胡秋實(shí),趙 鋒,李克武,傅 華,宋振飛
(中國工程物理研究院流體物理研究所沖擊波物理與爆轟物理重點(diǎn)實(shí)驗(yàn)室,四川 綿陽 621999)
沖擊加載下樣品軟回收過程中的側(cè)向稀疏效應(yīng)*
胡秋實(shí),趙 鋒,李克武,傅 華,宋振飛
(中國工程物理研究院流體物理研究所沖擊波物理與爆轟物理重點(diǎn)實(shí)驗(yàn)室,四川 綿陽 621999)
通過數(shù)值模擬,計算沖擊加載下樣品經(jīng)歷一維應(yīng)變加載過程和側(cè)向稀疏過程產(chǎn)生的塑性功, 給出試樣內(nèi)部從沖擊加載開始到進(jìn)入回收桶前全過程的應(yīng)力隨時間變化的歷程。結(jié)果表明:側(cè)向稀疏過程開始后,樣品在徑向匯聚波的作用下受循環(huán)拉、壓載荷作用,拉壓循環(huán)的振幅在中等沖擊壓力下達(dá)到最大。如果振幅超過了材料的層裂強(qiáng)度,樣品中心將發(fā)生拉伸破壞不能完整回收。側(cè)向稀疏與一維應(yīng)變加載產(chǎn)生的塑性功之比隨沖擊速度的增加而減小。在沖擊速度為某臨界值時,側(cè)向稀疏產(chǎn)生的塑性功與一維應(yīng)變加載產(chǎn)生的塑性功相等。在一定的沖擊速度下,采用低初始屈服應(yīng)力的材料可減輕側(cè)向稀疏效應(yīng)。對理想塑性材料的理論分析表明,側(cè)向稀疏與一維應(yīng)變加載產(chǎn)生的塑性功之比隨沖擊速度與屈服強(qiáng)度比值的增大而減小,與數(shù)值模擬結(jié)果一致。
固體力學(xué);側(cè)向稀疏;殘余應(yīng)變;塑性功;沖擊加載;軟回收
沖擊加載下的軟回收實(shí)驗(yàn)是研究材料動態(tài)力學(xué)性能的重要途徑。通過對回收試樣的金相分析(如X射線衍射、透射電子顯微鏡和電子背散射衍射等),可得到材料的微結(jié)構(gòu)信息,如點(diǎn)陣結(jié)構(gòu)、位錯密度、晶粒取向等,從而提高對沖擊過程的認(rèn)識。一個有效的軟回收裝置要求樣品主要受到一維應(yīng)變加載的影響而不是側(cè)向稀疏的影響。為減輕側(cè)向稀疏效應(yīng),W.F.Hartman[1]提出在樣品周圍加上保護(hù)環(huán), 后來的一些回收實(shí)驗(yàn)也采用了這樣的結(jié)構(gòu)[2-3], 如圖1(a)所示。為降低樣品的動能,G.T.Gray III等[4]提出在樣品右側(cè)增加層裂板,如圖1 (b)所示。
圖1 軟回收裝置示意圖Fig.1 Schematics diagram of two types of soft recovery assembly
飛片撞擊樣品產(chǎn)生的壓縮脈沖進(jìn)入層裂板后,遇自由面反射拉伸脈沖發(fā)生層裂,釋放了沖擊產(chǎn)生的能量,保證樣品以低速進(jìn)入回收桶,防止了樣品高速進(jìn)入回收桶可能產(chǎn)生的二次損傷[5-10]。圖1所示的2種結(jié)構(gòu)通過在樣品周圍增加保護(hù)環(huán)減輕了側(cè)向稀疏效應(yīng),但減輕的效果如何卻少見報道。A.L.Stevens等[11]指出 ,雖然保護(hù)環(huán)吸收了側(cè)向稀疏波的能量,但樣品卸載后側(cè)向應(yīng)力并不為零,因此當(dāng)保護(hù)環(huán)同樣品分離后,新的側(cè)向稀疏效應(yīng)(徑向匯聚波)依然存在,從而對樣品內(nèi)的應(yīng)力狀態(tài)、殘余應(yīng)變等產(chǎn)生影響,但關(guān)于該影響的大小如何卻少見報道。A.L.Stevens等[11]同時指出,影響材料殘余效應(yīng)的因素是塑性功而不是沖擊壓力或者殘余應(yīng)變,因此準(zhǔn)確計算樣品內(nèi)部的塑性功有重要意義。
本文中,基于LS-DYNA有限元軟件,對圖1(b)裝置中樣品的沖擊響應(yīng)過程進(jìn)行數(shù)值模擬。給出裝置內(nèi)部應(yīng)力分布及樣品中心處從沖擊加載開始到進(jìn)入回收桶前全過程的應(yīng)力隨時間變化的關(guān)系,計算樣品內(nèi)部一維應(yīng)變加載過程和側(cè)向稀疏過程產(chǎn)生的塑性功。
采用圖1(b)結(jié)構(gòu)進(jìn)行計算, 其中試樣厚度為3 mm, 半徑為11 mm, 保護(hù)環(huán)內(nèi)徑為11 mm, 外徑為20 mm, 層裂板厚度為5 mm。單元類型為軸對稱Lagrange單元,接觸條件采用面面接觸。飛片、試樣、保護(hù)環(huán)和層裂板材料同為6061-T6 Al, 采用Grüneisen狀態(tài)方程和各向同性硬化本構(gòu)模型。材料參數(shù)為:密度ρ0=2.7 g/cm3, 剪切模量G=27.6 GPa, 屈服強(qiáng)度Y0=295 MPa, 硬化模量Ep=1.58 GPa, Grüneisen系數(shù)γ=2.1,c0=5.37 km/s,s=1.34[11-12]。
2.1 試樣內(nèi)部應(yīng)力狀態(tài)和應(yīng)力時間關(guān)系
圖2給出了沖擊壓力為2.4 GPa,沖擊速度為300 m/s時不同時刻樣品內(nèi)部的徑向應(yīng)力狀態(tài)。從圖2(a)看出,飛片撞擊蓋板產(chǎn)生的壓縮脈沖在t=0.8 μs時進(jìn)入樣品,此時側(cè)向稀疏波在保護(hù)環(huán)中傳播不會對樣品造成影響。經(jīng)過0.8 μs后,壓縮脈沖完全進(jìn)入層裂板,如圖2(b)所示。隨后,該脈沖將遇自由面反射拉伸脈沖,使層裂板發(fā)生層裂,如圖3所示。此外,t=0.8 μs壓縮脈沖波尾和側(cè)向稀疏波相遇后在交界處形成負(fù)壓區(qū)(或拉伸區(qū))[13],該負(fù)壓區(qū)隨著時間的推移而逐漸擴(kuò)大,在t=1.6 μs進(jìn)入保護(hù)環(huán),為后續(xù)保護(hù)環(huán)和樣品的分離提供驅(qū)動力。
圖2 沖擊壓力為2.4 GPa時樣品內(nèi)部不同時刻的徑向應(yīng)力狀態(tài)Fig.2 Radial stress state of specimen under an impact pressure of 2.4 GPa at different times
圖3 層裂后的應(yīng)力狀態(tài)Fig.3 Stress state after spallation
從圖3中可以看出,發(fā)生層裂后層裂板分裂成2個層裂片,沖擊產(chǎn)生的能量一部分用于形成層裂面(轉(zhuǎn)化成表面能),另一部分轉(zhuǎn)化成了2個層裂片的動能。計算中采用最大拉伸應(yīng)力斷裂準(zhǔn)則,材料層裂強(qiáng)度為1.2 GPa,比熱容為875 J/(kg·K)。
圖4 樣品、層裂片的速度時程曲線Fig.4 Velocity histories of specimen and spall plate
圖4給出了樣品和2個層裂片的速度時間歷史。從圖4中可以看出,樣品在一維應(yīng)變加載脈沖過后速度趨近于零,沖擊產(chǎn)生的能量被2個層裂片帶走。另外,樣品在沖擊加載后處于高溫狀態(tài),因此回收時需要對樣品進(jìn)行快速降溫才能將微結(jié)構(gòu)固定下來,常用的降溫材料(如油、水、液氮等)波阻抗都較高,如果樣品以100 m/s或km/s量級的高速撞擊這些材料勢必會造成二次損傷[6],導(dǎo)致微結(jié)構(gòu)的進(jìn)一步改變,這樣對回收樣品進(jìn)行金相分析得到的微觀結(jié)構(gòu)就不是僅由沖擊加載引起,給后續(xù)分析造成困難。由此可見,保證樣品低速進(jìn)入回收桶是十分重要的。圖5~6給出了沖擊壓力為2.4 GPa時6061-T6Al樣品在一維應(yīng)變加載脈沖下的縱向應(yīng)力應(yīng)變和縱向應(yīng)力徑向應(yīng)力曲線。
(1)
(2)
(3)
圖5 沖擊壓力為2.4 GPa時樣品的縱向應(yīng)力縱向應(yīng)變關(guān)系Fig.5 Relationship between longitudinal stress and longitudinal strain under an impact pressure of 2.4 GPa
圖6 沖擊壓力為2.4 GPa時樣品的縱向應(yīng)力徑向應(yīng)力關(guān)系Fig.6 Relationship between longitudinal stress and radial stress under an impact pressure of 2.4 GPa
從圖6可以看出,狀態(tài)4樣品內(nèi)的縱向應(yīng)力σz=0但徑向應(yīng)力σr≠0,因此當(dāng)保護(hù)環(huán)在拉應(yīng)力的作用下(圖2(b)中所示拉伸區(qū))同樣品分離后,將形成徑向匯聚波向樣品中心傳播,使樣品在隨后的過程中處在拉壓交替的狀態(tài)。圖7給出了沖擊壓力為2.4 GPa時6061-T6 Al樣品中心處應(yīng)力隨時間變化的關(guān)系。
圖7 沖擊壓力為2.4 GPa時樣品中心處應(yīng)力時程曲線Fig.7 Histories of stress at the axis of the specimen under an impact pressure of 2.4 GPa
圖8 不同沖擊壓力下樣品中心處有效應(yīng)力時程曲線Fig.8 Histories of effective stress at the axis of the specimen under different impact pressures
圖9 不同沖擊壓力下樣品中心處等效塑性應(yīng)變時程曲線Fig.9 Histories of effective plastic strain at the axis of the specimen under different impact pressures
從圖8~9可以看出,3種沖擊壓力下有效應(yīng)力和等效塑性應(yīng)變在t=1.6 μs后不再改變,說明此時一維應(yīng)變加載過程已經(jīng)結(jié)束而側(cè)向稀疏過程還未開始,此時樣品處于狀態(tài)4,見圖5~7。從圖8可以看出,Y1D在沖擊壓力為13.0 GPa時達(dá)到最大,為0.36 GPa;在沖擊壓力為2.4 GPa時為0.32 GPa;而在沖擊壓力為60.0 GPa時由于溫度軟化效應(yīng)使Y1D達(dá)到最小,為0.24 GPa。A.Molinari等[18]指出,沖擊壓力為9.0 GPa時6061-T6 Al的溫升僅70 K,因此,在沖擊壓力較低時(2.0~13.0 GPa)應(yīng)變硬化占主導(dǎo),Y1D隨沖擊壓力的升高而升高。從圖9中看出,沖擊壓力在60.0 GPa時等效塑性應(yīng)變達(dá)到了0.47,遠(yuǎn)遠(yuǎn)高于沖擊壓力為2.4 GPa時的0.022,但沖擊壓力為60.0 GPa時的Y1D卻低于沖擊壓力為2.4 GPa時的Y1D(0.24 GPa<0.32 GPa),因此在沖擊壓力較高時(13.0~60.0 GPa),溫度軟化占主導(dǎo),Y1D隨沖擊壓力的升高而降低。在后續(xù)的側(cè)向稀疏過程中,由于拉壓循環(huán)的振幅A和Y1D近似相等,因此中等沖擊壓力將導(dǎo)致大的振幅。值得注意的是,如果振幅超過了材料的層裂強(qiáng)度,在拉壓循環(huán)過程中將導(dǎo)致樣品中心發(fā)生拉伸破壞不能完整回收。
2.2 一維應(yīng)變加載和側(cè)向稀疏產(chǎn)生的塑性功
長久以來,學(xué)者們試圖將沖擊加載下的殘余效應(yīng)歸結(jié)為一維應(yīng)變加載過程(包括沖擊壓力、壓縮脈沖持續(xù)時間等)的影響[19]。塑性變形的本質(zhì)是原子的重組(包括位錯的運(yùn)動、孿晶的形成等等),原子脫離平衡位置所需激活能源自塑性功,等效塑性應(yīng)變的變化可以反映塑性功的變化。圖10~11給出了沖擊壓力為2.4 GPa時6061-T6 Al樣品中心處徑向應(yīng)力、等效塑性應(yīng)變隨時間的變化關(guān)系。
圖10 沖擊壓力2.4 GPa時樣品中心徑向應(yīng)力時程曲線Fig.10 Histories of radial stress at the axis of the specimen under an impact pressure of 2.4 GPa
圖11 沖擊壓力2.4 GPa時樣品中心等效塑性應(yīng)變時程曲線Fig.11 Histories of effective plastic strain at the axis of the specimen under an impact pressure of 2.4 GPa
(4)
(5)
由于側(cè)向稀疏過程開始后,樣品中心處的縱向應(yīng)力σz和剪切應(yīng)力τrz趨近于零,僅σr和σθ不為零,見圖7, 因此式(5)中的ij指標(biāo)求和只有σr和σθ兩項(xiàng)。從文獻(xiàn)[21]可知,等效塑性應(yīng)變率可表示為:
(6)
采用 LS-DYNA結(jié)合式(4)~(6),計算不同沖擊速度(0.2~1.2 km/s)下 ,1100-O Al、 6061-T6 Al、LY12、7039 Al、無氧高導(dǎo)電性銅(oxygen-free high-conductivity copper, OFHC)和黃銅樣品內(nèi)部一維應(yīng)變加載過程產(chǎn)生的塑性功和側(cè)向稀疏過程產(chǎn)生的塑性功,相應(yīng)的沖擊壓力范圍為1~10 GPa,如圖12所示,材料參數(shù)取自文獻(xiàn)[11,22]。
圖12 不同沖擊速度下樣品中心處一維應(yīng)變加載和側(cè)向稀疏產(chǎn)生的塑性功Fig.12 Plastic works generated at the axis of the specimens during uniaxial-strain loading and lateral release at different impact velocities
(7)
(8)
沖擊加載下樣品經(jīng)歷了一維應(yīng)變加載過程和側(cè)向稀疏過程,2種過程對回收試樣的殘余結(jié)構(gòu)都有影響,而側(cè)向稀疏的影響常常被低估或忽略。本文通過數(shù)值模擬,計算了這2種過程產(chǎn)生的塑性功,給出了樣品內(nèi)部從沖擊加載開始到進(jìn)入回收桶前全過程的應(yīng)力隨時間變化的歷程。對理想塑性材料,還給出了側(cè)向稀疏與一維應(yīng)變加載產(chǎn)生的塑性功之比的理論解。得到結(jié)論如下:
(2)側(cè)向稀疏過程開始后,等效塑性應(yīng)變(或塑性功)的變化率隨拉壓循環(huán)周期數(shù)n的增加而減小。當(dāng)周期數(shù)n大于某個nmax時,等效塑性應(yīng)變保持為常數(shù),不再增加。
(3)側(cè)向稀疏與一維應(yīng)變加載產(chǎn)生的塑性功之比隨沖擊速度的增加而減小。在沖擊速度為某臨界值時,側(cè)向稀疏產(chǎn)生的塑性功與一維應(yīng)變加載產(chǎn)生的塑性功相等,低于該沖擊速度側(cè)向稀疏的影響將占主導(dǎo)。在一定的沖擊速度下,采用低初始屈服應(yīng)力的材料可減輕側(cè)向稀疏效應(yīng)。
[1] Hartman W F. Determination of unloading behavior of uniaxially strained 6061 T6 Aluminum from residual strain measurements[J]. Journal of Applied Physics, 1964,35(7):2090-2096.
[2] Koller D D, Hixson R S, Gray Ⅲ G T, et al. Influence of shock-wave profile shape on dynamically induced damage in high-purity copper[J]. Journal of Applied Physics, 2005,98(10):103518.
[3] Escobedo J P, Dennis-Koller D, Cerreta E K, et al. Effects of grain size and boundary structure on the dynamic tensile response of copper[J]. Journal of Applied Physics, 2011,110(3):033513.
[4] Gray Ⅲ G T, Follansbee P S, Frantz C E. Effect of residual strain on the substructure development and mechanical response of shock-loaded copper[J]. Materials Science and Engineering A, 1989,111(89):9-16.
[5] Follansbee P S, Gray Ⅲ G T. Dynamic deformation of shock prestrained copper[J]. Materials Science and Engineering A, 1991,138(1):23-31.
[6] Blumenthal W R, Gray Ⅲ G T, Claytor T N. Response of aluminium-infiltrated boron carbide cermets to shock wave loading[J]. Journal of Materials Science, 1994,29(17):4567-4576.
[7] Bourne N K, Gray Ⅲ G T, Millett J C F. On the shock response of cubic metals[J]. Journal of Applied Physics, 2009,106(9):091301.
[8] Bourne N K, Millett J C F, Gray Ⅲ G T. On the shock compression of polycrystalline metals[J]. Journal of Materials Science, 2009,44(13):3319-3343.
[9] Bourne N K, Gray III G T. Soft-recovery of shocked polymers and composites[J]. Journal of Physics D: Applied Physics, 2005,38(19):3690-3694.
[10] Mogilevsky M A, Newman P E. Mechanisms of deformation under shock loading[J]. Physics Reports, 1983,97(6):357-393.
[11] Stevens A L, Jones O E. Radial stress release phenomena in plate impact experiments: Compression-release[J]. Journal of Applied Mechanics, 1972,39(2):359-366.
[12] Bertholf L D, Karnes C H. Axisymmetric elastic-plastic wave propagation in 6061-T6 Aluminum bars of finite length[J]. Journal of Applied Mechanics, 1969,36(3):533-541.
[13] 王繼海.二維非定常流和激波[M].北京:科學(xué)出版社,1994.
[14] 王禮立.應(yīng)力波基礎(chǔ)[M].2版.北京:國防工業(yè)出版社,2005.
[15] Srinivasan M G, Ting T C T. Cylindrical elastic-plastic waves due to discontinuous loading at a circular cavity[J]. International Journal of Solids and Structures, 1975,11(9):1057-1077.
[16] Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at highstrain rate[J]. Journal of Applied Physics, 1980,51(3):1498-1504.
[17] 彭建祥.Johnson-Cook本構(gòu)模型和Steinberg本構(gòu)模型的比較研究[D].綿陽:中國工程物理研究院,2006.
[18] Molinari A, Ravichandran G. Fundamental structure of steady plastic shock waves in metals[J]. Journal of Applied Physics, 2004,95(4):1718-1732.
[19] Murr L E, Kuhlmann-wilsdorf D. Experimental and theoretical observations on the relationship between dislocation cell size, dislocation density, residual hardness, peak pressure and pulse duration in shock-loaded nickel[J]. Acta Metallurgica, 1978,26(5):847-857.
[20] 王肖鈞,胡秀章,李永池.硬化材料中彈塑性柱面波的數(shù)值方法[J].爆炸與沖擊,1991,11(2):97-105. Wang Xiaojun, Hu Xiuzhang, Li Yongchi. A computational method of cylindrical elastic-plastic waves in strain hardening materials[J]. Explosion and Shock Waves, 1991,11(2) :97-105.
[21] 李永池,譚福利,姚磊,等.含損傷材料的熱粘塑性本構(gòu)關(guān)系及其應(yīng)用[J].爆炸與沖擊,2004,24(4):289-298. Li Yongchi, Tan Fuli, Yao Lei, et al. Thermo-viscoplastic constitutive relation of damaged materials with application[J]. Explosion and Shock Waves, 2004,24(4):289-298.
[22] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]∥Proceedings of the 7th International Symposium on Ballistics. Hague, Netherlands, 1983.
(責(zé)任編輯 王易難)
Lateral release effect in shock-loaded specimens during soft recovery process
Hu Qiushi, Zhao Feng, Li Kewu, Fu Hua, Song Zhenfei
(NationalKeyLaboratoryofShockWaveandDetonationPhysics,InstituteofFluidPhysics,ChinaAcademyofEngineeringPhysics,Mianyang621999,Sichuan,China)
Under shock loading a specimen undergoes a uniaxial-strain loading process and a lateral release process, both of which have an influence on the residual structure, while the influence of the latter is often underestimated or even totally neglected. The plastic work generated in these two processes is calculated in this paper, and the stress history from the beginning of the shock loading to the specimen entering the recovery bin is given. It is found that after the lateral release process begins, the specimen experiences cyclic tension and compression load and the amplitude of the cyclic load reaches its maximum under moderate impact pressure. If the amplitude of the cyclic load is larger than the spall strength, the center of the specimen will be destroyed and the specimen cannot be recovered successfully. The ratio of the plastic work produced during the lateral release to that produced during the uniaxial-strain loading decreases as the impact velocity increases. When the impact velocity reaches a certain critical value, the plastic work produced during the lateral release is equal to that produced during the uniaxial-strain loading. At a certain impact velocity, decreasing the initial yield stress of the materials reduces the lateral release effects. Theoretical analysis of the ideally plastic material shows that the ratio of the plastic work produced during the lateral release to that produced during the uniaxial-strain loading decreases as the ratio of the impact velocity to the yield strength increases, which is consistent with the numerical results.
solid mechanics; lateral release; residual strain; plastic work; shock loading; soft recovery
10.11883/1001-1455(2016)04-0532-09
2014-08-22;< class="emphasis_bold">修回日期:2014-11-18
2014-11-18
國家自然科學(xué)基金項(xiàng)目(11272296);中國工程物理研究院面上基金項(xiàng)目(2012B0201017);沖擊波物理與爆轟物理重點(diǎn)實(shí)驗(yàn)室基金項(xiàng)目(2012-專-06)
胡秋實(shí)(1984— ),男,博士,助理研究員;
趙 鋒,ifpzf@163.com。
O347.3 <國標(biāo)學(xué)科代碼:13015 class="emphasis_bold"> 國標(biāo)學(xué)科代碼:13015 文獻(xiàn)標(biāo)志碼:A國標(biāo)學(xué)科代碼:13015
A