáng),呈錐體形或三角形,突起進(jìn)一步增長(zhǎng),約為胞體的3倍。第5天胞體立體感增強(qiáng),周圍一圈光暈明顯,可見突起變粗并有分支形成,呈單極、雙極或多極,并相互連接呈網(wǎng)狀。從細(xì)胞形態(tài)上看,除B組細(xì)胞碎片稍多外,兩組神經(jīng)元無明顯差異(圖1)。
圖1 兩組海馬神經(jīng)元形態(tài)學(xué)變化
Figure 1 Morphological changes of hippocampal neurons in two groups (×200)
正置熒光顯微鏡下可見DAPI染色陽(yáng)性的胞核呈藍(lán)色,大且明顯。NSE陽(yáng)性表達(dá)的胞體和突起呈綠色,突起清晰可見,相互連接呈網(wǎng)狀(圖2)。計(jì)算NSE陽(yáng)性細(xì)胞率,A組和B組分別為(94±3.2)%和(86±4.0)%。與A組比較,B組神經(jīng)元純度較低(<0.05)。
本課題在選材上對(duì)神經(jīng)元原代培養(yǎng)方法進(jìn)行了改進(jìn),選用了胎鼠的海馬組織進(jìn)行神經(jīng)元的原代培養(yǎng)。傳統(tǒng)培養(yǎng)方法中,新生鼠和胎鼠均可培育出神經(jīng)元。雖然胎鼠海馬取材較新生鼠難度大,但培養(yǎng)出來的神經(jīng)元更易存活。原因如下。(1)大鼠的神經(jīng)系統(tǒng)發(fā)育較早,在出生前后就已基本完成發(fā)育,長(zhǎng)出突起[3],取材時(shí)極易損傷突起。而神經(jīng)突起是大腦傳遞、儲(chǔ)存信息的重要媒介,其損傷會(huì)極大影響神經(jīng)元的功能[4]。(2)大鼠在孕齡17~18d時(shí),胎鼠的神經(jīng)細(xì)胞尚未分化完全,有大量神經(jīng)干細(xì)胞,離體后易于生長(zhǎng)發(fā)育。神經(jīng)元原代培養(yǎng)可取材的部位也較多,較為常見的是海馬和大腦皮質(zhì)。其中海馬組織在大腦顳葉內(nèi)側(cè),左右各一,是邊緣系統(tǒng)的組成部分。海馬在人類和動(dòng)物的學(xué)習(xí)記憶中起重要作用[5],與阿爾茨海默病、帕金森病和亨廷頓病等中樞神經(jīng)系統(tǒng)疾病密切相關(guān)。海馬神經(jīng)元原代培養(yǎng)所建立的細(xì)胞模型可廣泛應(yīng)用于神經(jīng)退行性疾病、精神疾病和創(chuàng)傷性腦損傷等的體外研究[6?8]。Harrill等[9]通過觀察突觸增長(zhǎng)長(zhǎng)度和囊泡型谷氨酸轉(zhuǎn)運(yùn)體(vesicular glutamate transporter 1,vGLUT1)以及囊泡型γ?氨基丁酸轉(zhuǎn)運(yùn)體(vesicular aminobutyric acid transporter,vGAT)免疫陽(yáng)性的數(shù)目發(fā)現(xiàn),海馬神經(jīng)元較皮質(zhì)神經(jīng)元成熟更快。多數(shù)神經(jīng)系統(tǒng)疾病細(xì)胞模型在原代培養(yǎng)7d后即開始進(jìn)行造模和干預(yù)實(shí)驗(yàn),相比于還未發(fā)育成熟的皮質(zhì)神經(jīng)元,海馬神經(jīng)元更適用。
本課題通過對(duì)更換維持培基時(shí)間的篩選,發(fā)現(xiàn)接種4h后更換培養(yǎng)基所獲得的神經(jīng)元純度更高。我們分析可能的原因包括兩方面。(1)盡早去除損傷的神經(jīng)細(xì)胞。在獲得海馬細(xì)胞懸液時(shí),多個(gè)步驟都會(huì)造成急性神經(jīng)細(xì)胞損傷(如:海馬取材時(shí)的機(jī)械吹打和胰酶消化時(shí)的化學(xué)反應(yīng)),從而產(chǎn)生大量的細(xì)胞碎片和死細(xì)胞。壞死的神經(jīng)元既可釋放大量谷氨酸,產(chǎn)生興奮性毒性作用,加重神經(jīng)元損傷,又可激活小膠質(zhì)細(xì)胞,產(chǎn)生大量炎性因子(IL-1β,TNF-α,IL-6和IL-12)和神經(jīng)毒性物質(zhì)(NO和活性氧物質(zhì)),形成神經(jīng)元損傷的惡性循環(huán)[10?12]。因此在活細(xì)胞貼壁后,應(yīng)盡早去除細(xì)胞碎片和死細(xì)胞。這樣既能減少細(xì)胞碎片和死細(xì)胞貼壁,防止其影響觀察和拍照,又能降低其神經(jīng)毒性作用,提高神經(jīng)元的存活率。(2)抑制膠質(zhì)細(xì)胞分裂增殖。種植培養(yǎng)基為含10%胎牛血清的DMEM/F-12,可輔助神經(jīng)細(xì)胞貼壁,但時(shí)間過長(zhǎng)后也會(huì)促進(jìn)膠質(zhì)細(xì)胞分裂增殖,影響神經(jīng)元的純度。維持培養(yǎng)基中含有Neurobasal/B27,為無血清培養(yǎng)基,且含有多種神經(jīng)元生長(zhǎng)發(fā)育所需要的營(yíng)養(yǎng)因子和微量元素,在促進(jìn)海馬神經(jīng)元和突起生長(zhǎng)的同時(shí)還可抑制膠質(zhì)細(xì)胞生長(zhǎng)[13]。神經(jīng)細(xì)胞貼壁后盡早更換為Neurobasal/B27培養(yǎng)基,將更有利于神經(jīng)元的生長(zhǎng)和純化。
圖2 兩組海馬神經(jīng)元NSE免疫熒光染色
Figure 2 NSE immunofluorescent staining of hippocampal neurons in two groups (×200) DAPI: 4’,6-diamidino-2-phenylindole; NSE: neuron specific enolase
本實(shí)驗(yàn)通過改進(jìn)的培養(yǎng)方法獲得了NSE陽(yáng)性表達(dá)且純度較高的海馬神經(jīng)元,且突起間相互連接形成網(wǎng)絡(luò),可進(jìn)一步應(yīng)用于建立相關(guān)神經(jīng)系統(tǒng)疾病細(xì)胞模型。
[1] Maraldi T, Bertoni L, Riccio M,. Human amniotic fluid stem cells: neural differentiationand[J]. Cell Tissue Res, 2014, 357(1): 1?13.
[2] Mazurová Y, Anderova M, Něme?ková I,. Transgenic rat model of Huntington’s disease: a histopathological study and correlations with neurodegenerative process in the brain of HD patients[J]. Biomed Res Int, 2014, 2014: 291531.
[3] Ohsawa F, Widmer HR, Knusel B,. Response of embryonic rat hippocampal neurons in culture to neurotrophin-3, brain-derived neurotrophic factor and basic fibroblast growth factor[J]. Neuroscience, 1993, 57(1): 67?77.
[4] Attardo A, Fitzgerald JE, Schnitzer MJ. Impermanence of dendritic spines in live adult CA1 hippocampus[J]. Nature, 2015, 523(7562): 592?596.
[5] van Spronsen M, van Battum EY, Kuijpers M,. Developmental and activity-dependent miRNA expression profiling in primary hippocampal neuron cultures[J]. PLoS One, 2013, 8(10): e74907.
[6] Sendrowski K, Sobaniec W, Stasiak-Barmuta A,. Study of the protective effects of nootropic agents against neuronal damage induced by amyloid-beta (fragment 25-35) in cultured hippocampal neurons[J]. Pharmacol Rep, 2015, 67(2): 326?331.
[7] Raynaud F, Moutin E, Schmidt S,. Rho-GTPase-activating protein interacting with Cdc-42-interacting protein 4 homolog 2 (Rich2): a new Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase-activating protein that controls dendritic spine morphogenesis[J]. J Biol Chem, 2014, 289(5): 2600?2609.
[8] Si D, Yang P, Jiang R,. Improved cognitive outcome after progesterone administration is associated with protecting hippocampal neurons from secondary damage studiedand[J]. Behav Brain Res, 2014, 264: 135?142.
[9] Harrill JA, Chen H, Streifel KM,. Ontogeny of biochemical, morphological and functional parameters of synaptogenesis in primary cultures of rat hippocampal and cortical neurons[J]. Mol Brain, 2015, 8: 10.
[10] Fujikawa DG. The role of excitotoxic programmed necrosis in acute brain injury[J]. Comput Struct Biotechnol J, 2015, 13: 212?221.
[11] Surace MJ, Block ML. Targeting microglia-mediated neurotoxicity: the potential of NOX2 inhibitors[J]. Cell Mol Life Sci, 2012, 69(14): 2409?2427.
[12] Sierra A, Beccari S, Diaz-Aparicio I,. Surveillance, phagocytosis, and inflammation: how never-resting microglia influence adult hippocampal neurogenesis[J]. Neural Plast, 2014, 2014: 610343.
[13] Brewer GJ, Boehler MD, Jones TT,. NbActiv4 medium improvement to Neurobasal/B27 increases neuron synapse densities and network spike rates on multielectrode arrays[J]. J Neurosci Methods, 2008, 170(2): 181?187.
(編輯: 呂青遠(yuǎn))
Modified culture methods and identification of hippocampal neurons from fetal rats
WANG Yue, WANG Shi-Bo, YU Xiao-Wen, YANG Ling, TUO Xi-Ping*
(Department of Geriatrics, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China)
To optimize the primary culture method for hippocampal neurons.Hippocampus was harvested from fetal rats. They were obtained by enzymatic digestion and divided into groups A and B according to different times for replacing serum-free medium (4h after seeding in group A and 12h in group B). The cell growth was recorded on the 2nd, 3rd, 4th, and 5th days. Fluorescence assay was used to identify the cells with neuron specific enolization and determine the purity on the 7th day.After 4?6h, the cells attached to the wall. The cell body was enlarged on 2nd day. The nervous process erupted on 3rd day and extended into reticulation on 5th day. The fluorescence assay identified the neurons and indicated that the purity of group A was obviously higher than group B (<0.05).The improved technique can cultivate well-growth hippocampal neurons with higher purity.
neurons; culture; fetal rats
(201440022)
R329.2; Q954.67
A
10.11915/j.issn.1671-5403.2016.01.012
2015?06?24;
2015?09?14
2014年度上海市衛(wèi)生和計(jì)劃生育委員會(huì)科研課題重點(diǎn)項(xiàng)目(201440022)
拓西平, E-mail: xptuo_01@126.com