• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanism of plasma ignition in electrothermal-chemical launcher

    2016-04-18 08:23:08YongJINYanjieNIHaiyuanLIBaomingLI
    Defence Technology 2016年2期

    Yong JIN,Yan-jie NI,Hai-yuan LI*,Bao-ming LI

    National Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing,Jiangsu 210094,China

    Mechanism of plasma ignition in electrothermal-chemical launcher

    Yong JIN,Yan-jie NI,Hai-yuan LI*,Bao-ming LI

    National Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing,Jiangsu 210094,China

    Plasma generator is a core component in an electrothermal-chemical(ETC)launcher.Its work state directly inf l uences the launch eff i ciency of a system.The interaction between plasma and propellants is a very important mechanism in ETC technology.Based on the transient radiation model and open air plasma jet experiment,the mechanism of plasma ignition process is analyzed.Results show that the surface temperature of local solid propellant grain can quickly achieve the ignition temperature under the action of early transient plasma radiation.But it needs enough time to maintain the high energy f l ow to make self-sustained combustion of solid propellant grains.Because of the limited space characteristics of transient radiation,the near-f i eld propellant grains can gain enough energy by the strong transient radiation to be ignited and achieve self-sustained combustion.The far-f i eld propellant grains mainly gain the energy by the activated particles in plasma jet to be ignited and self-sustained combustion.Experiments show that plasma jet always has a high f l ow velocity in the area of the cartridge.Compared with conventional ignition,the solid propellant grains can obtain more quick and uniform ignition and self-sustained combustion by this kind of ablation controlled arc (ACA)plasma via energy skin effect of propellant grains,pre-heat temperature mechanism and high eff i cient jet diffusion.

    Electrothermal-chemical launch;Plasma ignition;Transient radiation;Plasma jet

    1.Introduction

    Electrothermal-chemical(ETC)launch can be used to obtain more smooth interior ballistic process and improve the kinetic energy (KE)of the projectile relative to the conventional ballistics [1].Capillary structure is always designed and used as the ablation material to support the ablation controlled arc(ACA)plasma in ETC launchers [2].The features of an ACA hybrid plasma jet can be controlled and regulated accurately by the discharge parameters of a pulse power supply (PPS)[3]. This kind of high temperature transient plasma has a great advantage to improve the ignition and combustion of solid propellants compared with conventional ignition using energetic materials,such as black powder.Optimizing the structural design and work parameters of plasma generator is of considerable signif i cance in engineering applications.

    The previous calculations and experiments show that the plasma temperatures ranged from 0.35 eV (4000 K)to 3 eV(35,000 K)[4,5].At the moment when plasma is injected into a propellant bed,energy is transferred rapidly to the propellantgrains nearby the plasma generator via instantaneous radiation,which might lead to ignition.There must be a strong radiation that may be used to optimize the ignition and combustion processes.After ignition,the plasma radiation is damped quickly through the high pressure gas produced by propellant burning. Energy is transferred quickly to the propellant grains far from the plasma generator via plasma jet diffusion.

    Lots of works in theory and experiments have been done to investigate the plasma-propellant interaction,and the enhancement function of plasma has been proven by experiments.But the mechanisms of plasma ignition and enhancement in the ETC launch process have yet been understood clearly.In this paper,a transient radiation model and relevant plasma jet experiments are established to discuss and help to understand the mechanism of plasma ignition in the ETC launch process from the view of radiation and diffusion,respectively.

    2.Near-f i eld:radiation

    In our previous works [6,7],a Monte Carlo method was employed in an attempt to understand the characteristics of plasma and its interaction with propellant grains by the transient radiation at the moment of discharging.A threedimensional model was established to simulate the early transient radiation in cartridge based on the model in Ref.[6].Allpropellant grains are uniformly aligned around the serial arc plasma generator in the center of the cartridge,as shown in Fig.1,and are characterized by a porosityPand an average absorption coeff i cientα.HereP=Vp/V,whereVpis the volume of propellant andVis the volume of cartridge.

    Fig.1.Schematic diagram of 3D radiation model.

    The assumptions here are as the same as those in Ref. [6]. Plasma is a graybody radiator,and the radiant energyEbis

    whereεis the emissivity;σis the Stefan-Boltzmann constant;andTis the plasma temperature.The temperature inside the plasma generator is assumed to be fi nite and constant.In our calculations,Tis assumed as 30,000 K.The radiant energy consists ofnenergy beams,and each energy beam has an energyEgiven by

    We also assume that the radiation and absorption of propellant grains follow Kirchhoff’s law based on local thermodynamic equilibrium (LTE)conditions [8].The propellants are assumed to be spherical and have diffuse re fl ective surfaces. Their quantum absorption ΔEpis

    whereαis the average absorption coeff i cient.We also assume that the scattering direction of the energy beam is random.And the wall of cartridge is assumed to have the same absorption characteristics as the propellant grains.

    The gases in the cartridge are assumed to behave as optical f i lm and also are supposed to be in thermodynamic equilibrium(TE)with the attenuation to the energy beamE’described as

    wheresis the length of the path andβis the attenuation coeff i cient of the gases in cartridge.βis assumed to be 0.01 in the calculations.

    We also assume that all of the energy absorbed by the propellant grains is used to increase their surface temperatures.

    The three-dimensional radiation model is coupled with a thermal model shown in Fig.2 to predict the surface temperature of propellant grains and the distribution of temperature in the cartridge.It is reasonable to assume that the radiative heat transfer from the plasma source to the surfaces of propellant grains is extremely eff i cient in a strong instantaneous radiation. Hence,the heat transfer from the surface of propellant grain to its interior is relatively slow.

    The surface layer of propellant grains can be def i ned as the area in the dashed boundary in Fig.2,and the boundary of its surface layer is approximated as an adiabatic boundary.

    The surface temperature of theith propellant grain can be written as

    whereqiis the energy fl ux reaching the surface of the propellant grain,as calculated by the radiation model;T0is the initial temperature of propellant grains (288.15 K);Cpandλare the speci fi c heat at constant pressure and the thermal conductivity of propellant grain,respectively;mis the mass of propellant grain,m=5.149 g;Δtis the actual time of radiation;andkis the volume ratio of surface layer to propellant grain.Based on the parameters of JA2 [9],Cpandλof propellant grains are selected as 1520.45 J/(kg K)and 0.28 W/(m K),respectively. For a spherical particle,we have

    Fig.2.Schematic diagram of propellant thermal model.

    Fig.3.Distribution of radiation energy f l ux in cartridge forT=30,000 K,α=0.1,andP=0.717257.

    whereRis the ratio of the surface layer thickness to the radius of propellant grain.The radius of propellant grain is on the order of 10-3m,and the molecular structure of large organic molecule is usually on the order of 10-7m.Hence,Ris assumed as 10,000 in our calculations withk≈ 0.0003.

    It is anticipated that the heat transfer from the surface of propellant grain to its interior is minimal.The main function of radiation is the instantaneous heating to the surface layer of propellant grain,and the surface layer temperature can maintain a constant increasing trend as a result of the radiation.

    2.1.Radiation distribution in cartridge

    The distribution of radiant energy in the cartridge forT=30,000 K,α=0.1,andP=0.717257 is shown in Fig.3,whereαis the average absorption coeff i cient andPis the porosity in cartridge.The radiation distributions in axial and radial sections are shown in Fig.3(a)and (b),respectively.It clearly shows that the radiant energy peak f l ux is nearly 320 MW/m2in an area next to the plasma source.The effect of radiation energy is conf i ned to a small f i eld around the plasma generator in the propellant bed [10].

    More calculations of different porosities are used to conf i rm the effective range of radiation in the cartridge.The radial distributions of radiant energy f l ux at different porosities are shown in Fig.4.Here the horizontal axis is propellant grains’position (normalized by the diameter of propellant grain).As shown in Fig.4,the farther the radial distance is,the less the radiation energy in the cartridge.The radiation energy becomes zero as the radial distance becomes more than 10 times of the propellant grain’s diameter.In the actual propellant bed,a high loading density (low porosity case)caused the penetration depth of radiation to be nearly 5 times the propellant grain’s diameter.Hence,we def i ne the near-f i eld propellant grains are those in 5 times the propellant grain’s diameter away with the plasma source,and the far-f i eld propellant grains are those far away with the plasma source more than 5 times of the propellant grain’s diameter.

    2.2.Energy skin effect of propellant grains

    Fig.5 shows the change of radiation intensity in the surface layer of propellant grains at 10 ps,100 ps,and 1 ns,where a,b,and c are spherical propellant grains shown in Fig.1,respectively.

    Stronger radiation is shown as bright white color in Fig.5.It can be intuitively seen from Fig.5 that the radiation intensity decreases from a to c at different times as a result of the rapid attenuation of radiation intensity along the radial direction.The radiation intensity on the surface layer of propellant grains increases rapidly,suggesting that the surface layer of propellant particles has a high amount of absorbed radiation on it.Because the plasma generator is on the left side of propellant,the radiation energy intensity on the left side is stronger than that on the right side.It shows that the propellant grains can be ignited simply by radiation.The responses of the energy f l ux and surface temperature of propellant grains to radiation are both in picoseconds.The main cause for the fast response must be the high eff i cient local radiation near the plasma generator.

    Fig.4.Radial distribution of radiation energy f l ux forT=30,000 K andα=0.1.

    Fig.5.Radiation intensity on surface layerofpropellantgrain forT=30,000 K,α=0.1,andP=0.717257.

    In the process of plasma ignition,the high eff i cient heat transfer causes the radiation energy to aggregate in the surface layer of propellant grain rapidly during early plasma radiation. There is not suff i cient time to transfer the energy from the surface of propellant grain to its interior.The energy absorbed is used to increase quickly the temperature in the surface layer of the propellant grains.Hence,the surface layer can reach the ignition temperature almost instantly.The energy skin effect on the propellant grain surface is the main cause of plasma ignition.

    2.3.Pre-heat temperature mechanism

    A statistical combustion model was used to simulate the changes of average temperature and pressure in the cartridge at the moment of initial burning.The time-dependent changes of average temperature and pressure in the cartridge were obtained by statistically analyzing the combustion situation of propellant grain inside the cartridge allowed.

    As the same as above assumption,the ignition sequence is determined when plasma temperature is 30,000 K.The ignition criterion is introduced as follows:if the temperature on the surface layer of a propellant grain reaches the ignition temperatureTc(600 K),the propellant grain absorbs enough energy generated by the plasma radiation to begin burning instantaneously.

    The statistical average temperature and pressure in the cartridge within the initial several microseconds are shown in Fig.6.The experimental pressure at forcing cone,which can be approximated to the average pressure in the cartridge,is shown as the experimental pressure curve in Fig.6 when the loading density is 0.5 kg/L with porosityPof nearly 0.7 in a 105 mm ETC launcher.The pressure was measured using a KISTLER 6215 quartz high-pressure sensor.It is shown that the calculated pressure curve is in good agreement with the experimental one. The average pressure in the cartridge began to increase sharply from 1 μs.But the average temperature increased rapidly from zerotime,andthegradientofaveragetemperaturef i rstincreased and then decreased.Thus,the establishment of the temperature f i eld in the cartridge is prior to that of the pressure f i eld.

    Fig.6.Statistical average temperature and pressure in the cartridge forT=30,000 K,α=0.1,andP=0.717 257.

    Itissupposedthattheplasmaradiationcantransfertheenergy eff i ciently and causes an initial transient temperature f i eld near the plasma source.The pre-heat temperature f i eld caused by plasma radiation is benef i cial to ignition and combustion in the propellant bed.In conventional ignition,the main mode of energy transfer is convective conduction rather than radiation. Obviously,theuseofplasmainignitionensuresahighereff i cient and more precise ignition time.The pre-heat temperature mechanism cannot be obtained in conventional launch.

    3.Far-f i eld:diffusion

    The research above indicates that the propellant bed has a screening effect on the arc plasma radiation.Some local solid propellant grains around the plasma generator can quickly achieve the ignition point under the action of early strong instantaneous plasma radiation.But it needs enough time to maintain the high energy f l ow to achieve the self-sustained combustion of solid propellant grains.After these local propellant grains begin to burn,the combustion products,such as high temperature gas,change the optical properties of radiation in the cartridge,and the radiation is attenuated rapidly.Thus,the far-f i eld propellant grains mainly gain the energy from the activated particles in plasma jet.Plasma diffusion becomes the main way to transfer the energy.

    Open air tests offered visualization of undisturbed plasma jet f l ows.The test results may help to understand the complex f l ow f i elds presenting in the propellant bed.An open air f i ring experimental system was designed and constructed to identify the diffusion characteristics of ACA plasma jet [11].The experimental system is shown in Fig.7.A Phantom V710 high-speed camera was used to collect the real-time images which were compared with background scale to determine the location of plasma jet boundary and the diffusion velocity of plasma.

    Fig.7.Open air f i ring experimental system for ACA plasma generator.

    A matched PPS device was used to supply a pulse current for the plasma generator,for which the peak current and full width at half maximum (FWHM)are nearly 160 kA and 3 ms,respectively.The electrical explosion time was about 147 μs.Fig.8 shows the high-speed images of ACA plasma diffusion in the early 330 μs of pulse discharging process.

    It is shown that the arc plasma has a controllable boundary with the pulse current waveform.Both axial and radial diffusions occur under normal pressure at the same time.The calculated result shows that the radial diffusion velocity is nearly 333 m/s,similar to the local speed of sound.The axial diffusion velocity is higher than the radial one,which can reach approximately Mach 5.Hence,the plasma can f i ll the whole chamber quickly after transient radiation.Plasma diffusion brings the activated particles and energy to the propellant grains which are far away from the plasma generator.

    4.Conclusion

    In order to discuss and analyze the mechanism of plasma ignition in electrothermal-chemical (ETC)launch process,a 3-D transient radiation model and plasma jet air f i ring experiment were established to investigate the main energy transfer ways of the ablation controlled arc (ACA)plasma from the consideration of theory and experiment.

    Fig.8.High-speedimagesofACAplasmageneratoropenairf i ringexperiment.

    Theresultsshowthatthiskindoftransientplasmahasagreat advantage to improve the ignition and combustion of solid propellants.Becausethepropellantbedhasascreeningeffecton theACA plasma radiation,near-f i eld propellant grains can gain enough energy from the early strong transient radiation to be ignited and achieveself-sustained combustion.Far-f i eld propellant grains mainly gain the energy from the activated particlesintheplasmajettobeignitedandachieveself-sustained combustion.Experiments show that this plasma jet always has a higher axial diffusion velocity.Far-f i eld solid propellant grains can obtain more quick and uniform ignition and self-sustained combustion by the high velocity plasma jet.The ignition time in the cartridge is greatly shortened by using the high-eff i ciency energy transfer way:radiation and diffusion ofACA plasma.

    Both radiation and diffusion characteristics of plasma should be considered in engineering design and experiments to optimize the ignition and combustion of propellant grain in order to improve the interior ballistic performance of ETC launcher.

    Our future work will be to optimize the plasma generator structures to obtain better quality plasma.The ACA plasma diffusion details will be discussed both in theory and experiment.A series of experiments will be executed to explore the relationship among plasma temperature distribution,diffusion velocity and input pulse current parameters and help in building theACA plasma diffusion calculation model.The radiation and diffusion characteristics ofACA plasma in a real propellant bed will also be considered and conf i rmed in our future simulations and experiments.

    [1]Woodley CR.A parametric study for an electrothermal-chemical artillery weapon.IEEE Trans Magn 1993;29(1):625-30.

    [2]Dyvik J,Herbig J,Appleton R,O’Reilly J,Shin J.Recent activities in electrothermal chemical launcher technologies at BAE systems.IEEE Trans Magn 2007;43(1):303-7.

    [3]Porwitzky AJ,Keidar M,Boyd ID.Progress towards an end-to-end model of an electrothermal chemical gun.IEEETrans Magn 2009;45(1):412-16.

    [4]Zoler D,Shaf i r N,F(xiàn)orte D,Kot E,Ravid A,Wald S,et al.Study of plasma jet capabilities to produce uniform ignition of propellants,ballistic gain,and signif i cant decrease of the “temperature gradient”.IEEE Trans Magn 2007;43(1):322-8.

    [5]Winfrey AL,Abd Al-Halim MA,Mittal S,Bourham MA.Study of high-enthalpy electrothermal energetic plasma source concept.IEEE Trans Plasma Sci 2015;43(7):2195-2200.

    [6]Jin Y,Li B.Energy skin effect of propellant particles in electrothermalchemical launcher.IEEE Trans Plasma Sci 2013;41(5):1112-16.

    [7]Jin Y,Li B.Calculation of plasma radiation in electrothermal-chemical launcher.Plasma Sci Technol 2014;16(1):50-3.

    [8]Kappen K,Bauder U.Calculation of plasma radiation transport for description of propellant ignition and simulation of interior ballistics in ETC guns.IEEE Trans Magn 2001;37(1):169-72.

    [9]Porwitzky AJ,Keidar M,Boyd ID.Modeling of the plasma-propellant interaction.IEEE Trans Magn 2007;43(1):313-17.

    [10]Porwitzky AJ,Keidar M,Boyd ID.Numerical parametric study of the capillary plasma source for electrothermal-chemical guns.IEEE Trans Magn 2009;45(1):574-7.

    [11]Kim S-H,Yang K-S,Lee S-W,Jung J-W.Capillary discharge in the open air.IEEE Trans Magn 2003;39(1):244-7.

    Received 29 September 2015;revised 28 December 2015;accepted 28 December 2015 Available online 28 January 2016

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.Tel.:+8602584315938806.

    E-mail address:li_haiyuan@163.com (H.Y.LI).

    http://dx.doi.org/10.1016/j.dt.2015.12.009

    2214-9147/? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    ? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    一级片免费观看大全| 精品人妻一区二区三区麻豆| 日韩 欧美 亚洲 中文字幕| 看免费成人av毛片| 亚洲精品久久久久久婷婷小说| 又大又黄又爽视频免费| 日本av手机在线免费观看| 9热在线视频观看99| 国产亚洲精品第一综合不卡| 99re6热这里在线精品视频| 麻豆av在线久日| 十分钟在线观看高清视频www| 久久久久久久久免费视频了| 亚洲五月色婷婷综合| 韩国精品一区二区三区| 国产男女超爽视频在线观看| 国产97色在线日韩免费| av电影中文网址| 丝瓜视频免费看黄片| 91精品三级在线观看| 欧美亚洲 丝袜 人妻 在线| 大片电影免费在线观看免费| 精品久久久精品久久久| 涩涩av久久男人的天堂| 亚洲欧美一区二区三区黑人| 美女扒开内裤让男人捅视频| 亚洲四区av| 丁香六月天网| 国产成人精品久久久久久| 性少妇av在线| 欧美国产精品va在线观看不卡| 涩涩av久久男人的天堂| 国产成人精品无人区| 国产成人欧美在线观看 | 国产99久久九九免费精品| 国产亚洲av高清不卡| 两个人免费观看高清视频| 纵有疾风起免费观看全集完整版| 欧美另类一区| 国产乱来视频区| 国产成人午夜福利电影在线观看| 汤姆久久久久久久影院中文字幕| 久久久久久久久免费视频了| 久久久久久久国产电影| 亚洲av电影在线进入| 成人国产麻豆网| 一二三四中文在线观看免费高清| 女人高潮潮喷娇喘18禁视频| 最近最新中文字幕大全免费视频 | 欧美人与性动交α欧美软件| 亚洲国产看品久久| 视频在线观看一区二区三区| 久久综合国产亚洲精品| 999久久久国产精品视频| 九草在线视频观看| 视频区图区小说| 少妇猛男粗大的猛烈进出视频| 中文字幕制服av| 看免费成人av毛片| 最新在线观看一区二区三区 | 777久久人妻少妇嫩草av网站| 日韩视频在线欧美| 亚洲精品日韩在线中文字幕| av天堂久久9| 国产乱来视频区| 国产毛片在线视频| 日本一区二区免费在线视频| 国产在视频线精品| 亚洲成人免费av在线播放| 国产av码专区亚洲av| 最新在线观看一区二区三区 | 国产亚洲一区二区精品| 国产成人精品福利久久| 少妇被粗大猛烈的视频| 人妻人人澡人人爽人人| 两个人免费观看高清视频| 丝袜人妻中文字幕| xxxhd国产人妻xxx| 十八禁高潮呻吟视频| 天天添夜夜摸| 国产精品免费大片| 韩国av在线不卡| 欧美激情 高清一区二区三区| 欧美精品一区二区免费开放| 啦啦啦视频在线资源免费观看| 18禁观看日本| 成人亚洲精品一区在线观看| 中国三级夫妇交换| 色婷婷久久久亚洲欧美| 久久精品aⅴ一区二区三区四区| 精品国产露脸久久av麻豆| 69精品国产乱码久久久| 久久ye,这里只有精品| 成年人午夜在线观看视频| 久久久久久人妻| 久久毛片免费看一区二区三区| 久久精品亚洲熟妇少妇任你| 久久久久久人妻| av视频免费观看在线观看| 狠狠婷婷综合久久久久久88av| √禁漫天堂资源中文www| 日本av免费视频播放| 免费久久久久久久精品成人欧美视频| 中文字幕高清在线视频| 精品久久久精品久久久| 免费高清在线观看视频在线观看| 18禁裸乳无遮挡动漫免费视频| 人人澡人人妻人| 日本欧美国产在线视频| 亚洲伊人色综图| 欧美成人午夜精品| 丰满乱子伦码专区| 日韩免费高清中文字幕av| 97精品久久久久久久久久精品| 久久精品久久久久久久性| 999久久久国产精品视频| 女的被弄到高潮叫床怎么办| 午夜影院在线不卡| av线在线观看网站| 亚洲精品成人av观看孕妇| 飞空精品影院首页| netflix在线观看网站| 亚洲一区中文字幕在线| 国产无遮挡羞羞视频在线观看| 精品亚洲成国产av| 老汉色av国产亚洲站长工具| 亚洲人成77777在线视频| 天天躁夜夜躁狠狠久久av| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品成人在线| 精品久久蜜臀av无| 精品少妇久久久久久888优播| 少妇猛男粗大的猛烈进出视频| 国产精品熟女久久久久浪| 晚上一个人看的免费电影| 国产成人午夜福利电影在线观看| 精品国产露脸久久av麻豆| 18禁裸乳无遮挡动漫免费视频| 老司机在亚洲福利影院| 老汉色av国产亚洲站长工具| 亚洲综合色网址| 麻豆乱淫一区二区| 一级毛片黄色毛片免费观看视频| 国产一区二区 视频在线| 婷婷色av中文字幕| 天堂中文最新版在线下载| 亚洲精品国产一区二区精华液| 一区二区三区激情视频| 国产有黄有色有爽视频| 精品一区在线观看国产| 99久久人妻综合| 国产成人精品久久久久久| av天堂久久9| 999久久久国产精品视频| av.在线天堂| 国产片内射在线| 久久久精品区二区三区| 欧美日韩亚洲综合一区二区三区_| 国产精品免费大片| 伊人久久大香线蕉亚洲五| 欧美激情高清一区二区三区 | 天天躁狠狠躁夜夜躁狠狠躁| 男人操女人黄网站| 久久久久网色| 欧美激情极品国产一区二区三区| 日本猛色少妇xxxxx猛交久久| 超碰97精品在线观看| 欧美日韩综合久久久久久| 日本猛色少妇xxxxx猛交久久| 一边摸一边做爽爽视频免费| 午夜免费观看性视频| 国产在线免费精品| 亚洲精品一区蜜桃| 人妻一区二区av| 国产成人精品久久二区二区91 | 人人澡人人妻人| 久久久久久久国产电影| 成年人免费黄色播放视频| 免费在线观看黄色视频的| 精品少妇久久久久久888优播| 一级a爱视频在线免费观看| 午夜免费观看性视频| 欧美在线一区亚洲| 日本vs欧美在线观看视频| 国产成人a∨麻豆精品| 成年人午夜在线观看视频| 激情视频va一区二区三区| 考比视频在线观看| 国产精品 国内视频| 久久ye,这里只有精品| 麻豆乱淫一区二区| 国产精品二区激情视频| 麻豆av在线久日| 亚洲av电影在线观看一区二区三区| 女性被躁到高潮视频| 三上悠亚av全集在线观看| 热99久久久久精品小说推荐| 你懂的网址亚洲精品在线观看| 亚洲天堂av无毛| 伦理电影免费视频| 中文乱码字字幕精品一区二区三区| 亚洲av成人不卡在线观看播放网 | 无限看片的www在线观看| 久久久久久久大尺度免费视频| 久热这里只有精品99| 免费观看人在逋| 十分钟在线观看高清视频www| 国产片特级美女逼逼视频| 亚洲成av片中文字幕在线观看| 十分钟在线观看高清视频www| 亚洲熟女毛片儿| 波野结衣二区三区在线| 国产成人av激情在线播放| 亚洲欧美色中文字幕在线| 91国产中文字幕| 免费在线观看视频国产中文字幕亚洲 | av在线app专区| 亚洲av国产av综合av卡| 老司机深夜福利视频在线观看 | 欧美变态另类bdsm刘玥| 日韩大片免费观看网站| 丰满饥渴人妻一区二区三| 成人亚洲欧美一区二区av| 成人影院久久| 成年动漫av网址| 在线观看免费午夜福利视频| 国产精品免费视频内射| 大话2 男鬼变身卡| 久久 成人 亚洲| 人妻 亚洲 视频| 极品人妻少妇av视频| 国产乱来视频区| 欧美激情高清一区二区三区 | 丝袜美腿诱惑在线| 精品少妇久久久久久888优播| 国产色婷婷99| 日韩伦理黄色片| 欧美精品亚洲一区二区| 性高湖久久久久久久久免费观看| 久久久久精品国产欧美久久久 | 午夜福利影视在线免费观看| 精品视频人人做人人爽| 婷婷色麻豆天堂久久| 在线看a的网站| 亚洲男人天堂网一区| 国产精品 国内视频| 久久久久国产一级毛片高清牌| 精品少妇内射三级| 亚洲成人一二三区av| 一本一本久久a久久精品综合妖精| 青草久久国产| 日日摸夜夜添夜夜爱| 韩国精品一区二区三区| 亚洲成人av在线免费| 国产一区亚洲一区在线观看| 下体分泌物呈黄色| 欧美变态另类bdsm刘玥| 大香蕉久久成人网| 日本av手机在线免费观看| 成年av动漫网址| 欧美xxⅹ黑人| 精品一区在线观看国产| 久久婷婷青草| 亚洲av福利一区| 丝瓜视频免费看黄片| 久久99精品国语久久久| 亚洲欧美日韩另类电影网站| 国产女主播在线喷水免费视频网站| 色播在线永久视频| 看免费成人av毛片| 亚洲精品久久午夜乱码| 少妇被粗大的猛进出69影院| 最近最新中文字幕免费大全7| 亚洲精品国产区一区二| 午夜日本视频在线| 亚洲国产精品成人久久小说| 黄色一级大片看看| 亚洲免费av在线视频| 免费高清在线观看日韩| 满18在线观看网站| 男的添女的下面高潮视频| 国产精品亚洲av一区麻豆 | 久久精品国产a三级三级三级| 色网站视频免费| av网站在线播放免费| 欧美成人午夜精品| 美女高潮到喷水免费观看| 成年女人毛片免费观看观看9 | 日韩不卡一区二区三区视频在线| 丰满少妇做爰视频| 日韩精品免费视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 天天躁日日躁夜夜躁夜夜| 久久鲁丝午夜福利片| 国产视频首页在线观看| 国产午夜精品一二区理论片| 国产成人啪精品午夜网站| 纯流量卡能插随身wifi吗| 一区二区三区精品91| 亚洲一区中文字幕在线| 久久99一区二区三区| 久久精品国产综合久久久| 精品人妻熟女毛片av久久网站| 黑人猛操日本美女一级片| 搡老岳熟女国产| 看非洲黑人一级黄片| 热re99久久精品国产66热6| 一级,二级,三级黄色视频| 欧美人与性动交α欧美软件| 中文字幕另类日韩欧美亚洲嫩草| 一级毛片我不卡| 岛国毛片在线播放| 国产1区2区3区精品| 欧美黑人欧美精品刺激| 综合色丁香网| 欧美黑人欧美精品刺激| 国产成人av激情在线播放| 亚洲视频免费观看视频| www.熟女人妻精品国产| 人妻 亚洲 视频| av网站在线播放免费| 一个人免费看片子| 久久久久国产一级毛片高清牌| 十八禁高潮呻吟视频| 亚洲欧洲国产日韩| 99久久人妻综合| 久久精品久久久久久噜噜老黄| 天堂俺去俺来也www色官网| 亚洲国产欧美一区二区综合| 国产老妇伦熟女老妇高清| 美女脱内裤让男人舔精品视频| 少妇猛男粗大的猛烈进出视频| 精品人妻熟女毛片av久久网站| 亚洲av电影在线观看一区二区三区| 久久久精品免费免费高清| 大片电影免费在线观看免费| 一区福利在线观看| 丰满乱子伦码专区| 另类亚洲欧美激情| 成人影院久久| 高清视频免费观看一区二区| 日韩成人av中文字幕在线观看| 国产不卡av网站在线观看| 日本猛色少妇xxxxx猛交久久| 日本欧美视频一区| 中文精品一卡2卡3卡4更新| 在线观看人妻少妇| 成人国产av品久久久| 国产熟女午夜一区二区三区| 丝袜在线中文字幕| 久久久久精品久久久久真实原创| 亚洲专区中文字幕在线 | 国产又爽黄色视频| 亚洲精品国产一区二区精华液| 欧美在线黄色| 高清av免费在线| av在线老鸭窝| av网站在线播放免费| 美女午夜性视频免费| 亚洲精品乱久久久久久| 亚洲国产看品久久| www.熟女人妻精品国产| 尾随美女入室| 亚洲色图综合在线观看| 亚洲av日韩精品久久久久久密 | a级毛片黄视频| 欧美xxⅹ黑人| 欧美日韩精品网址| 女性生殖器流出的白浆| 丁香六月欧美| 夫妻性生交免费视频一级片| 女人爽到高潮嗷嗷叫在线视频| 夫妻性生交免费视频一级片| 亚洲欧美清纯卡通| 亚洲一码二码三码区别大吗| av女优亚洲男人天堂| 欧美精品一区二区大全| 水蜜桃什么品种好| 这个男人来自地球电影免费观看 | 在线观看免费午夜福利视频| 99久久人妻综合| 精品一区二区免费观看| 亚洲欧美色中文字幕在线| 大码成人一级视频| 女人高潮潮喷娇喘18禁视频| 日韩大码丰满熟妇| 国产精品一区二区在线不卡| 超碰97精品在线观看| 亚洲成人国产一区在线观看 | 久久精品人人爽人人爽视色| 精品午夜福利在线看| 久久精品国产a三级三级三级| 国产黄频视频在线观看| 欧美国产精品va在线观看不卡| 性高湖久久久久久久久免费观看| 成人18禁高潮啪啪吃奶动态图| 日本欧美视频一区| 少妇人妻 视频| 国产乱来视频区| 亚洲国产精品一区二区三区在线| 午夜福利视频精品| 人人妻人人爽人人添夜夜欢视频| av片东京热男人的天堂| 亚洲三区欧美一区| 你懂的网址亚洲精品在线观看| 亚洲精品久久午夜乱码| 久久精品aⅴ一区二区三区四区| 女人精品久久久久毛片| 一二三四在线观看免费中文在| 99国产综合亚洲精品| 校园人妻丝袜中文字幕| 午夜福利一区二区在线看| 色吧在线观看| 老汉色∧v一级毛片| 欧美精品人与动牲交sv欧美| 午夜91福利影院| 高清视频免费观看一区二区| www.精华液| 麻豆乱淫一区二区| 成人毛片60女人毛片免费| 亚洲欧美一区二区三区久久| 在线天堂中文资源库| 久久午夜综合久久蜜桃| 亚洲国产看品久久| 七月丁香在线播放| 女的被弄到高潮叫床怎么办| 亚洲精品视频女| a级毛片黄视频| 亚洲av国产av综合av卡| 欧美 日韩 精品 国产| 成人国产麻豆网| videos熟女内射| 大片电影免费在线观看免费| 欧美激情 高清一区二区三区| 看免费av毛片| 丝袜美腿诱惑在线| 狂野欧美激情性bbbbbb| 亚洲熟女精品中文字幕| 亚洲图色成人| 一边亲一边摸免费视频| 国产伦理片在线播放av一区| 中文字幕高清在线视频| 熟妇人妻不卡中文字幕| 久久久亚洲精品成人影院| 建设人人有责人人尽责人人享有的| 哪个播放器可以免费观看大片| 久久精品国产a三级三级三级| 久久久久视频综合| 午夜福利乱码中文字幕| 久久久国产一区二区| 亚洲精华国产精华液的使用体验| 一二三四中文在线观看免费高清| 成年美女黄网站色视频大全免费| 精品少妇一区二区三区视频日本电影 | 免费久久久久久久精品成人欧美视频| 亚洲成人国产一区在线观看 | 国产欧美日韩一区二区三区在线| 性少妇av在线| 久久精品aⅴ一区二区三区四区| 国产一区二区 视频在线| 五月开心婷婷网| av不卡在线播放| 天天躁夜夜躁狠狠久久av| 一边摸一边做爽爽视频免费| 免费在线观看黄色视频的| 亚洲成人免费av在线播放| 午夜激情久久久久久久| 国产成人一区二区在线| 久久国产亚洲av麻豆专区| 欧美日韩亚洲综合一区二区三区_| 五月天丁香电影| 满18在线观看网站| 秋霞在线观看毛片| 美女主播在线视频| 一级爰片在线观看| 欧美久久黑人一区二区| 亚洲av日韩精品久久久久久密 | 国产精品久久久久久精品电影小说| 欧美精品人与动牲交sv欧美| 飞空精品影院首页| av又黄又爽大尺度在线免费看| 赤兔流量卡办理| 国精品久久久久久国模美| 精品国产乱码久久久久久男人| 狂野欧美激情性bbbbbb| 又大又黄又爽视频免费| 国产日韩欧美在线精品| 久久影院123| 亚洲成色77777| 在现免费观看毛片| 91国产中文字幕| 人人妻,人人澡人人爽秒播 | 久久韩国三级中文字幕| 大陆偷拍与自拍| 最近的中文字幕免费完整| 在线观看免费午夜福利视频| 国产色婷婷99| 看免费av毛片| 亚洲国产精品一区二区三区在线| 婷婷色av中文字幕| 爱豆传媒免费全集在线观看| 国产毛片在线视频| 亚洲国产最新在线播放| 最新的欧美精品一区二区| 国产欧美日韩一区二区三区在线| 大码成人一级视频| 十八禁网站网址无遮挡| 欧美国产精品va在线观看不卡| 国产黄频视频在线观看| 丁香六月天网| 黑人欧美特级aaaaaa片| 丝袜美腿诱惑在线| 国产亚洲一区二区精品| av片东京热男人的天堂| 久久亚洲国产成人精品v| 王馨瑶露胸无遮挡在线观看| 电影成人av| 亚洲专区中文字幕在线 | 国产在线视频一区二区| 五月天丁香电影| 日本午夜av视频| 巨乳人妻的诱惑在线观看| 久久久精品94久久精品| 人人妻人人澡人人爽人人夜夜| 美女国产高潮福利片在线看| 如日韩欧美国产精品一区二区三区| 国产亚洲av片在线观看秒播厂| 亚洲欧洲日产国产| 精品酒店卫生间| 老司机影院成人| 制服诱惑二区| 涩涩av久久男人的天堂| 国产亚洲最大av| 大香蕉久久网| a 毛片基地| 国产精品无大码| av在线老鸭窝| 久久久久久久精品精品| 成年美女黄网站色视频大全免费| 精品国产超薄肉色丝袜足j| 国产极品粉嫩免费观看在线| avwww免费| 久久韩国三级中文字幕| 电影成人av| 久久久久久人妻| www.精华液| av有码第一页| 亚洲精品第二区| 久久这里只有精品19| 天堂中文最新版在线下载| 亚洲精品成人av观看孕妇| 日韩一卡2卡3卡4卡2021年| 赤兔流量卡办理| 亚洲成人手机| 亚洲精品日韩在线中文字幕| 亚洲伊人色综图| 亚洲av电影在线观看一区二区三区| 黑丝袜美女国产一区| 少妇人妻精品综合一区二区| 亚洲av成人精品一二三区| 人妻 亚洲 视频| 毛片一级片免费看久久久久| 亚洲精品视频女| 伊人久久国产一区二区| 久久久精品94久久精品| 亚洲av电影在线进入| 精品少妇一区二区三区视频日本电影 | 日本av手机在线免费观看| 国产高清不卡午夜福利| 性色av一级| 啦啦啦在线观看免费高清www| 亚洲中文av在线| 久久人人爽人人片av| 七月丁香在线播放| 亚洲精品美女久久久久99蜜臀 | 日韩制服丝袜自拍偷拍| 亚洲国产av新网站| 搡老岳熟女国产| svipshipincom国产片| 一级爰片在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 男女无遮挡免费网站观看| 亚洲伊人久久精品综合| 高清在线视频一区二区三区| 亚洲熟女精品中文字幕| 久久久久久免费高清国产稀缺| 哪个播放器可以免费观看大片| 欧美 日韩 精品 国产| 国产成人免费观看mmmm| avwww免费| 人人妻人人添人人爽欧美一区卜| 成人亚洲精品一区在线观看| av电影中文网址| 在线看a的网站| 日韩一区二区三区影片| 欧美日韩福利视频一区二区| 无遮挡黄片免费观看| 国产男女内射视频| 国产伦理片在线播放av一区| 黄色毛片三级朝国网站| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产精品成人久久小说| 在线观看免费日韩欧美大片| 久久久久久久大尺度免费视频| 日韩大片免费观看网站| 少妇被粗大的猛进出69影院| 日本爱情动作片www.在线观看| 叶爱在线成人免费视频播放| 最近2019中文字幕mv第一页| 一区在线观看完整版| 无遮挡黄片免费观看| 亚洲欧洲精品一区二区精品久久久 | 深夜精品福利| 色婷婷久久久亚洲欧美| 国产国语露脸激情在线看|