• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unlocking the in vitro anti-Trypanosoma cruzi activity of halophyte plants from the southern Portugal

    2016-04-19 05:43:53MartaOliveiraPolicarpoAdemarSalesJuniorMariaJoRodriguesMarinaDellaGrecaLusaBarreiraSilvaneMariaFonsecaMurtaAlvaroJosRomanhaLusaCustdio

    Marta Oliveira, Policarpo Ademar Sales Junior, Maria Jo?o Rodrigues, Marina DellaGreca,Luísa Barreira, Silvane Maria Fonseca Murta, Alvaro José Romanha, Luísa Custódio?

    1Center of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas 8005-139 Faro, Portugal

    2Centro de Pesquisas Rene Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil

    3Dipartimento di Chimica Organica e Biochimica, Universita` Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, I-80126,Napoli, Italy

    Unlocking the in vitro anti-Trypanosoma cruzi activity of halophyte plants from the southern Portugal

    Marta Oliveira1, Policarpo Ademar Sales Junior2, Maria Jo?o Rodrigues1, Marina DellaGreca3,Luísa Barreira1, Silvane Maria Fonseca Murta2, Alvaro José Romanha2, Luísa Custódio1?

    1Center of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas 8005-139 Faro, Portugal

    2Centro de Pesquisas Rene Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil

    3Dipartimento di Chimica Organica e Biochimica, Universita` Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, I-80126,Napoli, Italy

    ARTICLE INFO

    Article history:

    Received 15 May 2016

    Received in revised form 16 June 2016

    Accepted 15 July 2016

    Available online 20 August 2016

    Chagas disease

    Halophytes

    Trypanosoma cruzi

    Phenanthrenes

    Juncunol

    Objective: To evaluate the in vitro anti-Trypanosoma cruzi (T. cruzi) activity of organic extracts prepared from halophyte species collected in the southern coast of Portugal (Algarve), and chemically characterize the most active samples. Methods: Acetone, dichloromethane and methanol extracts were prepared from 31 halophyte species and tested in vitro against trypomastigotes and intracellular amastigotes of the Tulahuen strain of T. cruzi. The most active extract was fractionated by preparative HPLC-DAD, affording 11 fractions. The most selective fraction was fully characterized by1H-NMR. Results: From 94 samples tested, one was active,namely the root dichloromethane extract of Juncus acutus (IC50< 20 μg/mL). This extract was fractionated by HPLC, affording 11 fractions, one of them containing only a pure compound(juncunol), and tested for anti-parasitic activity. Fraction 8 (IC50= 4.1 μg/mL) was the most active,and was further characterized by1H-NMR. The major compounds were phenanthrenes, 9,10-dihydrophenanthrenes and benzocoumarins. Conclusion: Our results suggest that the compounds identified in fraction 8 are likely responsible for the observed anti parasitic activity. Further research is in progress aiming to isolate and identify the specific active molecules. To the best of our knowledge, this is the first report on the in vitro anti T. cruzi activity of halophyte species.

    1. Introduction

    Chagas disease (CD) is a neglected tropical disease (NTD) caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), transmitted to humans and animals from the faeces of triatomine bugs (kissingbugs). It is estimated that 20% to 30% of humans infected with T. cruzi suffer with severe cardiopathy or megaesophagus -megacolon [1]. About 8 million people are probably infected worldwide, especially in Latin America, where CD is a significant health and socioeconomic problem [2]. Moreover, CD is becoming increasing widespread in the southern area of the United States,overlapping with the poorest states [3, 4]. Recently, non-vectorial T. cruzi infection has been increasingly recognized outside endemic areas. Europe, the United States, Canada, Australia, New Zealand and Japan host millions of at-risk Latin American immigrants [5]. Therefore, the potential of CD becoming a public health issue in that area is considerably high, mainly due to the high number of Latin American immigrants and international travellers, which may contribute for indirect transmission such as blood transfusion, organ transplantation and congenital route; and the presence of potential vectors, triatominae, in this region [5, 6].

    The available drugs for CD treatment are the 5-nitrofuran,nifurtimox and the 2-nitroimidazole, benznidazole (BZ). Both drugs present low percentage cure rate, mainly in the chronic phase of the disease, when the majority of cases are diagnosed [7]. Moreover,available chemotherapeutics are highly toxic, with severe systemic side effects [7]. The problems associated with the available drugs highlight the urgent need to develop new strategies for chemotherapy against Chagas disease.

    Nature has provided an important number of compounds with anti-parasitic activity. For example, quinine, first isolated from the bark of the cinchona tree (Cinchona sp.) was the first effective Western treatment for malaria caused by Plasmodium falciparum,while artemisinin from Artemisia annua L. is still used in malaria treatment in artemisinin-combination therapies. Noteworthy is the fact that the Nobel Prize of Physiology and Medicine 2015 was awarded to three scientists for their discoveries and development of effective drugs against parasitic infections, namely avermectin isolated from Streptomyces avermitilis (and its derivative ivermectin)and artemisinin from Artemisia annua L. (Asteraceae) [8]. This award emphasizes that nature present unlimited chemical diversity, and highlights the value of natural products as promising alternative therapeutics towards NTDs.

    Halophytes are specialized plants able to survive and thrive in saline soils. Although representing only 2% of terrestrial plant species, they are present in about half the higher plant families and have a high diversity of forms. Halophytes have evolved a complex suite of adaptations in response to the osmotic and ionic defies of saline environments that contribute to the generation of reactive oxygen species (ROS). In order to manage with excessive toxic ROS, halophytes contain antioxidant systems, including enzymes and bioactive compounds, which give them a significant plethora of other biological activities.

    Although there are reports of the traditional use of different halophytic species as anti-parasitic and/or anti-helminthic agents[9],to the best of our knowledge there is no scientific information regarding the potential use of halophytes against NTDs in general,or against CD in particular. Therefore this work evaluated organic extracts made from 31 species of halophytes in vitro against trypomastigotes and intracellular amastigotes forms from Tulahuen strain of T. cruzi. The most active extract was submitted to a bioguided fractionation, and the most promising fraction was chemically characterized by1H-NMR.

    2. Material and methods

    2.1. Chemicals

    All chemicals used in the experiments were of analytical grade, and were purchased from VWR International (Leuven, Belgium).

    2.2. Sample collection

    A total of 31 indigenous (Table 1), mostly obligate, halophyte species were collected from different saline habitats of the southern Portugal (Algarve) at their full flowering time during June of 2013. The researched halophytes belong to 16 plant families and include Aizoaceae (Mesembryanthemum crystallinum L. and Carpobrotus edulis L.), Amaranthaceae (Arthrocnemum macrostachyum L.,Halopeplis amplexicaulis (Vahl) Ung.-Sternb. ex Ces., Pass. & Gibelli,Salicornia ramosissima J. Woods, S. fragilis P.W.Ball & Tutin, Salsola vermiculata L., Sarcocornia perennis (Mill.) A.J. Scott subsp alpini(Lag.) Castrov. and Sarcocornia perennis (Mill.) subsp perennis),Anacardiaceae (Pistacia lentiscus L.), Asteraceae (Aster tripolium L. and Inula crithmoides L.), Caryophyllaceae (Spergularia rubra(L.) J.Presl & C. Presl), Convolvulaceae [Calystegia (Convulvulus)soldanela (L.) R. Br.], Cyperaceae (Claudium mariscus (L.) Pohl),F(xiàn)rankeniaceae (Frankenia pulverulenta L. and Frankenia laevis L.), Gentianaceae (Centaurium erythraea Rafn), Juncaceae [Juncus acutus (J. acutus) L., Juncus inflexus L. and Juncus maritimus Lam.),Lythraceae (Lythrum salicaria L.), Plumbaginaceae (Limoniastrum monopetalum (L.) Boiss., Limonium algarvense Erben and Limonium lanceolatum Hoffmanns. & Link), Polygonaceae (Polygonum maritimum L.) Poaceae (Panicum repens L., Puccinellia maritima(Huds.) Parl., Spartina versicolor Fabre), Tamaricaceae (Tamarix africana Poir) and Typhaceae (Typha domingensis Pers).

    The taxonomical classification was determined by the botanist Dr Manuel J. Pinto (National Museum of Natural History, University of Lisbon, Botanical Garden, Portugal) and voucher specimens are kept in the herbarium of the MarBiotech laboratory (MBH01-MBH31). Different organs were collected for each species, whenever possible (Table 1). Plant material was oven dried for 3 days at 40 ℃,powdered and stored at -20 ℃ until needed.

    2.3. Preparation of the extracts

    Dried samples were mixed with 80% aqueous acetone,dichloromethane and methanol (1:10, w/v) (Table 1), and extracted overnight at room temperature (RT), under stirring. Extracts were filtered (Whatman no 4) and concentrated under reduced pressure and temperature (< 40 ℃). Dried extracts were dissolved in dimethyl sulfoxide (DMSO) and stored at 4 ℃ at the concentration of 25 mg/mL until analysis.

    2.4. Evaluation of in vitro antitrypanossomal activity,cellular toxicity and selectivity

    The in vitro antitrypanossomal activity was evaluated on L929 cells(mouse fibroblasts) infected with the Tulahuen strain of the parasite expressing the Escherichia coli β-galactosidase as reporter gene,according to the method described previously [10]. The extracts were tested at the concentration of 20 μg/mL, for a period of incubation of 96h. Fractions obtained from the active extract were tested at concentrations ranging from 10 μg/mL to 100 μg/mL, also during a 96h period. Controls with uninfected cells, untreated infected cells,infected cells treated with BZ at the concentration of 1 μg/mL (3.8 μM, positive control) or DMSO (1%, v/v) were used. The results were expressed as the percentage of T. cruzi growth inhibition in extracts-tested infected cells as compared to the untreated infectedcells. Active fractions were evaluated for cytotoxicity and selectivity on uninfected fibroblasts [10]. Results obtained with the fractions were expressed as IC50values, calculated by linear interpolation and the selectivity index (SI) was determined based on the ratio of the IC50value in the host cell divided by the IC50value of the parasite.

    Table 1Botanical names, families, plant parts and extracts used of the 31 halophytic species included in this study.

    2.5. Sample fractionation

    The active dichloromethane crude extract of J. acutus roots was dissolved in dichloromethane at the concentration of 100 mg/mL,and fractionated by preparative HPLC-DAD (Knauer Smartline,Germany) constituted by the following modules: vacuum degasser(E4320V2), quaternary pump (EA4300V1) and the diode array detector (E4350), using a semi-preparative. Analyses were performed on a Luna 5u C18 (2) 100A, (250×10) mm, 5 μm particle size(Phenomenex, Spain). The mobile phase consisted on acetonitrile(solvent A) and mili-Q water (solvent B) with the following gradient:0-40 min: 80%-10% A, 40-45 min: 10%-0% A, 45-55 min: 0%-0% A, 55-60 min: 0%-80% A, using a flow of 3.5 mL/min. The injection volume was 200 μL and the detector was set at 216 nm. 11 fractions were collected for re-testing for anti-parasitic activity.

    2.6. Spectral analysis

    NMR spectra were acquired on a Bruker-600 DRX (1H NMR:600 MHz,13C NMR: 150 MHz) spectrometer equipped with a cryo probe, in CDCl3(internal standard, for 1H: CHCl3at δ7.26 ppm;for13C: CDCl3at δ77.0 ppm).

    2.7. Statistical analyses

    Results were expressed as Mean ± Standard deviation (SD), of at least three replicates. Significant differences were assessed by analysis of variance (ANOVA) or using Kruskal-Wallis test (P<0.05) when parametricity of data did not prevail (SPSS statistical package for Windows, release 15.0). The IC50values were calculated with GraphPad Prism V 5.0.

    3. Results

    From 94 samples tested, only was active, namely the dichloromethane extract of J. acutus with an IC50value lower than20 μg/mL. This extract was fractionated by HPLC affording 11 fractions, one of them containing a pure compound (juncunol)which were tested for cytotoxic activity against T. cruzi and mouse fibroblasts (L929 cells), for the determination of selectivity (Table 2). From these, fraction 8 was the most active and selective (IC50= 4.1 μg/mL, SI = 1.5), and was further characterized chemically.

    Table 2Effect of the application of fractions from the dichloromethane extract of J. acutus (roots), on the viability of trypomastigotes and intracellular amastigotes of Tulahuen strain of T. cruzi.

    Although fraction 8 gave rather complex1H-NMR spectra a qualitative analysis of the overall spectrum was possible (Figure 1). The spectrum show typical signals of phenanthrenes (Phe), 9,10-dihydrophenanthrenes (dPhe) and benzocoumarins (Benz), all isolated previously from J. acutus (Figure 2, 3) [11-15]. Peaks have been assigned by comparison with previously published data[10-14]. In the downfield region, between 9.1 and 8.3 ppm, the doublet signals of H-4 proton from phenanthrenes and benzocoumarins are detected. The region between 8.0 and 6.2 ppm shows all the other aromatic signals and H-12 proton from compounds with vinyl chain at C-5. Between 5.9 and 4.7 ppm H-13 protons of vinyl chain(doubledoublets) and carbinol protons of 1-hydroxyethyl (quartet)or hydroxylmethylene (singlet) are observed. Lastly, in the upfield region between 3.2 and 0.70 ppm singlet methyls and multiplets of H-9 and H-10 methylenes of 9,10 dyhydrophenanthrenes are present. Trying to identify some components of the mixture, a 2D NMR experiments were performed (COSY and HMBC). The analysis of1H-1H COSY evidences, in the downfield region, correlations of doublet at 9.06δ with signal at 7.08δ, doublet at 9.02δ with signal at 7.20δ doublet at 8.99δ with signal at 7.06 δ, and doublet at 8.98δ with signal at 6.48δ. The first three spin systems were assigned at phenanthrenes [12, 15], while the last was attributed to a benzocoumarin [13]. The presence in the 1H NMR of a singlet atδ 3.87 (a methoxyl group), correlation observed in COSY (7.63 with 6.73δ, 6.80 with 5.54 and 5.25δ), and methyl singlets at 2.30 and 2.24δ could be attributed at 8-hydroxy-2-methoxy-1,6-dimethyl-5-vinyl-9,10-dihydrophenanthrene [12]. The presence of this metabolite was confirmed by the long-range heterocorrelations observed in the HMBC spectrum, in fact methoxyl and doublet proton (7.63δ) gave crosspeak with carbon at 156.0 ppm assigned to C-2. Furthermore, a careful analysis of COSY spectrum evidenced a proton 4.15δ (dd,J= 9.4, 7.8 Hz) correlated to 3.19 and 1.91δ, and 5.81δ with 4.98 and 4.44 (dd, J= 17.8, 1.3 Hz), these two spin system are reliable with a dimeric phenanthrenoid (Figure 3) [11]. Determinant longrange heterocorrelations of both signal at 4.44 and 4.15 ppm with carbon at 62.0δ, observed in the HMBC spectrum, supported the identification of these metabolites.

    Figure 1.1H NMR of J. acutus active fraction.

    Figure 2. Structure of phenanthrene, benzocoumarin and 9,10-dihydrophenanthrene.

    Figure 3. Structure of dimeric 9,10-dihydrophenanthrene.

    4. Discussion

    There are several reports on the antiparasitic activity of halophyte species. For example, seed kernels of Caesalpinia crista (Fabaceae)are used in traditional medicine for the treatment of malaria [16]. That activity was confirmed by in vivo studies using mice infected with Plasmodium berghei [17] and was attributed to the presence of cassane- and norcassane-type diterpenes [18]. The whole aerial organs and roots of Inula cappa (Asteraceae) are also traditionally used for the treatment of malaria [19, 20], although the molecules responsible for that activity were not described yet. To the best of our knowledge the antiprotozoal potential of marine halophytes still remains unexplored, especially as possible candidate against CD. In this context, this work evaluated for the first time the anti-T. cruzi activity of organic extracts made from 31 halophyte species abundant in the southern area of Portugal.

    Only one extract was able to decrease the growth of parasites,namely the dichloromethane extract of J. acutus roots. Juncus is the largest genus in the Juncaceae family comprising more than 200 species that usually grow in maritime environments. Several Juncus species have medicinal properties e.g. the medulla of J. effusus is used as antipyretic and sedative in Japan and China [21]. Also,they are used in traditional medicine for the treatment of different health problems. For example, the rhizomes of J. acutus are used for insomnia and the seed of Juncus species for the treatment of stomach disorders [21].

    To assess which extract components could be responsible for the antiprotozoal activity, the active extract from J. acutus was fractionated by HPLC, affording 11 fractions, one of them containing a pure compound (juncunol), which were also evaluated for antitrypanossomal activity. When applied at the concentration of 67.7 μg/mL juncunol was able to reduce the parasites growth by 50%. However, it was also cytotoxic against mouse fibroblasts L929 cells. Juncunol is a dihydrophenanthrene previously isolated from of different Juncus species, including J. acutus and J. roemerianus [15, 22-25],and has cytotoxic activity towards the microalga Selenastrum capricornutum [15], and for several mammalian tumour cell lines [22]. However, there were no reports until now on its antiparasitic activity. Fraction 8 had the highest activity towards T. cruzi, and contained phenanthrenes, dihydrophenanthrenes and benzocoumarins, which were identified by1H-NMR spectra analysis. Species belonging to the Juncus genus are one of the most prolific sources of phenanthrenes [18], which have several biological activities, including antiproliferative, antioxidant, antimicrobial and cytotoxic [22, 26]. Phenanthrenoids and benzocoumarins obtained from the rhizome of J. acutus have in vitro phytotoxicity, antialgal and anti-inflammatory activities [12, 14, 15, 27]. Recently, phenanthrene and phenanthrenoids,obtained through a bioguided fractionation of the ethanol extract of J. effuses had in vitro cytotoxic properties towards different cancer cell lines [28]. Also, a number of benzocoumarins are described with cytotoxic activity against different cells[29]. Moreover,some phenanthrene-derived molecules and benzocoumarins also have anti-parasitic activity. The best example is halofantrine,a phenantherene methanol derivative used in the treatment of malaria [30]. However, this molecule is no longer recommended in current therapies due to its cardiotoxicity [30, 31]. More recently,other phenanthrene-based derivatives, particularly 3-hydroxy-N'-arylidenepropanehydrazonamides, have shown potent antimalarial in vitro activities with high selectivity indexes [32]. Different benzocoumarin scaffolds are highly toxic towards several parasites,including the protozoans Plasmodium spp and Babesia spp[29]. Since phenanthrene-derived compounds and benzocoumarins have previously demonstrated its efficacy as antiparasitic agents, our results strongly suggest that the molecules identified in the active fraction from J. acutus are responsible for its antitrypanossomal activity.

    To the best of our knowledge, this is the first report of the potential antitrypanossoma activity of halophyte plants in general, and of the antitrypanosomal activity of J. acutus extract and fractions as well as the isolated compound, juncunol. Based on our results, it is likely that the molecules identified in the active fraction from J. acutus are responsible for its anti T. cruzi activity encouraging further research. In this sense studies aiming the isolation of the bioactive(s) compound (s) of this fraction are already in progress. Moreover,structure-activity relationship (SAR) studies may also disclose a renewed interest in the pharmacological applications of these molecules, by increasing its selectivity towards parasites.

    Conflict of interest statement

    We declare that we have no conflict of interest.

    Acknowledgements

    This work was supported by the XtremeBio (PTDC/MAREST/4346/2012) and MaNaCruzi projects (bilateral project, FCT/ CAPES 2358, 2014/2015) funded by FCT - Foundation for Science and Technology and Portuguese National Budget; it also received national funds through FCT project CCMAR/Multi/04326/2013 and P3D-Programa de Descoberta e Desenvolvimento de Drogas(PROEP/CNPq/FIOCRUZ 401988/2012-0). The authors thank the Program for Technological Development of Tools for Health-PDTISFiocruz for use of its facilities. AJR and SMFM are CNPq Research Fellows. Luísa Custódio was supported by FCT Investigator Programme (IF/00049/2012) and Policarpo Sales by Programa Brasil Sem Miséria / Coordena??o de Aperfei?oamento de Pessoal de Ensino Superior (CAPES) / FIOCRUZ.

    [1] Rassi Jr A, Rassi A, Marin-Neto JA. Chagas disease. Lancet 2010; 375:1388-1402.

    [2] World Health Organization (WHO). Working to overcome the global impact of neglected tropical diseases: First WHO report on neglected tropical diseases. Geneva: World Health Organization; 2010[Online]. Available from: http://apps.who.int/iris/bitstream/10665/44440/1/9789241564090_ eng.pdf. [Accessed on 29 February 2016].

    [3] Hotez PJ. Neglected infections of poverty in the United States of America. PLoS Negl Trop Dis 2008; 2: e256.

    [4] Hotez PJ. Neglected parasitic infections and poverty in the United States. PLoS Negl Trop Dis 2014; 8: e3012.

    [5] Schmunis GA , Yadon ZE. Epidemiology of Chagas disease in nonendemic countries: the role of international migration. Mem Inst Oswaldo Cruz 2007:102(Suppl 1): 75-85.

    [6] World Health Organization (WHO). Control and prevention of chagas disease in Europe. report of a WHO informal consultation (Jointly Organized by WHO headquarters and the WHO Regional Office for Europe) Geneva,Switzerland, 17-18 December 2009. WHO: Geneva, 2010. Report No:WHO/HTM/NTD/IDM/2010.1[Online]. Available from: http://www.fac. org.ar/1/comites/chagas/Chagas_WHO_Technical20Report_16_06_10. pdf.

    [7] Croft SL. Pharmacological approaches to antitrypanosomal chemotherapy. Mem Inst Oswaldo Cruz 1999; 94: 215-220.

    [8] Efferth T, Zacchino S, Georgiev MI, Liu L, Wagner H, Panossian A. Nobel Prize for artemisinin brings phytotherapy into the spotlight. Phytomedicine 2015; 22(13): A1-3.

    [9] Ksouri R, Ksouri WM, Jallali I, Debez A , Magné C , Hiroko I, et al. Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit Rev Biotechnol 2012; 32(4): 289-326.

    [10] Romanha AJ, Castro SL , Soeiro Mde N, Lannes-Vieira J, Ribeiro I, Talvani A, et al. In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem Inst Oswaldo Cruz 2010; 105: 233-238.

    [11] DellaGreca M, Fiorentino A, Monaco P, Previtera L, Zarrelli A. A new dimeric 9,10-dihydrophenanthrenoid from the rhizome of Juncus acutus. Tetrahedron Lett 2002; 43(14): 2573-2575.

    [12] DellaGreca M, Fiorentino A , Isidori M , Lavorgna M , Monaco P,Previtera L, et al. Phenanthrenoids from the wetland Juncus acutus. Phytochemistry 2002; 60(6): 633-638.

    [13] DellaGreca M, Fiorentino A, Isidori M, Previtera L, Temussi F, Zarrelli A. Benzocoumarins from the rhizomes of Juncus acutus. Tetrahedron 2003; 59 (26): 4821-4825.

    [14] DellaGreca M, Fiorentino A, Monaco P, Previtera L, Temussi F, Zarreli A. New dimeric phenanthrenoids from the rhizomes of Juncus acutus. Structure determination and antialgal activity. Tetrahedron 2003; 59 (13):2317-2324.

    [15] DellaGreca M, Isidori M, Lavorgna M, Monaco P, Previtera L, Zarrelli A. Bioactivity of phenanthrenes from Juncus acutus on Selenastrum capricornutum. J Chem Ecol 2004; 30(4): 867-879.

    [16] Ogata Y. Medicinal herb index in Indonesia. 2nd ed. Jakarta: P. T. Eisai Indonesia;1995.

    [17] Banskota AH, Attamimi F, Linn TZ, Usia T, Tezuka Y, Kalauni SK, et al. Novel norcassane-type diterpene from the seed kernels of Caesalpinia crista. Tetrahedron Lett 2003; 44: 6879-6882.

    [18] Linn TZ, Awale S, Tezuka Y, Banskota AH, Kalauni SK, Attamimi F, et al. Cassaneand norcassane-type diterpenes from Caesalpinia crista of Indonesia and their antimalarial activity against the growth of Plasmodium falciparum. J Nat Prod 2005; 68: 706-710.

    [19] Wang FY, Li XQ, Sun Q, Yao S, Ke CQ, Tang CP. et al. Sesquiterpene lactones from Inula cappa. Phytochem Lett 2012; 5:639-642.

    [20] Seca AM , Grigore A , Pinto DC, Silva AM. The genus Inula and their metabolites: From ethnopharmacological to medicinal uses. J Ethnopharmacol 2014; 154(2): 286-310.

    [21] El-Shamy A, Abdel-Razek AF, Nassar MI. Phytochemical review of Juncus L. genus (Fam. Juncaceae). Arab J Chem 2015; 8(5): 614-623.

    [22] Rodrigues MJ, Gangadhar KN, Vizetto-Duarte C, Wubshet SG, Nyberg NT, Barreira L, et al. Maritime halophyte species from Southern portugal as sources of bioactive molecules. Mar Drugs 2014; 12(4): 2228-2244.

    [23] Sarkar H, Zerezghi M, Bhattacharyya J. Dehydrojuncusol, a constituent of the roots of Juncus roemerianus. Phytochemistry 1988; 27: 3006-3008.[24] Della Greca M, Fiorentino A , Mangoni L, Molinaro A , Monaco P,Previtera L. 9,10-dihydrophenanthrene metabolites from Juncus effusus L. Tetrahedron Lett 1992; 33: 5257-5260.

    [25] Della Greca M , Fiorentino A, Mangoni A, Molinaro A, Monaco P,Previtera L. A bioactive dihydrodibenzoxepin from Juncus effusus. Phytochemistry 1993; 34: 1182-1184.

    [26] Kovács A , Vasas A, Hohmann J. Natural phenanthrenes and their biological activity. Phytochemistry 2008; 69(5): 1084-1110.

    [27] Behery FA , Naeem ZE , Maatooq GT, Amer MM, Wen ZH , Sheu JH, et al. Phenanthrenoids from Juncus acutus L., new natural lipopolysaccharide-inducible nitric oxide synthase inhibitors. Chem Pharm Bull 2007; 55:1264-1266.

    [28] Ma W, Zhang Y, Ding YY, Liu F, Li N. Cytotoxic and anti-inflammatory activities of phenanthrenes from the medullae of Juncus effusus L. Arch Pharma Res 2016;39(2):154-160.

    [29] Lv HN , Tu PF, Jiang Y. Benzocoumarins: isolation, synthesis, and biological activities. Mini Rev Med Chem 2014; 14 (7): 603-622.

    [30] World Health Organization (WHO ). WHO Guidelines for the treatment of malaria. Geneva: World Health Organization ;2006. Available: https://books.google.pt/books?id=Am83eI7_ poUC&printsec=frontcover&hl=pt-PT&source=gbs_ge_summary_ r&cad=0#v=onepage&q&f=false [Accessed 15 February 2016].

    [31] World Health Organization (WHO). WHO Guidelines for the treatment of malaria. 3rd ed. Geneva: World Health Organization; 2015. Available:http://apps.who.int/iris/bitstream/10665/162441/1/9789241549127_eng. pdf. [Accessed 16 February 2016].

    [32] Leven M, Held J, Duffy S, Tschan S, Sax S, Kamber J, et al. Blood schizontocidal and gametocytocidal activity of 3-hydroxy-N'-arylidenepropanehydrazonamides: a new class of antiplasmodial compounds. J Med Chem 2014; 57(19): 7971-7976.

    10.1016/j.apjtm.2016.06.015

    ?Corresponding author: Luísa Custódio, Center of Marine Sciences, University of Algarve, Faculty of Sciences and Technology, Ed. 7, Campus of Gambelas, Faro,Portugal.

    Tel.:+351 289 800900 ext. 7381

    Fax: +351 289800051

    E-mail: lcustodio@ualg.pt.

    This work was supported by the XtremeBio (PTDC/MAR-EST/4346/2012) and MaNaCruzi projects (bilateral project, FCT/CAPES 2358, 2014/2015) funded by FCT - Foundation for Science and Technology and Portuguese National Budget; it also received national funds through FCT project CCMAR/Multi/04326/2013 and P3DPrograma de Descoberta e Desenvolvimento de Drogas (PROEP/CNPq/FIOCRUZ 401988/2012-0). The authors thank the Program for Technological Development of Tools for Health-PDTIS-Fiocruz for use of its facilities. AJR and SMFM are CNPq Research Fellows. Luísa Custódio was supported by FCT Investigator Programme(IF/00049/2012) and Policarpo Sales by Programa Brasil Sem Miséria / Coordena??o de Aperfei?oamento de Pessoal de Ensino Superior (CAPES) / FIOCRUZ.

    插逼视频在线观看| 日韩 亚洲 欧美在线| 三上悠亚av全集在线观看 | 亚洲欧美日韩卡通动漫| 青春草国产在线视频| 夜夜爽夜夜爽视频| 日本-黄色视频高清免费观看| 日韩精品有码人妻一区| 国精品久久久久久国模美| 久久精品国产亚洲网站| 午夜免费男女啪啪视频观看| 日日啪夜夜撸| 成人特级av手机在线观看| 2021少妇久久久久久久久久久| 另类精品久久| 日韩在线高清观看一区二区三区| 亚洲精品乱码久久久久久按摩| 在线观看三级黄色| 2021少妇久久久久久久久久久| videos熟女内射| 女人久久www免费人成看片| 午夜av观看不卡| 噜噜噜噜噜久久久久久91| 男人爽女人下面视频在线观看| 久久久国产欧美日韩av| 欧美xxⅹ黑人| 2018国产大陆天天弄谢| 久久久久精品性色| av视频免费观看在线观看| 永久网站在线| 有码 亚洲区| 亚洲精品日本国产第一区| 国产色爽女视频免费观看| 精品国产一区二区三区久久久樱花| 69精品国产乱码久久久| 亚洲精品乱久久久久久| 秋霞在线观看毛片| 久久久久国产精品人妻一区二区| 校园人妻丝袜中文字幕| av福利片在线| 免费黄色在线免费观看| 黄色视频在线播放观看不卡| 久久人人爽人人片av| 欧美成人精品欧美一级黄| 亚洲精品一区蜜桃| av女优亚洲男人天堂| 最近2019中文字幕mv第一页| 人妻少妇偷人精品九色| 久久久久国产精品人妻一区二区| 蜜桃久久精品国产亚洲av| videos熟女内射| h日本视频在线播放| 我的老师免费观看完整版| 亚洲美女黄色视频免费看| 亚洲一级一片aⅴ在线观看| √禁漫天堂资源中文www| 国产日韩一区二区三区精品不卡 | 日产精品乱码卡一卡2卡三| 亚洲国产av新网站| 一级a做视频免费观看| 久久 成人 亚洲| 国产中年淑女户外野战色| 欧美精品高潮呻吟av久久| 亚洲丝袜综合中文字幕| www.av在线官网国产| 69精品国产乱码久久久| 国产在视频线精品| 国产av一区二区精品久久| 美女大奶头黄色视频| 亚洲欧洲日产国产| 日韩 亚洲 欧美在线| 午夜免费男女啪啪视频观看| 国产黄频视频在线观看| 一级毛片久久久久久久久女| 自线自在国产av| 黄色日韩在线| 日韩大片免费观看网站| 国产精品99久久99久久久不卡 | av网站免费在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美日韩在线观看h| 午夜免费鲁丝| 精品亚洲乱码少妇综合久久| 在线看a的网站| 一边亲一边摸免费视频| 建设人人有责人人尽责人人享有的| 国产伦在线观看视频一区| 91aial.com中文字幕在线观看| 午夜免费鲁丝| 亚洲国产精品国产精品| 国产免费一级a男人的天堂| 2018国产大陆天天弄谢| 另类精品久久| 插逼视频在线观看| √禁漫天堂资源中文www| 韩国av在线不卡| 久久久久久久久久成人| 美女国产视频在线观看| 下体分泌物呈黄色| 不卡视频在线观看欧美| 一本—道久久a久久精品蜜桃钙片| 一本大道久久a久久精品| 国产一区有黄有色的免费视频| 制服丝袜香蕉在线| 激情五月婷婷亚洲| 在线观看www视频免费| 色5月婷婷丁香| 欧美日韩视频精品一区| 嫩草影院入口| 99久久精品一区二区三区| 亚洲精品乱码久久久久久按摩| 久久影院123| 亚洲成人一二三区av| 九草在线视频观看| 亚洲av福利一区| 久久国内精品自在自线图片| av国产久精品久网站免费入址| 日本av免费视频播放| 如日韩欧美国产精品一区二区三区 | 国产美女午夜福利| 国产在线一区二区三区精| 国产伦理片在线播放av一区| 日韩人妻高清精品专区| 22中文网久久字幕| 日韩中字成人| av天堂久久9| 在现免费观看毛片| 久久精品国产a三级三级三级| 男女无遮挡免费网站观看| 精品一品国产午夜福利视频| 亚洲国产欧美在线一区| 精华霜和精华液先用哪个| 精品国产一区二区久久| 免费不卡的大黄色大毛片视频在线观看| 五月玫瑰六月丁香| 久久6这里有精品| 狂野欧美白嫩少妇大欣赏| 久久久久久人妻| 免费看不卡的av| 中文字幕人妻丝袜制服| 欧美日韩视频精品一区| 久久人人爽人人爽人人片va| 99九九在线精品视频 | 女人久久www免费人成看片| 亚洲精品日韩在线中文字幕| 日韩大片免费观看网站| av国产精品久久久久影院| 国产淫片久久久久久久久| 黑人巨大精品欧美一区二区蜜桃 | 国内精品宾馆在线| 国产日韩欧美亚洲二区| 人人妻人人澡人人爽人人夜夜| 国产精品国产三级专区第一集| 亚洲一区二区三区欧美精品| 久久久久久久大尺度免费视频| 国产亚洲一区二区精品| 午夜免费男女啪啪视频观看| 寂寞人妻少妇视频99o| 一本色道久久久久久精品综合| 青青草视频在线视频观看| 国产黄色视频一区二区在线观看| 丁香六月天网| 久久国产精品大桥未久av | 成人特级av手机在线观看| 曰老女人黄片| 亚洲av不卡在线观看| 99国产精品免费福利视频| 久久久午夜欧美精品| 啦啦啦在线观看免费高清www| 丰满迷人的少妇在线观看| 欧美日韩av久久| 另类精品久久| 日本黄色片子视频| 亚洲国产精品999| 久久99精品国语久久久| 欧美国产精品一级二级三级 | 三级经典国产精品| 午夜av观看不卡| 国产高清有码在线观看视频| 国产精品久久久久久久久免| 国产成人freesex在线| 观看av在线不卡| 国精品久久久久久国模美| 欧美 日韩 精品 国产| 尾随美女入室| 欧美日韩视频精品一区| 91精品国产国语对白视频| 免费看日本二区| 亚洲精品一二三| 深夜a级毛片| 久久青草综合色| 黑人巨大精品欧美一区二区蜜桃 | 99久久人妻综合| 夜夜看夜夜爽夜夜摸| 国产男人的电影天堂91| 中文字幕精品免费在线观看视频 | 天堂8中文在线网| 三级国产精品片| 国产在线视频一区二区| 老司机影院毛片| 我的女老师完整版在线观看| 嫩草影院新地址| 纯流量卡能插随身wifi吗| 亚洲欧美日韩东京热| 最黄视频免费看| 亚洲色图综合在线观看| 少妇 在线观看| 欧美变态另类bdsm刘玥| 精品人妻偷拍中文字幕| 国产精品免费大片| 亚洲精品国产av成人精品| 国产色爽女视频免费观看| 国产成人精品久久久久久| 国产一区二区在线观看av| 国精品久久久久久国模美| 欧美成人精品欧美一级黄| 欧美人与善性xxx| 自拍偷自拍亚洲精品老妇| 人人妻人人澡人人看| 成人特级av手机在线观看| 插阴视频在线观看视频| 国产精品嫩草影院av在线观看| 日韩欧美一区视频在线观看 | 91精品伊人久久大香线蕉| 久热久热在线精品观看| 亚洲精华国产精华液的使用体验| 欧美日韩在线观看h| 久久综合国产亚洲精品| 亚洲精品成人av观看孕妇| 18+在线观看网站| freevideosex欧美| 97在线视频观看| 人妻系列 视频| 黄色一级大片看看| 视频区图区小说| 午夜91福利影院| 国产日韩一区二区三区精品不卡 | 黄色怎么调成土黄色| 最近2019中文字幕mv第一页| 久久婷婷青草| 日韩av在线免费看完整版不卡| av天堂久久9| 国产一级毛片在线| 国产成人精品福利久久| 成人黄色视频免费在线看| 久久精品久久精品一区二区三区| 久久久久久久久久久丰满| 你懂的网址亚洲精品在线观看| 亚洲av成人精品一二三区| 最后的刺客免费高清国语| 国产日韩欧美亚洲二区| 九九在线视频观看精品| 亚洲一级一片aⅴ在线观看| 女性被躁到高潮视频| 熟女av电影| 最新中文字幕久久久久| 精品少妇内射三级| 99热这里只有是精品50| 91久久精品电影网| 午夜久久久在线观看| a 毛片基地| 蜜桃在线观看..| 国产精品国产三级专区第一集| 9色porny在线观看| 欧美3d第一页| 国产一区二区三区综合在线观看 | 狂野欧美激情性bbbbbb| 久久狼人影院| 日韩一本色道免费dvd| 久久人人爽av亚洲精品天堂| 色视频www国产| 国产一区二区三区综合在线观看 | 亚洲第一av免费看| 久久久久久久久久久久大奶| 丰满乱子伦码专区| 熟妇人妻不卡中文字幕| 两个人的视频大全免费| 成人影院久久| 特大巨黑吊av在线直播| 老司机影院毛片| 丰满人妻一区二区三区视频av| 国产精品一区www在线观看| 亚洲在久久综合| av免费在线看不卡| 97精品久久久久久久久久精品| 久久精品国产亚洲av涩爱| 99久久精品热视频| 亚洲欧美一区二区三区国产| 欧美高清成人免费视频www| 成人国产麻豆网| 一区二区三区免费毛片| 成人美女网站在线观看视频| 亚洲精品乱码久久久久久按摩| 王馨瑶露胸无遮挡在线观看| 亚洲人成网站在线观看播放| 一区在线观看完整版| 精品国产国语对白av| 黄色欧美视频在线观看| 亚洲精品久久久久久婷婷小说| 狂野欧美激情性xxxx在线观看| 麻豆乱淫一区二区| 国产欧美亚洲国产| 亚洲精品乱久久久久久| 日韩 亚洲 欧美在线| 亚洲经典国产精华液单| 大片电影免费在线观看免费| 三级国产精品片| 老司机影院毛片| 国产精品免费大片| 免费看日本二区| 免费观看在线日韩| 97在线视频观看| 亚洲成人一二三区av| 波野结衣二区三区在线| 国产亚洲午夜精品一区二区久久| 亚洲精品456在线播放app| 人体艺术视频欧美日本| 国产精品免费大片| 久久精品久久久久久久性| 国产精品一区二区在线观看99| 日日撸夜夜添| 超碰97精品在线观看| 全区人妻精品视频| 青春草亚洲视频在线观看| 国产乱人偷精品视频| 欧美三级亚洲精品| 偷拍熟女少妇极品色| 黑人巨大精品欧美一区二区蜜桃 | 免费观看的影片在线观看| 赤兔流量卡办理| 人人妻人人澡人人看| 国产 精品1| 伊人久久精品亚洲午夜| 亚洲一级一片aⅴ在线观看| 天堂俺去俺来也www色官网| 欧美区成人在线视频| 久久6这里有精品| 午夜视频国产福利| 国产精品无大码| 在线观看免费高清a一片| av线在线观看网站| 九九在线视频观看精品| 亚洲av.av天堂| 亚洲欧美中文字幕日韩二区| 亚洲精华国产精华液的使用体验| 亚洲熟女精品中文字幕| 在线观看免费高清a一片| 一个人免费看片子| 国产精品一区二区性色av| 久久久精品94久久精品| 国产精品久久久久久精品古装| 亚洲经典国产精华液单| 少妇人妻久久综合中文| 中文字幕精品免费在线观看视频 | 91精品国产国语对白视频| 在线观看免费视频网站a站| 国产真实伦视频高清在线观看| 老司机影院成人| 日韩熟女老妇一区二区性免费视频| 成人国产av品久久久| 男女无遮挡免费网站观看| 久久99精品国语久久久| 午夜91福利影院| 欧美激情国产日韩精品一区| 桃花免费在线播放| 久久99热6这里只有精品| 99精国产麻豆久久婷婷| 亚洲丝袜综合中文字幕| 婷婷色综合大香蕉| 欧美 亚洲 国产 日韩一| 午夜视频国产福利| 男女边吃奶边做爰视频| 欧美高清成人免费视频www| 国产视频首页在线观看| 亚洲欧美成人精品一区二区| 校园人妻丝袜中文字幕| 女人久久www免费人成看片| 91久久精品国产一区二区成人| 久久久久国产网址| 好男人视频免费观看在线| 国产高清不卡午夜福利| 国产在视频线精品| 国产熟女欧美一区二区| 精品一区二区三区视频在线| 91午夜精品亚洲一区二区三区| 97精品久久久久久久久久精品| 婷婷色麻豆天堂久久| 青春草国产在线视频| 国产精品成人在线| 丝袜在线中文字幕| 九九久久精品国产亚洲av麻豆| 日日啪夜夜爽| 中文精品一卡2卡3卡4更新| 国产免费又黄又爽又色| 欧美另类一区| 伦精品一区二区三区| 日本爱情动作片www.在线观看| 免费大片黄手机在线观看| 久久97久久精品| 女性生殖器流出的白浆| 国语对白做爰xxxⅹ性视频网站| 夜夜看夜夜爽夜夜摸| 在现免费观看毛片| 这个男人来自地球电影免费观看 | 日日摸夜夜添夜夜添av毛片| 天美传媒精品一区二区| 欧美最新免费一区二区三区| 99久国产av精品国产电影| av.在线天堂| 大片免费播放器 马上看| 中文字幕久久专区| 99国产精品免费福利视频| 九色成人免费人妻av| 少妇精品久久久久久久| 欧美日韩视频精品一区| 亚洲精品成人av观看孕妇| 久久久久久久久久久久大奶| 大片免费播放器 马上看| 亚洲性久久影院| 有码 亚洲区| 成人美女网站在线观看视频| 女人精品久久久久毛片| 欧美 日韩 精品 国产| 国产黄色免费在线视频| 久久久久网色| 免费观看av网站的网址| 久久97久久精品| 97超碰精品成人国产| 啦啦啦在线观看免费高清www| 国产爽快片一区二区三区| 交换朋友夫妻互换小说| 免费观看无遮挡的男女| 成人综合一区亚洲| 亚洲欧美成人综合另类久久久| 亚洲精品成人av观看孕妇| 精品熟女少妇av免费看| 视频中文字幕在线观看| 一级毛片aaaaaa免费看小| 精品国产乱码久久久久久小说| a 毛片基地| 久久99一区二区三区| 久久 成人 亚洲| 亚洲无线观看免费| 有码 亚洲区| 在线观看人妻少妇| 搡女人真爽免费视频火全软件| 天堂俺去俺来也www色官网| 夜夜看夜夜爽夜夜摸| 最近中文字幕高清免费大全6| 国产成人精品一,二区| 精品一区二区免费观看| 建设人人有责人人尽责人人享有的| 亚洲欧美精品自产自拍| 啦啦啦中文免费视频观看日本| 成人综合一区亚洲| 少妇人妻 视频| 国产日韩欧美视频二区| 一本—道久久a久久精品蜜桃钙片| 国产成人aa在线观看| 久久久久久久久久人人人人人人| 激情五月婷婷亚洲| 观看免费一级毛片| 亚洲天堂av无毛| 国产精品一区www在线观看| 夫妻性生交免费视频一级片| 国产视频首页在线观看| 中文在线观看免费www的网站| 在线观看免费日韩欧美大片 | 国产精品一区二区在线不卡| 午夜精品国产一区二区电影| 国产女主播在线喷水免费视频网站| 国产成人a∨麻豆精品| 久久亚洲国产成人精品v| xxx大片免费视频| 午夜精品国产一区二区电影| 亚洲国产精品一区二区三区在线| 校园人妻丝袜中文字幕| 一级毛片aaaaaa免费看小| 亚洲怡红院男人天堂| 韩国av在线不卡| 男女免费视频国产| 国产成人免费无遮挡视频| kizo精华| 国产亚洲午夜精品一区二区久久| 亚洲图色成人| 国产熟女午夜一区二区三区 | 欧美xxxx性猛交bbbb| 亚洲av二区三区四区| 色视频在线一区二区三区| 国产欧美日韩精品一区二区| 国产一区亚洲一区在线观看| 蜜桃久久精品国产亚洲av| 欧美日韩视频精品一区| 一级黄片播放器| 美女大奶头黄色视频| 国产在视频线精品| 亚洲经典国产精华液单| 久久6这里有精品| 国产精品不卡视频一区二区| 亚洲国产欧美在线一区| av在线app专区| 久久精品国产自在天天线| 欧美丝袜亚洲另类| 国产极品天堂在线| 欧美xxxx性猛交bbbb| 在线观看av片永久免费下载| 国产精品久久久久久精品电影小说| 日本免费在线观看一区| 亚洲成人手机| 黄色配什么色好看| 精品少妇久久久久久888优播| 18+在线观看网站| 男女边吃奶边做爰视频| 另类亚洲欧美激情| 日韩中文字幕视频在线看片| 久久久久久久久久久丰满| 成人国产麻豆网| 在线亚洲精品国产二区图片欧美 | 国产精品成人在线| 韩国av在线不卡| 伊人亚洲综合成人网| 久久国内精品自在自线图片| 色94色欧美一区二区| 最近中文字幕高清免费大全6| 免费看不卡的av| 男女边吃奶边做爰视频| 日本欧美视频一区| 97超碰精品成人国产| 一级毛片电影观看| 国产精品不卡视频一区二区| 久久综合国产亚洲精品| 国产在线男女| 国产亚洲午夜精品一区二区久久| 日韩视频在线欧美| 欧美精品国产亚洲| 亚洲国产毛片av蜜桃av| 国产成人91sexporn| 亚洲精品一区蜜桃| 国内揄拍国产精品人妻在线| 如何舔出高潮| 免费观看a级毛片全部| 亚洲国产欧美日韩在线播放 | 国产精品久久久久久精品电影小说| av.在线天堂| 亚洲精品国产av成人精品| 精品国产一区二区三区久久久樱花| 国模一区二区三区四区视频| 成人亚洲精品一区在线观看| 午夜福利视频精品| 伦理电影大哥的女人| 啦啦啦视频在线资源免费观看| 国产成人freesex在线| 啦啦啦中文免费视频观看日本| 99re6热这里在线精品视频| 18禁在线播放成人免费| 尾随美女入室| 欧美性感艳星| 亚洲性久久影院| 免费大片18禁| 麻豆成人av视频| 黄色怎么调成土黄色| 免费看光身美女| 久久97久久精品| 国产在线免费精品| 中文字幕av电影在线播放| 欧美人与善性xxx| 久久青草综合色| 少妇高潮的动态图| 久久国产亚洲av麻豆专区| 国产一区二区三区综合在线观看 | 五月开心婷婷网| 精品国产国语对白av| 全区人妻精品视频| 男人和女人高潮做爰伦理| 高清黄色对白视频在线免费看 | 大陆偷拍与自拍| 国语对白做爰xxxⅹ性视频网站| 精品国产一区二区三区久久久樱花| 日韩欧美精品免费久久| 国产有黄有色有爽视频| 99久国产av精品国产电影| 人妻夜夜爽99麻豆av| 亚洲欧美中文字幕日韩二区| 亚洲精品亚洲一区二区| 建设人人有责人人尽责人人享有的| 街头女战士在线观看网站| 国产欧美日韩一区二区三区在线 | 国产精品秋霞免费鲁丝片| 亚洲精品乱码久久久v下载方式| 99久久精品热视频| 亚洲国产毛片av蜜桃av| 高清av免费在线| 免费看不卡的av| 欧美性感艳星| 欧美日本中文国产一区发布| 美女内射精品一级片tv| 日本免费在线观看一区| 国产片特级美女逼逼视频| 亚洲av欧美aⅴ国产| 97精品久久久久久久久久精品| 汤姆久久久久久久影院中文字幕| 国产视频内射| 午夜av观看不卡| 高清毛片免费看| 免费不卡的大黄色大毛片视频在线观看| 欧美97在线视频| 久久久精品94久久精品| 亚洲性久久影院| 一区二区三区四区激情视频| 国产高清不卡午夜福利| 亚洲av免费高清在线观看| 日韩一本色道免费dvd| 建设人人有责人人尽责人人享有的| 少妇人妻一区二区三区视频| 熟妇人妻不卡中文字幕|