• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Infrared Small-target Detection Using The Maximum of Second-order Directional Derivative

    2016-04-11 06:54:36ZHAOAigangWANGHongliYANGXiaogangLUJinghuiJIANGWeiQINaixin
    發(fā)光學報 2016年9期
    關鍵詞:極大值制導二階

    ZHAO Ai-gang, WANG Hong-li, YANG Xiao-gang, LU Jing-hui, JIANG Wei, QI Nai-xin

    (1. Department of Control and Engineering, Rocket Force Engineering University, Xi’an 710025, China;2. School of Sergeancy, Rocket Force Engineering University, Qingzhou 262500, China)*Corresponding Author, E-mail: wanghongli_1965@163.com

    ?

    Infrared Small-target Detection Using The Maximum of Second-order Directional Derivative

    ZHAO Ai-gang1,2, WANG Hong-li1*, YANG Xiao-gang1, LU Jing-hui1, JIANG Wei1, QI Nai-xin1

    (1.DepartmentofControlandEngineering,RocketForceEngineeringUniversity,Xi’an710025,China;2.SchoolofSergeancy,RocketForceEngineeringUniversity,Qingzhou262500,China)*CorrespondingAuthor,E-mail:wanghongli_1965@163.com

    In order to improve the detection rate of infrared small-target in complex environment, a infrared small-target detection algorithm based on the maximum of second-order directional derivative was proposed. Firstly, the properties of second-order directional derivative were analyzed, meanwhile, the flat component and edge of background were removed by threshold and flip operations of the maximum. Then, the background was predicted based on facet model and further enhanced the small-target by prediction error as weight. The above two steps can be achieved by four convolutions and the detection speed was accelerated. At last, the local contrast of candidate small-targets was calculated to reduce the false alarm rate. The experimental results show that the average signal to clutter ratio gain is 78.413 0 and the average background suppression factor is 35.079 6 in 6 kinds of complex background. The proposed detection algorithm has stronger robustness and higher detection rate.

    computer vision; facet model; directional derivative maximum (DDMax); infrared small-target

    1 Introduction

    Infrared small-target detection is a key technique in large amounts of practical projects such as infrared warning and defense alertness, in which not only accuracy is needed but also speed is required. Owing to atmospheric transmitting and scatter phenomenon, the small-target is usually weak compared with heavy background clutters. According to SPIE (Society of Photo-optical Instrumentation Engineers), the area of small-target is less than 80 pixels in 256×256 image. Obviously, small-target generally occupies only a few pixels[1]in infrared image and has no obvious structure or texture, so the infrared small-target detection is still a challenging issue.

    In recent years, numerous infrared small-target detection algorithms have been proposed for different application environment,e.g., cloud-clutter background, sea-wave background and so on, but many of them can’t detect small-target in backgrounds of other type effectively. In a general way, the feature of small-target that many methods based on can be broadly divided into three categories: unsmoothing,i.e. discontinuousness in the region of transition, isotropic gradient and contrast difference of small-target and background. However, the first feature is usually exploited by sparse representation for small-target[2], low-rank character of background[3]and high-pass filter[4],etc., and these methods can get good detection performance in slow-change backgrounds, but their application may be restricted by sharp edge and requirement of high-speed detection. Based on isotropic gradient, Qietal.[4]introduced the second-order directional derivative (SODD) including four directions to distinguish small-target and background; Luetal.[5]designed medial filter using eight directional gradients to highlight isotropic gradient of small-target. The two methods all used facet model to measure directional gradient, but the selection of direction lacks convinced theory. Lately, human visual saliency (HVS) is introduced to infrared small-target detection and acquired many positive achievement[6]. In a sense, HVS is based on contrast difference between salient region,i.e. small-target and background, and if only HVS is used in detection method, it may be affected by the background clutter with similar structure.

    Different from traditional infrared small-target detection methods, in this letter, a robust infrared small-target detection algorithm combining three main features[7]of small-target is proposed to seek a better performance in detection rate, false alarm rate, and detection speed simultaneously. It consists of three stages which represent three features,i.e. isotropic gradient, unsmoothing and contrast difference. Isotropic gradient is charactered as maximum of second-order directional derivative derived from the facet model and the unsmoothing is described as predicted error of background. The benefit of aforementioned two features is anti-noise and resistant to background clutter which usually has local orientation. Thus, it can improve robustness and detection ratio of the proposed detection algorithm named robust directional derivative maximum-based (RDDMax) algorithm. Moreover, computational detail of the first two stages mainly contains four convolution operations and firmly believed that it can effectively accelerate detection speed. At last, we introduced minimum local contrast measure (MinLCM) over a few pixels to further reduce false alarm.

    2 Design of DDMax Filter

    Inspired by the fact that background is continuous and small-target is relatively isolated, we find that the character of different directional derivative can distinguish the small-target and background, but we don’t know which local direction has the best potentiality for detection small-target in advance. In order to solve this problem, DDMax filter is proposed owing to the responses for ramps, stripes and uplifts in infrared images. It can transform background clutter and small-target into almost flat texture and Gaussian-like spots, respectively. For explaining this phenomenon, a compared procedure of processing image using fixed directional derivative filter and the DDMax filter is displayed in Fig.1. The original image (see Fig.1(a) and Fig.1(b)) contains three structures,i.e. ramp, strip and uplift representing slow-change clutter, fast-change clutter and small-target, respectively. Fig.1(c) and Fig.1(d) are horizontal and vertical second-order directional derivative maps of Fig.1(a). From the appearance of orthogonal second-order directional derivative, we can see that the strip is completely different, but the ramp and the small-target are almost the same in two orthogonal directions. Obviously, only these cues are not enough to distinguish small-targets and background clutters. Furthermore, the minimum and maximum maps of second-order derivative in every direction are expressed in Fig.1(e) and Fig.1(g), respectively. Corresponding amended maps are showed in Fig.1(f) and Fig.1(h), in which three components have different responses: the ramp is almost smoothed under two situations; the strip is obviously sharpened in Fig.1(f) and disappeared in Fig.1(h);as for the uplift, observation from the several maps (see Fig.1(c)-Fig.1(h)) shows that the shape of small-target keeps similar especially below the reference plane. Considering the fact that strip and ramp can be filtered away in the amended map of directional derivative maximum, we designed DDMax filter to highlight the isotropic gradient of small-target which is described below in details.

    Fig.1 Results of processing image using different directional derivative. (a) Original image. (b) 3D mesh of (a). (c) Horizonal. (d) Vertical. (e) Minimum. (f) Amender of (e). (g) Maximum. (h) Amender of (g).

    With the advantage of smoothing and anti-noise, facet model is widely used in detection of gradient edge, super-resolution reconstruction and noise removal,etc., so we also use the facet model to design the DDMax filter. First, we sketch the theory of facet model and derive expression of second-order directional derivative from it. Then, directional derivative maximum can be acquired through maximization of aforementioned expression and has a simple form reduced from four quadrants in image coordinate.

    The facet model is actually a bivariate cubic function in which row and column are independent variables and gray-level intensity is dependent variable, that is to say, given a patch of image, building a fitting function with optimized coefficients makes fitting error minimum. For details, defineR={-2,-1,0,1,2},C={-2,-1,0,1,2}, and the 5×5 window for a pixel can be denoted byR×C, in which the center pixel is at (0,0). Then, in a fixed neighborhood window, the gray-level intensity of pixels inR×Cis calculated as follows:

    wherePi(r,c)={1,r,c,r2-2,rc,c2-2,r3-(17/5)r,(r2-2)c,r(c2-2),c3-(17/5)c},(r,c)∈R×Cis the set of discrete orthogonal polynomials andKiis the corresponding coefficient. Here, we only use the character of the center pixel and then let the facet model scan the whole image. Given (1), the second-order partial derivatives are evaluated along the row and column at the center pixel (0,0) inR×Cas follows:

    (2)

    The second-order directional derivative of center pixel along vectorlrepresenting a ray is described as follows:

    2K4cos2α+2K5cosαcosβ+2K6cos2β,

    (3)

    whereαis the angle between the rayland they-axis (row of image) andβis the angle between the rayland thex-axis (column of image). In Fig.2, we divided the image plane into four quadrants and the angle of the raylwas marked.

    Based on aforementioned analysis, the maximum of expression (3) is our demanded result and the mathematical language is described as follows:

    Fig.2 Sketch of angles (α, β) in image coordinate

    (4)

    whereGMaxis the maximum of expression (3), angleαandβhave special fixed relationship expressed as below:

    (5)

    Expression(5)includesallpossiblesituations,andweonlyprovideexplicitcalculationprocessforEq.(4)inquadrantone.Theremainingthreesituationshavesimilarreductionandfinalresultsaregivenlatter.Inquadrantone,cosβ=cos(π/2-α)=sinαis substituted in Eq.(4), and we can get the following form:

    (6)

    Inordertoseekthemaximum,calculatingthederivativeofGMaxwith respect toα, the maximum condition onαfor Eq.(6) can be obtained as follows:

    -2(K4-K6)sin2α+2K5cos2α=0.

    (7)

    Basedontherelationship:sin22α=1-cos22α,Eq.(7) can be transformed to the following form:

    (8)

    And then, let Eq.(8) get into Eq.(6) in which sin2α≥0, so Eq.(6) can be turned into the following form:

    (9)

    In addition to quadrant one, other three quadrants have the similarly results, and finally total results can be expressed as follows:

    (10)

    In order to get the maximum of four quadrants, make sure the second term of above expression is positive, and then Eq.(10) is transformed to the following form:

    (11)

    Obviously, Eq.(11) has three relatively separate terms and can be denoted as follows:

    (12)

    whereK4-6=K4-K6andK4+6=K4+K6. Note that the coefficientKi(i=4,5,6) is related to different pixels (x,y) in the whole image rather than fixed small facet. Similarly,GMaxis also corresponding with every pixel in image and Eq.(12) is turned into the following form:

    (13)

    Afterwards,wedenotedthecoefficientKi(i=4,5,6) asKi(x,y)(i=4,5,6) to avoid confusion. According to least squares surface fitting and orthogonal property of polynomials, the coefficient can be calculated in the following form:

    (14)

    whereI(x,y) is the gray-level intensity of the pixel (x,y) in the image. Based on the convolution form of Eq.(14),Ki(x,y) can be computed efficiently with the following convolution kernel:

    (15)

    And then, Eq.(13) can be obtained by simple arithmetic operation and three convolutions with corresponding convolution kernels described as follows:

    (16)

    At last, Eq.(13) can be finished by three convolutions and the result is similar to Fig.1(g). However, note that the center of small-target in DDMax map (see Fig.1(g)) obtained by Eq.(13) is less than zero, whereas the neighborhood values are larger than zero. In order to highlight the small-target and depress background clutters, DDMax filter operation needs to amend the DDMax map by subsequent steps:(1) Calculate mean of pixels in DDMax map that gray-level intensity is less than zero and use five times of mean as threshold; (2) In the DDMax map, set pixels that gray-level intensity is larger than designed threshold to be zero; (3) Inverse the whole DDMax map up and down;(4) Normalize the values to a fixed rang [0,1]. After modification, the small-target is above the base plane and other components of background are disappeared.

    3 RDDMax for Infrared Small-target Detection

    When small-target appears in background, it may bring about unsmoothing owing to different infrared character. However, the facet model can capture this phenomenon using large predicted error, when the center pixel is approximated by the pixels in its neighborhood. Given Eq.(1), the center pixel can be expressed by facet model and the approximation of every pixel in image has the following form:

    (17)

    EP(x,y)=I(x,y)-K1(x,y)+2×

    K4(x,y)+2×K6(x,y),

    (18)

    inwhichK1(x,y),K4(x,y), andK6(x,y) can be obtained by Eq.(14). while theI(x,y) can be written in the same form with convolution kernel expressed as follows:

    (19)

    Consequently, Eq.(18) can be achieved by once convolution with a combined convolution kernel:

    WE=W-W1+2×W4+2×W6=

    (20)

    Andthen,wefindthatthepredictederrorofbrightblobsislargerthanzero,whiletheoneofdimblobsislessthanzero.Forthisreason,weonlypreservethevaluesthatarelargerthanzeroandremoveothers.SothemodifiedversionofEq.(18)isexpressedasfollows:

    (21)

    Inordertogiveconsiderationtoisotropicgradientandunsmoothingsimultaneously,EPM(x,y) is required to be normalized in a fixed range [0,1] before combination operation described as follows:

    (22)

    After the aforementioned step, there still may be some false small-targets, soGE(x,y) map needs further processi.e. minimum local contrast measure to locate the true small-target. Analysis about MinLCM is shown in Fig.3.

    Over a fixed pixel (x,y) that is defined as center point, construct an 3×3 image patch which is surrounded by eight neighborhoods with the same size and define local contrast measure as follows:

    Fig.3 Sketch of local contrast measure

    (23)

    where Max[Ip(x,y)] and Mean[In(x,y)] are maximum and mean operations respectively, andIP(x,y) is center patch, whileIn(x,y) is neighborhood patch shown in Fig.3. The minimum of eight LCMs over background no matter clutter or edge region is usually small. However, whenIP(x,y) is located in the small-target region, everyCn(x,y) must be large and the smallest one is still larger than other locations. So the MinLCM can distinguish small-target and background, and then Eq.(22) can be modified by the following form:

    (24)

    whereIGEP(x,y) has the same size withIP(x,y) and only scans theGE(x,y) map without any neighborhood. Although Min[Cn(x,y)] has large computation complexity, the amount of pixels that needs this operation is very small,i.e. about 0.2%. It is indisputable that this process can further inhibit the background clutters and amplify the isotropic small-target.

    RDDMax method combines three features together to detect infrared small-target target using efficient convolution. Specially, Fig.4 shows a flow diagram of acquiring the small target saliency map by RDDMax method. First, the original infrared image is filtered by DDMax filter containing three parallel convolutions and amending process; Second, predicted error map is finished by one convolution and is fused with the DDMax map; Finally, the combined map needs further process with MinLCM for a few false targets.

    Fig.4 Flow diagram of RDDMax detection algorithm

    Detailed steps of RDDMax algorithm for infrared small-target detection are described as follows:

    Step 1 Do convolutions between three reduced kernels expressed in Eq.(16) and original infrared image to compute three independent components of Eq.(13) for each pixel.

    Step 2 In order to acquire DDMax map, Calculate Eq.(13) and amend the result using guidance described in final part of section Ⅱ(A).

    Step 3 Compute predicted error map based on facet model using one convolution and preserve values that are larger than zero, finally, normalize values to a fixed range [0,1].

    Step 4 Combine DDMax map and predicted error map by the means of Eq.(22) to fuse the isotropic gradient and unsmoothing.

    Step 5 Calculate MinLCM for a few pixels in raw infrared image and multiply the combined map to form the target-saliency map.

    Step 6 Choose the segmentation threshold which is twice of the mean (an empirical value from experiments) to extract small-targets from the target-saliency map.

    4 Experiments

    In order to validate the performance and robustness of the RDDMax algorithm for infrared small-target detection, experiments on six infrared images of different typical backgrounds have been done by VS2012+Opencv software on a PC with 4 GB memory and 3.3 GHz Intel i3 dual processor. In addition, the collecting image device is a cooled HgCdTe IR detector with resolution of 320×240. Part images are obtained from China international general aviation convention in 2015 which include tree-wire (see Fig.5(a)), sky-building (see Fig.4 and Fig.5(b)), heavy cloud (see Fig.5(c)), and other infrared images come from the internet that contain sea-wave (see Fig.5(d)) and tree-fork (see Fig.5(e)). All the small-targets are all less than 9×9 which is corresponding to the definition by the Society of Photo-Optical Instrumentation Engineers (SPIE).

    4.1 Results Using the Proposed Algorithm

    Raw infrared images are processed by steps described in section Ⅲ to acquire the target saliency maps(see the last column of Fig.5), in which most background clutters no matter how complex are suppressed and small-targets are all highlighted in the images. For different background clutters, the response of DDMax or predicted error is diversified, even existing terrible situations, for example, predicted error map of Fig.5(e) is negative for detection owing to a large amount of noises, and DDMax map of Fig.5(c) has a lot of disordered points in the region of clutters. However, the final target saliency map is easy to extract small-target, because the DDMax map and predicted error map are complementary in most cases and together highlight the small-targets(see Fig.5(e)). Specially, although in Fig.5(b) the small-target is submerged in the heavy cloud, and the DDMax map as well as predicted error map is affected by the clutters of light and shadow, the response of small-target is larger than background clutters and the MinLCM can help to detect the small-target accurately.

    Fig.5 Detection process of RDDMax algorithm for five images, in which from left to right there sequentially are raw infrared images, DDMax map, predicted error map and target saliency map.

    4.2 Comparison with Other Detection Algorithms

    In order to have a fair comparison, target saliency map of each method without threshold operation takes part in evaluation, and the five compared algorithms are programed on the same software platform, including morphological detection (Tophat) method[8], facet-based (Facet) method[9], least squares support vector machine-based (LSSVM) method[10], seconder order directional derivative filter-based (SODD) method[4], minimum local contrast measure-based (MinLCM) method[11]. Firstly, we draw receiver operation characteristic (ROC) curve for each method to provide a directly visual comparison of detection performance. In general, the ROC curve reflects the varying relationship of detection probabilityPdand false alarm ratePf. Meanwhile, they are defined as follows:

    (25)

    Fig.6 Comparison of ROC curves with six methods for each test image

    In Fig. 6, the results show that RDDMax method has better performance than other five methods, which indicate that the false alarm rate of the proposed method is usually lower under the same detection probability. That is to say, RDDMax method is more accurate and consistent than other methods for detection infrared small-target. Note that the SODD method can also get good ROC curves for some images (see Fig.6(d) and Fig.6 (f)). However, this method is not stable and has high false alarm rate owing to the fixed directional derivative. For other method, detection probability and false alarm rate are all in the dominant position obviously. In a word, the RDDMax method really shows its good performance and robustness for small-target detection under different complex backgrounds.

    Furthermore, Tab.1 shows three common evaluation indicator including detection time, signal clutter rate gain (SCR Gain) and background suppression factor (BSF) defined as follows:

    (26)

    whereSrepresents amplitude difference of signal and clutter, andCis the standard deviation of background clutter. Meanwhile, the subscriptsinandoutexpress the state before and after detection. SCR Gain describes the degree of detection difficulty and BSF measures the suppression ability of detection algorithm. The numerical value is larger, the performance is better. From Tab.1, we can see that RDDMax method has good performance in SCR Gain and BSF. Although the value is not always the highest, the value is higher than other four methods and the mean of six images with difference background is the highest. The reason for a little lower SCR Gain and BSF of Fig.5(a) is that the bright buildings have similar Gaussian-like shape to small-target and can deceive the RDDMax method in some degree. For detection time, the proposed method is the second fastest and can achieve the requirement of real-time treatment.

    Tab.1 Evaluation indicators of six detection methods

    5 Conclusion

    In this article, we have proposed an RDDMax method for infrared small-target detection mainly inspired by isotropic gradient for small-target. Meanwhile, unsmoothing and local contrast measurement are considered to enhance the small-target in the proposed method. In order to evaluate the comprehensive performance and robustness of RDDMax method, real infrared images with different complex backgrounds and five other methods are used in the experiments. Average signal to clutter ratio gain is 78.413 0 and the average background suppression factor is 35.079 6.The evaluation indicators show that the designed method has better performance and robustness than the state-of-the-art methods.

    [1] ZHANG F, LI C F, SHI L N. Detecting and tracking dim moving point target in IR image sequence [J].InfraredPhys.Technol., 2005, 46(4):323-328.

    [2] GAO C Q, ZHANG T Q, LI Q. Small infrared target detection using sparse ring representation [J].IEEEAerosp.Electron.Syst.Mag., 2012, 27(3):21-30.

    [3] WANG C Y, QIN S Y. Adaptive detection method of infrared small target based on target-background separationviarobust principal component analysis [J].InfraredPhys.Technol., 2015, 69:123-135.

    [4] QI S X, MA J, TAO C,etal.. A robust directional saliency-based method for infrared small-target detection under various complex backgrounds [J].IEEEGeosci.RemoteSens.Lett., 2013, 10(3):495-499.

    [5] 盧瑞濤,黃新生,徐婉瑩. 基于Contourlet變換和Facet模型的紅外小目標檢測方法 [J]. 紅外與激光工程, 2013, 42(8):2281-2287. LU R T, HUANG X S, XU W Y. Method of infrared small target detection based on contourlet transform and facet model [J].InfraredLaserEng., 2013, 42(8):2281-2287. (in Chinese)

    [6] CHEN C L P, LI H, WEI Y T,etal.. A local contrast method for small infrared target detection [J].IEEETrans.Geosci.RemoteSens., 2014, 52(1):574-581.

    [7] WANG X, LV G F, XU L Z. Infrared dim target detection based on visual attention [J].InfraredPhys.Technol., 2012, 55(6):513-521.

    [8] BAI X Z, ZHOU F G. Analysis of new top-hat transformation and the application for infrared dim small target detection [J].PatternRecognit., 2010, 43(6):2145-2156.

    [9] WANG G D, CHEN C Y, SHEN X B. Facet-based infrared small target detection method [J].Electron.Lett., 2005, 41(22):1244-1246.

    [10] WANG P, TIAN J W, GAO C Q. Infrared small target detection using directional highpass filters based on LS-SVM [J].Electron.Lett., 2009, 45(3):156-158.

    [11] HAN J H, MA Y, ZHOU B,etal.. A robust infrared small target detection algorithm based on human visual system [J].IEEEGeosci.RemoteSens.Lett., 2014, 11(12):2168-2172.

    趙愛罡(1986-),男,河北衡水人,博士研究生,2012年于燕山大學獲得碩士學位,主要從事紅外精確制導、目標識別、機器視覺等方面的研究。

    E-mail: zhaoaigang1986120@163.com

    王宏力(1965-),男,陜西鳳翔人,教授,博士生導師,1999年于火箭軍工程大學獲得博士學位,主要從事導航制導與控制、復合制導、天文/慣性導航等方面的研究。

    Email: wanghongli_1965@163.com

    利用二階方向?qū)?shù)極大值檢測紅外小目標

    趙愛罡1,2, 王宏力1*, 楊小岡1, 陸敬輝1, 姜 偉1, 齊乃心1

    (1. 火箭軍工程大學 控制工程系, 陜西 西安 710025; 2. 火箭軍工程大學 士官學院, 山東 青州 262500)

    為提高復雜環(huán)境下紅外小目標的檢測率,提出了基于二階方向?qū)?shù)極大值的紅外小目標檢測算法。該算法首先對二階方向?qū)?shù)的性質(zhì)進行了分析,對極大值進行閾值翻轉(zhuǎn)操作,將背景中的平坦成分和邊緣成分剔除。接著,根據(jù)小面模型對背景進行預測,并以預測誤差為權值進一步增強小目標區(qū)域。以上2個步驟的計算可通過4個卷積實現(xiàn),加快了檢測速度。最后,對少量候選小目標計算局部對比度,降低了虛警率。實驗結(jié)果表明:該檢測算法在6種復雜背景下平均信雜比增益為78.413 0,平均背景抑制因子為35.079 6,具有較強的魯棒性和較高的檢測率。

    機器視覺; 小面模型; 方向?qū)?shù)極大值; 紅外小目標

    2016-04-10;

    2016-05-10

    國家自然科學基金(61203189,61374054)資助項目

    1000-7032(2016)09-1142-10

    TP394.1 Document code: A

    10.3788/fgxb20163709.1142

    猜你喜歡
    極大值制導二階
    一類二階迭代泛函微分方程的周期解
    一類二階中立隨機偏微分方程的吸引集和擬不變集
    二階線性微分方程的解法
    一類二階中立隨機偏微分方程的吸引集和擬不變集
    基于MPSC和CPN制導方法的協(xié)同制導律
    基于在線軌跡迭代的自適應再入制導
    基于小波模極大值理論的勵磁涌流新判據(jù)研究
    基于經(jīng)驗模態(tài)分解的自適應模極大值去噪方法
    帶有攻擊角約束的無抖振滑模制導律設計
    行人檢測中非極大值抑制算法的改進
    kizo精华| 我的女老师完整版在线观看| 国产爱豆传媒在线观看| 久久久久久久久久久免费av| 99热这里只有是精品50| 亚洲天堂av无毛| 嘟嘟电影网在线观看| 欧美bdsm另类| 十八禁网站网址无遮挡 | 五月伊人婷婷丁香| 青春草国产在线视频| 春色校园在线视频观看| 亚洲aⅴ乱码一区二区在线播放| 蜜臀久久99精品久久宅男| 伊人久久国产一区二区| 久久国产乱子免费精品| 久久久久久久久久人人人人人人| 狂野欧美激情性bbbbbb| 99热网站在线观看| 小蜜桃在线观看免费完整版高清| 下体分泌物呈黄色| 久久99热这里只频精品6学生| 免费播放大片免费观看视频在线观看| 熟女人妻精品中文字幕| 精品一区在线观看国产| 国产视频首页在线观看| 亚州av有码| 国内揄拍国产精品人妻在线| 日本免费在线观看一区| 亚洲精品日本国产第一区| 国产亚洲av嫩草精品影院| 欧美日本视频| 色播亚洲综合网| 91精品一卡2卡3卡4卡| 国产精品一二三区在线看| 亚洲欧美日韩卡通动漫| 日韩不卡一区二区三区视频在线| 中文欧美无线码| 国产伦在线观看视频一区| 亚洲伊人久久精品综合| 亚洲伊人久久精品综合| 高清日韩中文字幕在线| 国产亚洲午夜精品一区二区久久 | 卡戴珊不雅视频在线播放| 欧美成人一区二区免费高清观看| 国产老妇伦熟女老妇高清| 能在线免费看毛片的网站| 一区二区三区乱码不卡18| 日本午夜av视频| 免费观看a级毛片全部| 日韩av不卡免费在线播放| 国产有黄有色有爽视频| 亚洲国产精品999| 亚洲内射少妇av| 精品久久久久久久久亚洲| 亚洲电影在线观看av| 男女啪啪激烈高潮av片| 美女主播在线视频| 一区二区三区精品91| 内射极品少妇av片p| videos熟女内射| 欧美 日韩 精品 国产| 日本爱情动作片www.在线观看| 国产精品人妻久久久久久| 特大巨黑吊av在线直播| 2022亚洲国产成人精品| 欧美潮喷喷水| 丝袜脚勾引网站| 日本猛色少妇xxxxx猛交久久| 啦啦啦在线观看免费高清www| 久久久国产一区二区| 国内揄拍国产精品人妻在线| 26uuu在线亚洲综合色| eeuss影院久久| 中文天堂在线官网| 国产毛片a区久久久久| 国产成人一区二区在线| 久久这里有精品视频免费| 久久国内精品自在自线图片| 久久国产乱子免费精品| 成人午夜精彩视频在线观看| 午夜爱爱视频在线播放| 亚洲欧美成人综合另类久久久| 亚洲国产精品国产精品| 精品午夜福利在线看| 草草在线视频免费看| 一区二区三区免费毛片| 亚洲欧洲国产日韩| 一本色道久久久久久精品综合| 国产男人的电影天堂91| 免费观看无遮挡的男女| 亚洲国产精品成人综合色| 日本一二三区视频观看| 久久99热这里只有精品18| 久久久国产一区二区| 日韩在线高清观看一区二区三区| 国产午夜精品一二区理论片| 国产精品人妻久久久影院| 男女边吃奶边做爰视频| 在线观看人妻少妇| 欧美一级a爱片免费观看看| 午夜精品一区二区三区免费看| 一区二区三区免费毛片| 王馨瑶露胸无遮挡在线观看| 国产综合精华液| 又大又黄又爽视频免费| 亚洲精品亚洲一区二区| 亚洲av二区三区四区| 久久鲁丝午夜福利片| 免费av不卡在线播放| 免费观看在线日韩| 边亲边吃奶的免费视频| 日韩强制内射视频| 一区二区三区乱码不卡18| 亚洲精品456在线播放app| 国产在线一区二区三区精| 91狼人影院| 国产成人精品久久久久久| 欧美日韩精品成人综合77777| 成人特级av手机在线观看| 日本爱情动作片www.在线观看| 99久国产av精品国产电影| 久久久久性生活片| 热99国产精品久久久久久7| 女人十人毛片免费观看3o分钟| 五月玫瑰六月丁香| 国国产精品蜜臀av免费| 日韩成人av中文字幕在线观看| 国产精品久久久久久av不卡| 三级经典国产精品| 欧美成人精品欧美一级黄| 亚洲欧美一区二区三区国产| 又黄又爽又刺激的免费视频.| 亚洲精品中文字幕在线视频 | 国产精品久久久久久久久免| 国产精品伦人一区二区| 国产乱来视频区| 亚洲精品日本国产第一区| 久久99热这里只频精品6学生| 午夜激情久久久久久久| 久久久亚洲精品成人影院| 肉色欧美久久久久久久蜜桃 | av播播在线观看一区| 国产精品av视频在线免费观看| 国精品久久久久久国模美| 亚洲精品乱久久久久久| 18禁在线无遮挡免费观看视频| 一个人观看的视频www高清免费观看| 嘟嘟电影网在线观看| 直男gayav资源| 国产精品不卡视频一区二区| kizo精华| 亚洲精品乱码久久久久久按摩| 精品久久久久久久久亚洲| 亚洲成人中文字幕在线播放| 亚洲国产精品成人综合色| 嘟嘟电影网在线观看| 欧美日本视频| 久久久午夜欧美精品| 2022亚洲国产成人精品| 欧美国产精品一级二级三级 | 久久久精品欧美日韩精品| 午夜福利在线观看免费完整高清在| 免费av观看视频| 91久久精品国产一区二区三区| av天堂中文字幕网| 波野结衣二区三区在线| 亚洲美女搞黄在线观看| 精品一区二区三卡| 久热这里只有精品99| 国产亚洲av片在线观看秒播厂| 老师上课跳d突然被开到最大视频| 国产欧美日韩一区二区三区在线 | 菩萨蛮人人尽说江南好唐韦庄| 网址你懂的国产日韩在线| 亚洲精品一二三| 尾随美女入室| 高清欧美精品videossex| 久久久a久久爽久久v久久| 女的被弄到高潮叫床怎么办| 99热全是精品| 日韩电影二区| 中文在线观看免费www的网站| 国产精品伦人一区二区| 免费av毛片视频| 2021天堂中文幕一二区在线观| 日本黄大片高清| 特级一级黄色大片| 成人毛片a级毛片在线播放| 国产精品国产三级专区第一集| 最近最新中文字幕大全电影3| 狂野欧美激情性xxxx在线观看| 国产精品一及| 在线观看一区二区三区激情| 欧美激情国产日韩精品一区| 国产 一区精品| 欧美+日韩+精品| 国产又色又爽无遮挡免| 可以在线观看毛片的网站| 全区人妻精品视频| 在线观看三级黄色| 五月天丁香电影| 各种免费的搞黄视频| 日韩欧美 国产精品| 人妻一区二区av| 精品国产一区二区三区久久久樱花 | 国产午夜精品久久久久久一区二区三区| 色吧在线观看| 国国产精品蜜臀av免费| av在线播放精品| 午夜激情久久久久久久| 综合色av麻豆| 国产亚洲最大av| 秋霞伦理黄片| 欧美激情国产日韩精品一区| h日本视频在线播放| 成人高潮视频无遮挡免费网站| 亚洲欧美一区二区三区国产| 国产欧美亚洲国产| 免费观看在线日韩| 国国产精品蜜臀av免费| 欧美极品一区二区三区四区| 九草在线视频观看| 亚洲美女视频黄频| 97精品久久久久久久久久精品| 日韩国内少妇激情av| 菩萨蛮人人尽说江南好唐韦庄| 久久韩国三级中文字幕| 极品教师在线视频| 日日摸夜夜添夜夜爱| 欧美国产精品一级二级三级 | 中文字幕制服av| 日韩国内少妇激情av| 草草在线视频免费看| 2021少妇久久久久久久久久久| 国产 一区 欧美 日韩| 伦理电影大哥的女人| 久久精品国产a三级三级三级| 国产男女超爽视频在线观看| 精品午夜福利在线看| 少妇熟女欧美另类| 精品少妇黑人巨大在线播放| 国产精品久久久久久精品电影| 国产国拍精品亚洲av在线观看| 视频区图区小说| 亚洲av福利一区| 插阴视频在线观看视频| 夜夜爽夜夜爽视频| 午夜福利在线观看免费完整高清在| 高清日韩中文字幕在线| 国产一区二区三区综合在线观看 | 久久精品国产亚洲av涩爱| 男人舔奶头视频| 视频中文字幕在线观看| 亚洲精品一区蜜桃| 亚洲精品日韩在线中文字幕| 六月丁香七月| 久久这里有精品视频免费| 精品人妻偷拍中文字幕| 午夜亚洲福利在线播放| 日本三级黄在线观看| 日本熟妇午夜| 亚洲精品日韩av片在线观看| 大码成人一级视频| 精品少妇久久久久久888优播| 九九在线视频观看精品| 肉色欧美久久久久久久蜜桃 | 久久久精品欧美日韩精品| 亚洲,一卡二卡三卡| 大香蕉97超碰在线| 国产中年淑女户外野战色| 内地一区二区视频在线| 亚洲成色77777| av免费在线看不卡| 简卡轻食公司| 三级男女做爰猛烈吃奶摸视频| 久久99热这里只有精品18| 国产精品久久久久久精品电影小说 | 亚洲av男天堂| 高清av免费在线| 狂野欧美白嫩少妇大欣赏| 97超碰精品成人国产| 日韩人妻高清精品专区| 国产精品无大码| 80岁老熟妇乱子伦牲交| 精品久久久久久久久亚洲| 26uuu在线亚洲综合色| 26uuu在线亚洲综合色| 免费av不卡在线播放| 国产高清国产精品国产三级 | 人妻夜夜爽99麻豆av| 日本wwww免费看| 黄片wwwwww| 91久久精品国产一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 成人国产麻豆网| 欧美zozozo另类| 欧美成人精品欧美一级黄| 日韩,欧美,国产一区二区三区| 亚洲精品,欧美精品| 99久久九九国产精品国产免费| 99精国产麻豆久久婷婷| 国产伦理片在线播放av一区| 美女被艹到高潮喷水动态| 不卡视频在线观看欧美| 黄色日韩在线| 国产欧美另类精品又又久久亚洲欧美| 五月天丁香电影| 久久久精品免费免费高清| 国产极品天堂在线| 成人无遮挡网站| 久久亚洲国产成人精品v| 搡女人真爽免费视频火全软件| 日本欧美国产在线视频| 国产av码专区亚洲av| 一区二区三区四区激情视频| 亚洲,欧美,日韩| 久久久久久伊人网av| 欧美成人a在线观看| 亚洲av电影在线观看一区二区三区 | 国产精品99久久99久久久不卡 | 亚洲欧美成人综合另类久久久| 成人无遮挡网站| 国产精品嫩草影院av在线观看| 国产亚洲av嫩草精品影院| av黄色大香蕉| 亚洲美女视频黄频| 成年女人在线观看亚洲视频 | 亚洲无线观看免费| 成人黄色视频免费在线看| 男人和女人高潮做爰伦理| 人人妻人人爽人人添夜夜欢视频 | 国产伦在线观看视频一区| 插逼视频在线观看| 一级毛片黄色毛片免费观看视频| 亚洲精品一二三| 日日摸夜夜添夜夜添av毛片| 熟女电影av网| 一级二级三级毛片免费看| av一本久久久久| 国产黄a三级三级三级人| 天天躁日日操中文字幕| 观看免费一级毛片| 国产极品天堂在线| 精品久久久久久久末码| 99久久精品一区二区三区| 91aial.com中文字幕在线观看| 七月丁香在线播放| 亚洲av免费在线观看| 美女被艹到高潮喷水动态| 国产白丝娇喘喷水9色精品| 久久6这里有精品| 一级毛片我不卡| 美女内射精品一级片tv| 国产一区亚洲一区在线观看| 一区二区三区四区激情视频| 最近手机中文字幕大全| 亚洲精品456在线播放app| 免费看不卡的av| 免费av观看视频| 成人国产av品久久久| 极品少妇高潮喷水抽搐| 日韩成人av中文字幕在线观看| 水蜜桃什么品种好| 大陆偷拍与自拍| 欧美少妇被猛烈插入视频| 蜜桃久久精品国产亚洲av| 国产永久视频网站| 日韩免费高清中文字幕av| 亚洲天堂国产精品一区在线| 国产午夜福利久久久久久| 亚洲av二区三区四区| 尾随美女入室| 精品一区二区三卡| 熟妇人妻不卡中文字幕| 亚洲欧美一区二区三区国产| 国产视频首页在线观看| 熟女人妻精品中文字幕| 国产免费又黄又爽又色| 我的老师免费观看完整版| 免费观看av网站的网址| 免费不卡的大黄色大毛片视频在线观看| 老女人水多毛片| 久久久久久久久大av| 亚洲国产精品成人综合色| 日韩欧美一区视频在线观看 | 国产男女内射视频| 国产精品麻豆人妻色哟哟久久| 美女国产视频在线观看| 成年av动漫网址| 久久精品久久久久久噜噜老黄| 国产69精品久久久久777片| 国产永久视频网站| 中文乱码字字幕精品一区二区三区| 99久久九九国产精品国产免费| 日韩大片免费观看网站| 午夜免费鲁丝| 成人午夜精彩视频在线观看| 日本色播在线视频| 国产高清国产精品国产三级 | 午夜福利在线观看免费完整高清在| 婷婷色综合大香蕉| 国产精品久久久久久av不卡| 成人一区二区视频在线观看| 亚洲欧美成人综合另类久久久| 欧美3d第一页| 亚洲精品视频女| 99久久精品国产国产毛片| 人妻一区二区av| 国产欧美另类精品又又久久亚洲欧美| 国产精品国产三级国产专区5o| 亚洲国产高清在线一区二区三| 嫩草影院新地址| 欧美日韩在线观看h| 777米奇影视久久| 国产v大片淫在线免费观看| 亚洲av国产av综合av卡| 麻豆成人午夜福利视频| 最近最新中文字幕大全电影3| 91久久精品电影网| 六月丁香七月| 欧美区成人在线视频| 亚洲色图综合在线观看| 国产午夜精品一二区理论片| 午夜激情久久久久久久| 国产日韩欧美亚洲二区| av播播在线观看一区| 国产 一区精品| 中文字幕av成人在线电影| 少妇的逼水好多| 欧美日韩一区二区视频在线观看视频在线 | 久久精品国产亚洲av天美| 少妇的逼水好多| 国产免费福利视频在线观看| av一本久久久久| 成人鲁丝片一二三区免费| 久久久久久久久久久免费av| 免费不卡的大黄色大毛片视频在线观看| 熟女人妻精品中文字幕| 精品酒店卫生间| 国产黄a三级三级三级人| 成年免费大片在线观看| 久久久欧美国产精品| 寂寞人妻少妇视频99o| 久久久国产一区二区| 久久人人爽人人片av| 成人美女网站在线观看视频| 国产极品天堂在线| 亚洲国产色片| 国产午夜精品一二区理论片| 自拍偷自拍亚洲精品老妇| 日韩欧美精品免费久久| 一个人看视频在线观看www免费| 80岁老熟妇乱子伦牲交| 韩国av在线不卡| 美女脱内裤让男人舔精品视频| 在线观看美女被高潮喷水网站| a级一级毛片免费在线观看| 青春草亚洲视频在线观看| kizo精华| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区三区四区免费观看| 午夜老司机福利剧场| 插逼视频在线观看| 大片免费播放器 马上看| 大香蕉久久网| 亚洲一级一片aⅴ在线观看| 国产亚洲午夜精品一区二区久久 | 国产一区二区三区综合在线观看 | 日日啪夜夜撸| 好男人在线观看高清免费视频| 高清午夜精品一区二区三区| 欧美日韩视频高清一区二区三区二| 另类亚洲欧美激情| 男女边吃奶边做爰视频| 精品久久久噜噜| 2018国产大陆天天弄谢| 成人美女网站在线观看视频| 日韩大片免费观看网站| 新久久久久国产一级毛片| 色吧在线观看| 97超碰精品成人国产| 丝袜美腿在线中文| 夜夜看夜夜爽夜夜摸| 久久久久国产精品人妻一区二区| 男人舔奶头视频| 成人亚洲精品一区在线观看 | 99热全是精品| 日韩中字成人| 国产一区有黄有色的免费视频| 国产视频首页在线观看| 国产精品.久久久| 在线 av 中文字幕| 日产精品乱码卡一卡2卡三| 免费黄网站久久成人精品| 日韩大片免费观看网站| 人人妻人人看人人澡| 少妇猛男粗大的猛烈进出视频 | 国产精品久久久久久精品古装| 日本wwww免费看| 成人欧美大片| 日本爱情动作片www.在线观看| 最近中文字幕2019免费版| 91精品伊人久久大香线蕉| 永久网站在线| 国产视频内射| 最新中文字幕久久久久| 国产成人a区在线观看| 国产视频首页在线观看| 成人免费观看视频高清| 国内精品宾馆在线| 国产精品福利在线免费观看| 精品亚洲乱码少妇综合久久| 男女国产视频网站| 亚洲国产日韩一区二区| 最近中文字幕高清免费大全6| 人体艺术视频欧美日本| a级毛色黄片| 少妇人妻久久综合中文| 久热这里只有精品99| 最近中文字幕高清免费大全6| 国产熟女欧美一区二区| 建设人人有责人人尽责人人享有的 | 日本免费在线观看一区| 亚洲欧美日韩另类电影网站 | 精品久久久久久久久av| 国产精品人妻久久久久久| 色播亚洲综合网| 亚洲av欧美aⅴ国产| 免费看日本二区| 少妇人妻久久综合中文| 91精品一卡2卡3卡4卡| 国模一区二区三区四区视频| 亚洲精品视频女| 久久久久久久国产电影| 少妇的逼好多水| 国产毛片a区久久久久| 简卡轻食公司| 亚洲精品日韩av片在线观看| 亚洲不卡免费看| 美女主播在线视频| 一级爰片在线观看| 久久人人爽av亚洲精品天堂 | 精品一区二区免费观看| 国产免费又黄又爽又色| 黄色怎么调成土黄色| 国产免费福利视频在线观看| 国产中年淑女户外野战色| 国产成人91sexporn| 午夜免费男女啪啪视频观看| 亚洲婷婷狠狠爱综合网| 日韩一本色道免费dvd| 国产在线一区二区三区精| 久久ye,这里只有精品| 免费av不卡在线播放| 国产乱来视频区| 18禁裸乳无遮挡动漫免费视频 | 精品久久久久久久末码| 日韩人妻高清精品专区| 中文字幕制服av| 欧美另类一区| 欧美人与善性xxx| 精品久久久精品久久久| 亚洲精品乱码久久久久久按摩| 亚洲成人一二三区av| 亚洲欧美日韩无卡精品| 国产精品伦人一区二区| 亚洲内射少妇av| 白带黄色成豆腐渣| 狂野欧美激情性bbbbbb| 高清日韩中文字幕在线| 亚洲性久久影院| 亚洲精品日本国产第一区| 免费看a级黄色片| 天堂网av新在线| 日韩成人av中文字幕在线观看| 两个人的视频大全免费| 亚洲图色成人| 少妇人妻久久综合中文| 国产精品99久久久久久久久| 亚洲精品国产av成人精品| 亚洲成人中文字幕在线播放| 男女无遮挡免费网站观看| 嫩草影院入口| 亚洲自拍偷在线| 一级爰片在线观看| 少妇猛男粗大的猛烈进出视频 | 久久精品国产鲁丝片午夜精品| 舔av片在线| 高清午夜精品一区二区三区| 男人狂女人下面高潮的视频| av又黄又爽大尺度在线免费看| 日韩,欧美,国产一区二区三区| 丝袜脚勾引网站| 久久久久久久久大av| 日本熟妇午夜| 亚洲欧美中文字幕日韩二区| 日韩制服骚丝袜av| 99re6热这里在线精品视频| 免费观看性生交大片5| 三级国产精品欧美在线观看| 99久久人妻综合| 欧美性猛交╳xxx乱大交人| 亚洲欧美一区二区三区黑人 | 99热这里只有精品一区| 国产亚洲午夜精品一区二区久久 | 免费在线观看成人毛片| 日韩国内少妇激情av| 一区二区三区免费毛片| 边亲边吃奶的免费视频| 国产精品熟女久久久久浪| tube8黄色片| 亚洲一级一片aⅴ在线观看| 国产欧美日韩精品一区二区| 亚洲精品国产成人久久av|