• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control of Corner Separation by Optim ized Slot Configuration in a Linear Compressor Cascade

    2016-04-11 06:22:46JinjingSunYangweiLiuLipengLuSchoolofEnergyandPowerEngineeringBeihangUniversityXavierOTTAVYLaboratoiredeMecaniquedesFluidesetdAcoustiqueEcoleCentraledeLyon
    風(fēng)機技術(shù) 2016年6期
    關(guān)鍵詞:角區(qū)腎虧葉根

    Jinjing SunYangweiLiu Lipeng Lu/SchoolofEnergy and Power Engineering,Beihang UniversityXavier OTTAVY/Laboratoire deMecanique des Fluidesetd’Acoustique,Ecole Centrale de Lyon

    Control of Corner Separation by Optim ized Slot Configuration in a Linear Compressor Cascade

    Jinjing Sun*YangweiLiu Lipeng Lu/SchoolofEnergy and Power Engineering,Beihang University
    Xavier OTTAVY/Laboratoire deMecanique des Fluidesetd’Acoustique,Ecole Centrale de Lyon

    :為控制壓氣機葉片吸力面與端壁處所形成的三維角區(qū)分離,本文在葉根處引入了從壓力面到吸力面的槽道來控制角區(qū)分離流動?;诶脙?yōu)化算法對葉根處槽道幾何的優(yōu)化結(jié)果,本文通過數(shù)值模擬和實驗來分析槽道在不同進口攻角下對角區(qū)分離的控制效果。本文通過對比原始和開槽葉柵中總壓損失、靜壓升和三維角區(qū)分離特征表明葉根處引入的槽道對角區(qū)分離有明顯的控制效果。

    compressor;cornerseparation;slot bleeding;passivecontrol

    Nomenclature

    Ca=axialchord

    β1'=design inflow angle

    i=incidenceangle

    z=Spanwise direction

    RSM=Reynolds StressModel

    MRSM=Modified RSMModel

    p=static pressure

    p0=totalpressure

    1=inlet

    2=local

    LMFA=Laboratoire de Mecanique des Fluidesetd’Acoustique

    Introduction

    Flow in axial fans,especially in off-design conditions,is very complicated. The flow separationswould cause deleterious consequences such as a decrease in the efficiency and an increase in the losses and blockage,which even might cause rotating stalland surge in the fan.

    Three-dimensional corner separation which occurs at the junction of the suction surface of the blade and the end-wall(hub or casing)is one of the high loss flow structures in compressor systems[1].As the trend of compressor designs is towards higher loadings,with less stages and larger operating ranges,the adverse pressure gradientsmight be of higher importance and the boundary layers separation might be more severe.Thus the corner separation strengthened by these two elements would highly restrict the efficiency and stability of the compressor.Therefore,control of corner separation is one of the keys to improve compressor performance[2].

    In the previouswork of Mu X.etal.[3],a newmethod with slotat the rootof the blade has been proposed to control corner separation in a linear compressor cascade. This paper further optimizes the slot design at the rootof the blade in a linear compressor cascade to control the corner separation.The benefit achieved by the flow controlmethod allows the compressor to be designed with fewer blades(increasing the loading per blade)which indicates a reduction of theweight and/or an improvement in the efficiency and theoperating range.

    Nume rical Approach

    This work was carried out with a low speed linear cascade.The cascade consists of 13 NACA65-009 blades.The notation used in describing this subsonic compressor cascade isshown in Figure1.

    For this NACA blade cascade the optimum (minimum losses from the NACA correlations)angle of incidence is about 0.18°,which corresponds to an inlet flow angleβ1'equaled to 54.31°.For thisstudy,an incidence angle of 4°was chosen in order to have a large enough corner separation.This corresponds obviously to an off-design operating point,with an increase of the loading.The parameters of the compressor cascade are summarized in Table 1.The Reynolds number of 3.82×105with the dimension of the blade leads to an inflow velocity of 40 m/s.The experimentwas carried outby Ma and Zamboninietal. at LMFA[4-6].For the numerical simulations of the flow in the cascade with and without flow control, RANSmodels in the commercialsoftware FLUENTwas used in thiswork.

    Table1 Geometry and aerodynam ic parameters

    In order to uncouple the corner separation effects from what is happening at mid-span and also to decrease the influence of the other side of the blade, the span height in this study is very large compared to standard compressor blades(leading then to a high value of the aspect ratio of 2.47).Therefore,in order to reduce the computational time,one half of the blade passage(from the end-wall tomid-span of the blade)is simulated and a symmetry condition is employed at mid-span.HOH mesh type is generated by the commercial software package AutoGrid5TM.Fig.2 shows the 2D mesh and computation domain in the cascade.The inlet plane is positioned at1.59c upstream of the blade leading edge.Considering of the outgoing perturbations and spurious reflections,the computation domain of the outletsection was setone chord extended downstream of the experiment outlet section.The first mesh distanceat the solidwall isset to aboutΔy=1× 10-5m,whichmeans thatΔy+<1 both for the blade and the end-wall and the grid expansion ratio is less than 1.2,which satisfies the requirement of the turbulence models used in this work.For this computational domain,81 grid points are given in the span-wise direction.Caseswith different grid number in themain flow have beencalculated to insure the grid convergence.Details in the flow field and total pressure loss coefficients at the blade trailing edge(presented here in Fig.3)show that non-significant differen-ces are found when the grid number reaches 1.2 million. Therefore,the total points numberof themesh has been chosen around1.2million in thisstudy.

    In order to setup the correct inlet boundary conditions,the turbulent boundary layer that develops on the end-wall has to be taken into account,as it plays amajor role in the corner separation.With this goal,a RANS calculation of a turbulent boundary layer that develops on a flat plate has been achieved.The inlet boundary layer profiles of velocity as well as the turbulence quantities have been extracted at the location where the simulated displacement thicknessδ1of the boundary layer meets the experiment results of Ma[4].The extracted boundary layer profiles have been imposed at the inletsection with the inlet flow angle as the inlet flow boundary conditions.A uniform standard atmospheric static pressure is employed at the outlet section.Both the blade surface and the end-wall are set as non-slip adiabatic walls.Periodic conditions are employed on the two pitch-wiseboundariesof themesh. The pressure-velocity coupling is performed using the SIMPLE algorithm.Second-order spatial interpolation is used for the convection terms and a second order central difference scheme is used for the diffusion terms.

    Turbulence Model

    As it is known there is no universal turbulence modelwhich is suitable for all kinds of flow conditions. This study concerns the optimization of a flow control design.Simulations such as LES(Large Eddy Simulation)can not be used for optimization as the needed CPU costwould be not reasonable.On theother hand,for the corner separation simulation in the case of this cascade,RANS simulations have show nover-predictions of the separation[12].The reason for the turbulence modelmisalignment is thatmost of its calibration is performed in equilibrium flows,while the turbulence in the corner separation is in non-equilibrium state.As a consequence the model cannot capture the complete corner separation characteristics.

    In order to predict the flow field accurately with a RANS approach,turbulence modelmodifications have been conducted with the goalof correctly predicting the separated flow in the case of the original blade(without slot).The modification of the RSM model is not the scope of this paper,butsome indications are given here after to justify theuseof thisapproach.

    The exact transport equations for the transport of

    Wang et al.[13]proposed that the prediction of the corner separation can be improved by modifying the turbulence transport nature.For the work of Yan et al. [14],decreasing the valueof the production term in theω equation leads to better results for the simulation of the corner separation.Based on this concept,dissipation modelmodification in RSMmodelwas conducted in this work.The dissipation tensorεijismodelled as:

    The scalar dissipation rate,ε,is computed with a model transportequation as:

    whereσε=1.0,Cε1=1.44,Cε2=1.92 are constant which can bemodified in the solver.Judging from the simulations results with different values for those constants,better results can be reached decreasing the constant parameter Cε1.Thosemodifications have been adjusted using the results of the experiment and the LES achieved by Gao et al.[15].Those modifications have been optimized for the case with no slot and an incident angle of 4°.With a modified value of the constant Cε1=1.008 the corner separation flow is very satisfactory.This constant has been kept the same for all the simulations in this study,i.e.with orwithout the control of the flow using slot,and for all the incidence angles.

    In the next sections results will be discussed usingsome coefficients.The static pressure coefficient is defined in equation.(4).

    The total pressure loss coefficient is defined in equation.(5).

    Quantification of the passage end-wall blockage employed in thispaper isdefined as[16]:

    whereρis the local density,umis the velocity component normal to A,A is the azimuthal cross-section.ρeand Ueare the edge density and velocity of the defect region,is the area of the test plane of the blade passage.Note that the density is constant in this configuration.

    Fig.4 shows the total pressure loss coefficient plotted for the experiment,LES result,the original RSM and themodified RSM models.The z/h=0 is for the location of the endwall and z/h=0.5 corresponds to the mid-span.The vertical orange strip at the left of each plot represents the loss generated by the wake of the blade.The maximum of the loss is created in the corner between the suction side of the blade and the end-wall.Note thateven withoutany corner separation it will remain some loss at the endwall which is generated by the turbulent boundary layer that develops on the end-wall upstream of the cascade.In the first left plot,the black points are for the location of the measurements with a 5-hole pressure probe. Taking the experimental results as reference,the Modified RSM approach gives a better prediction for the total pressure loss compared to the original RSM model.The size of the separation is not toomuch over estimated and the total pressure gradient is better calculated.Not presented here,the static pressure distributions on the suction and pressure sides of the blade are in good agreementwith the experiment.This leads then to a much better distribution of the total pressure loss mass weighted averaged along the pitch-wise direction,which is plotted in Fig.5.Such resultsvalidate the choiceof the constant.

    Definition of the slot

    Slot Con figuration Arrangem ent

    The slot geometry with curves is illustrated in Fig. 6.Five geometric parameters have been given in order to define the geometry of the slot configuration:the inlet position of the slot S1,the outlet position of the slot S2, the inlet length of the slot L1,the outlet length of the slot L2and the height of the slot H.This should be noted that,the inlet and outlet position of the slot are defined at themiddle position of line AC and BD.Line AB is a S shape governed by a cubic equation with 4 constants which are defined by the position of the points A and B,and the tangents to the blade pressure surface and suction surface at points A and B respectively.Line CD is an arc which is defined by the position of the points C and D with also the tangent to the suction surface at point D.The curves are then tangent to the blade suction and pressure sides at pointA,B and D.The positions of points A and C are determined by the parameters S1and L1,the positions of points B and D are determinedby the parameters S2and L2(see Fig.6).

    In the optimization process,the outlet position of the slot on the suction surface S2is set initially at the location of the onset of the corner separation close to the end-wall,in the reference case without a slot.For the reference slot case(initial slot configuration for the optimization)calculated for an incident angle of 4°,S2is 55%Ca and L2is 27%Ca.In order to take advantage of the pressure difference between the pressure and suction surfaces,so as to obtain an accelerated flow getting out of the slot on the suction side,the inlet position of the slot is recommended to tend towards the leading edge.

    It should be pointed out that to avoid simulation errors induced by differentmeshes between the original case and the slotted cases,themesh of the slotted cases outside of the blade remains the same(as the original case)but the mesh in the slot is added and generated with the unstructured mesh.For the reference slotted blade,31 nodes are distributed for the slot height and for lines AB and AC,201 nodes are distributed,which results in a total number of about 10000 cells tomesh the slot.

    Param eterization Formu lation for SlotCon figuration

    The parametrization technology is based on the calculation of the derivatives of the aerodynamic steady flow-filed by the Navier-Stokes equationswith respect to the design parameters and on the computation of a Taylor expansion of the solution to higher order derivatives.The calculation is performed at one particular configuration thatwill be treated as the base line configuration and in general the selection of the base line case is essential to the convergence of the optimization.Using the flow-field derivatives and the base line configuration,it is then possible to extra polate the flow-field for any configuration using an appropriate reconstructionmethod.

    The Navier-Stokes equations can be written as a simple symbolic form:

    F is the vector resulting from viscousand convective fluxes over any arbitrary volume of fluid.q is the flux vector expressing mass,momentum and energy conservation with respect to the conservative variables(ρ,ρV,ρE),and also the turbulentvariablesκandω.

    First differentiating of equation(8)with repect to the variables p can bewritten as:

    where q(1)is the firstorder variation of q.Denoting the Jacobianmatrix:

    and

    Equation(9)can bewritten as:

    The high order derivatives q(n)with respect to the parameters variations can be built by a multi-parameters Taylorexpansion ofequation(10):

    Finally the new flow field corresponding to the modified parameters vector can be reconstructed in the manner:

    根據(jù)女性盆底功能障礙的特點及臨床表現(xiàn),其可歸屬于中醫(yī)學(xué)“陰脫”、“ 遺溺”等病證范疇,其病因病機主要是由于年高體衰,或妊娠、產(chǎn)次過多,損傷臟腑功能,致脾腎虧虛,脾主肌肉,腎主攝納,脾腎虧虛則攝納之力減弱,致沖任不固而下脫,導(dǎo)致陰脫、遺溺等病證的發(fā)生。因此在治療本病時,總以健脾補腎、調(diào)理沖任為主。本研究選擇的會陰穴是任脈要穴,也是沖任及督脈之交會穴,具有統(tǒng)攝氣血運行、維持陰陽平衡的功效。溫針灸是一種針刺、艾灸的有機結(jié)合治療方法,用其刺激會陰穴可發(fā)揮大補元氣、升舉清陽、固脫止遺的作用。綜上,采用溫針灸治療女性盆底功能障礙效果理想,值得推廣。

    The linear systems solved in equation(11)are only based on the Jacobian matrix G,which is already available in classical CFD solver.

    The whole procedure is implemented by the commercial software FLUENTTMcoupled with the parameterized code developed in Turbo’Opty at ECL [7].More detailed introduction of the parameterized code can be referred in[8-11].

    The reference value of the slotconfiguration and the range for the optimization for each parameter are listed in Table2.

    Table2 Parameter ranges for the slotcon figuration

    Results and Discussion

    Three objectives are defined to evaluate the performanceof the cascade.

    ·The minimization of the total pressure loss coefficientatblade trailing edge.

    ·The maximization of static pressure rise coefficient.

    ·Theminimization of the blockage B in the blade passage.

    Based on the configuration with 4°incidence angle the slot geometry parameters have been optimized. These parameters,presented in Table 3,have then been chosen to calculate the cascade performance for the whole incidenceangles range[-2°,7°].

    Table3 Optimalgeometricalparameters for the slotat them inimum Yp

    Table 4 shows the comparison of the total pressure lossat 4°incidence angle between the original cascade and the so-called slotted cascade.Seen from the table, cascade performance has been improved by the slot in the blades.More details of the flow field in the slotted cascadewillbeanalyzed below.

    Table4 Optimaldesign results at4°incidence ang le

    Experiments have been carried out in order to validate those results obtained with numerical simulations.Five blades at the middle of the cascade have been replaced by 5 new blades designed with a slot at both extremities.It has been checked that the new blades have been correctly manufactured and inserted in the cascade.Tape has been used to seal the slots on both the pressure and suction sides,so as to obtain a similar profile to the original blades and to restore the original performance of the cascade.A five-hole pressure probe was used to measure the outlet flow.The relative uncertainty of the downstream pressure measurements was about 2%in total pressure coefficient.Measurements have been performed and compared to the experiment conducted by Zamboniniat 4°incidence angle[6].The total pressure loss coefficients are plotted at 0.363 downstream of the trailing edge in Fig.8.A good agreement is observed between the reference cascade and the modified cascade with taped blades.For the configuration no significantdifference can be noticed in thewake and in the corner separated flow regions,which indicates that the setup of the slotted blades is proper and does not modify the flow field.The experiment results of slotted blades with tape are chosen as the original cascade performance for the followinganalysis.

    The contours of total pressure loss measured and simulated at the blade trailing edge at4°incidence are presented in Fig.9 for the original and slotted blades. Simulation results fit very wellwith the experiment for both the originaland slotted cascades.The high loss region near the end-wall is significantly improved by the effects of the slot located at the root of the blades. The phenomenon can be also observed in the pitch-wise-averaged total pressure loss coefficient in Fig.10.This should be noticed that the height of the slot is 0.02m,which corresponds to 13.3%of the blade chord.Therefore,the effects produced by the slot and the induced jetat the rootof the blade improve the flow in the cascade notonly locally butalso until 20%of the span height.

    The slot generates some changes in the losses because it reduces the corner separation.That leads obviously to some changes in the pressure distribution around the blades.Detailed comparisons of the static pressure coefficient around the blade are plotted at mid-span and close to the end-wall in Fig.11.The experimental results are represented by the black symbols.The black and redsolid lines are for the LES and RANS results respectively.Note that the EXP,LESand RANS results are obtained for the original cascade (without slot).The blue solid line stands for the RANS results obtained for the slotted blades.Concerning the original configuration,the corner separation can be seen close to the endwall at 5.4%of the span-height(Fig.11(a)).It is characterized by constant values of Cp on the suction side in the region of the trailing edge; this characteristic plateau is obviously notobservable at mid-span where the flow is completely attached(Fig. 11(b)).

    The distribution for the bladeswith the slotdoesnot introduce any significant difference at mid-span. However,the blade loading is significantly improved at 5.4%of the span height.The plateau at the rear of the suction surface disappears,meaning that the separation has almost been suppressed.The global blade loading is even slightly improved.Two singularities appear on the distribution for the slotted blade;they are induced by the sharp geometry of the slotat point B and C.At point B,the flow getting out of the slot with higher momentum produces a sudden decrease in the static pressure coefficient.Note that it should be paid attention to the geometry at point B during the manufacturing of the slotted blades,as the S curve AB is tangent to the suction surface at this point,leading to an extremely thin bladeatpoint B.

    The static pressure rise coefficienton the endwall is presented in Fig.12 for the original and slotted cascades at 4°incidence angle.The static pressure rise has been improved to a large extent,especially at the trailing edge of the suction side,where Cp increased from 0.2~0.3 to 0.3~0.4 compared with the original case.The static pressure rise in the slot is consistentwith themain flow.

    Another part of the loss sourceis mainly for the mixing of the fluid in the slot and themainflow which can be seen in Fig.13.

    Flow jets which generated by the pressure gradient from the blade pressure surface to the suction surface can accelerate the lowmomentum fluid in the boundary layeron the suction surface and the end-wall.Note that themass flow rate of the slot is about0.85%of the inlet mass flow rate.The separation is suppressed because the flow out from the slot prevents the secondary flow from interacting with the suction surface boundary layer near the end-wall(Fig.13(b)).So theaccumulation of the low energy fluid at the corner decreases and the flow capacity is also enhanced.Not only the total pressure loss reduces but also the deflection of the flow is improved,that leads toenlarge theoperating rangeof the vane.

    Nevertheless,the presence of the slot jet in the flow can have some disadvantages.It is noticing that at low incidence angles,where the corner separation keeps small without slot,the presence of the slot creates a blockage in the passage and generates extra loss induced by its mixing with the flow in the blade passage.This iswhy in the design process of the slot it has to be checked that these negative effects keep small for the low incidence angles.Experiment and numerical simulations have been conducted to validate the effectiveness of the slot for the range of the available incidence angle,from i=2°to 7°with the slot configuration optimized at 4°incidence.The pitch-wise averaged total pressure loss coefficients are plotted in Fig.14 and Fig.15 for i=2°and i=7° respectively.In the cases without slot,the coreloss region located at the corner,formed by the suction side of the blade and the endwall,becomes stronger when increasing the incidence angle from 2°to 7°.This is directly linked to the development of the corner separation.At the incidence of 2°,the corner separation remains small,so the benefit induced by the slots is not so obvious but at least the slot does not introduce some extra loss.At 7°the control of the separation is very efficient.This indicates that after eliminating the high loss region generated by the corner separation,themain loss that remains in the passage is the profile loss(located in the wake of the blade)and the loss induced by theboundary layeron theend-wall. In Fig.15,the RANS results obviously over predict the size of the separation and the loss that itgenerates.For larger separations the MRSM model,modified for the case of i=4°which produces a reasonable separation, does not capture accurately the physics but give the good trends,as it can be seen when comparing the caseswith andwithoutslot.

    Conclusions

    Experimental and numerical simulations have been conducted to study the effects on the corner separation of the slotat the rootof the blade in a linear compressor cascade.Optimization is also conducted for the optimal control result for the corner separation.The results are summarized as follows:

    (a)At low incidence angles,lower than 4°,the slotused to control the flow does not produce significant effects.The distributions of the total pressure loss vary slightly which indicates that the main total pressure loss remaining in the cascade are induced by(i)the blade profile itself,(ii)the boundary layer on the end-wall and(iii)the flow in the slot and itsmixing with the low momentum flow on the suction side of the blade.

    (b)At large incidence angles,higher than 4°, experimentaland numerical results have shown that the slot has a large beneficial impact.It can decrease the total pressure loss,the passage blockage caused by the corner separation and improve the deviation of the flow.

    The goal of this study is to prove that slots can be effective to reduce losses and blockage induced by the corner separation in a compressor cascade when the loading of the blade is increased.Those results can be extended to the case of a real compressor,keeping in mind that in that case the design and optimization of the blade and the slot should obviously be carried out at the same time.

    As a conclusion,the controlof the corner separation using slots as described in this paper is an efficientway to reduce the lossand enlarge theoperating range.

    Acknow ledgments

    This work is supported by the National Natural Science Foundation of China(No.51676007,No. 51376001,No.51420105008).Jinjing Sun was supported by the China Scholarship council(CSC).

    [1]W isler D C.Loss reduction in axial-flow compressors through low-speedmodel test-ing[J].Journal of engineering for gas turbines and power,1985,107(2):354-363.

    [2]Joslyn H D,Dring R P.Axial compressor statoraerodynamics[J]. Journal of Engineering for Gas Turbines and Power,1985,107(2): 485-492.

    [3]Mu X,Lu LP.ControlofCorner Separation by Slotat the Rootof the Blade[J].Gas Turbine Experimentand Reasearch,2007,20(3):28-33. (in Chinese)

    [4]Wei M A,Ottavy X,Lipeng L U,et al.Experimental study of corner stall in a linear compressor cascade[J].Chinese Journal of Aeronautics,2011,24(3):235-242.

    [5]Ma W,Ottavy X,Lu L,et al.Experimental investigations of corner stall in a linear com-pressor cascade[C].ASME 2011 Turbo Expo:Turbine Technical Conference and Exposition.American Society ofMechanical Engineers,2011:39-51.

    [6]Zambonini G,Ottavy X.Unsteady pressure investigations of corner separated flow in a linear compressor cascade[C].ASME Turbo Expo 2015:Turbine Technical Conference and Exposition.American Society of Mechanical Engineers,2015:ASME Paper No. GT2015-42073.

    [7]Aubert S,Smati L,FerrandP.Numerical Analysis of Oscillating Shock-Boundary Layer Interaction[C].Proceedings of the 21st International Symposium on Shock Waves,Great Kepple Island, Australia,1997.

    [8]Moreau S,Aubert S,Grondin G,et al.Op-timization of a Fan Blade Cascade Using the Parametric Flow Solver Turb’Opty[C].ASME 2006 2nd Joint US-European Fluids Engi-neering Summer Meeting Collocated With the 14th International Conference on Nuclear En-gineering.American Society of Mechanical Engineers,2006: 345-350.

    [9]Aubert S,Ferrand P,Pacull F,et al.Fast CFD for Shape And Flow Parameterization With Metamodels built on High-Order Deriv-atives.Application to Fast Design[C].27th International congress of The AeronauticalSciences France,ICASPaper.2010,2:2.

    [10]Soulat L,Ferrand P,Moreau S,et al.Efficient optimisation procedure for design problems in fluid mechanics[J].Computers& Fluids,2013,82:73-86.

    [11]Buisson M,Ferrand P,Soulat L,et al.Optimal design of an automotive fan using the Turb’Opty meta-model[J].Computers& Flu-ids,2013,80:207-213.

    [12]Gao F,Ma W,Boudet J,et al.Numerical analysis of three-dimensional corner separation in a linear compressor cascade[C]. ASME Turbo Expo 2013:Turbine Technical Confe-rence and Exposition.American Society of Mechanical Engineers,2013:ASME Paper No.GT2013-95581.

    [13]DanhuaW,Lipeng L,Qiushi L.Im-provement on SA model for predicting corner separation based on turbulence transport na-ture[C]. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit (August),2009.

    [14]Liu Y W,Yan H,Fang L,et al.Modified k-ωmodel using kinematic vorticity for corner separation in compressor cascades[J]. ScienceChina Technological Sciences,2016,59(5):795-806.

    [15]Gao F,Ma W,ZamboniniG,etal.Large-eddy simulation of 3D corner separa-tion in a linear compressor cascade[J].Physics of Fluids (1994-present),2015,27(8):085105.

    [16]Khalid SA,Khalsa A S,Waitz IA.Endwall blockage in axial compressors[J].Journalof Turbomachi-nery,1999,121:499-509.

    聲明

    為適應(yīng)我國信息化建設(shè),拓寬本刊及作者知識信息交流渠道,本刊已被CNKI中國期刊全文數(shù)據(jù)庫、萬方數(shù)據(jù)——數(shù)字化期刊群、中文科技期刊數(shù)據(jù)庫及本刊的電子媒體《中國風(fēng)機技術(shù)網(wǎng)》收錄,其作者著作權(quán)使用費與本刊稿酬一次性給付。如有作者不同意文章被收錄,請在來稿時向本刊聲明,本刊將做適當處理。

    本刊

    壓氣機;角區(qū)分離;葉根開槽;被動控制

    TH453;TK05

    A

    1006-8155(2016)06-0009-10

    10.16492/j.fjjs.2016.06.0056

    *Jinjing Sun/Laboratoire de Mecanique des Fluidesetd’Acoustique,EcoleCentralede Lyon Received date:2016-03-19 Beijing 100191

    Abstract:In order to control the separation which occurs in the corner formed by the suction side of a compressor blade and the end-wall,aslotconnecting thepressureside to the suction side can be used.Based on the optim ization of theslotdesign atthe rootof the linear compressor cascade blades,experiments and numerical simulations have been conducted to evaluate the effects of the slot at several incidence angles.Total pressure loss coefficient,averaged static pressure rise coefficientand feature of the 3D separation in the cascade passages at 4°incidence angle have been compared for the cases w ith and w ithout slots.The results show an obvious improvement when using such a slot for the controlofcornerseparation.

    猜你喜歡
    角區(qū)腎虧葉根
    中醫(yī)藥治療腦小血管病研究進展
    健康之家(2024年19期)2024-12-20 00:00:00
    戒賭迷局
    參地顆粒治療脾腎虧虛型慢性腎小球腎炎的理論探析
    基于Faster-RCNN和Level-Set的橋小腦角區(qū)腫瘤自動精準分割
    基于有限元模型仿真的風(fēng)電葉根T型螺母應(yīng)力計算方法研究
    機械工程師(2020年6期)2020-07-14 09:49:22
    壓氣機角區(qū)分離流動機理及控制方法研究
    航空動力(2020年2期)2020-05-12 16:52:44
    三齒樅樹型葉根輪槽型線優(yōu)化設(shè)計
    熱力透平(2019年4期)2019-12-18 07:09:18
    多愁善感的女人容易腎虧
    精銑葉根的葉片測頻問題分析與對策
    東方汽輪機(2017年4期)2018-01-05 03:06:14
    治腎虧腰痛
    婦女生活(2017年3期)2017-03-15 18:24:06
    国产精品亚洲美女久久久| 日韩av在线大香蕉| 联通29元200g的流量卡| 午夜爱爱视频在线播放| 欧美一区二区国产精品久久精品| 免费大片18禁| 婷婷色综合大香蕉| 精品久久久久久久久久免费视频| 观看美女的网站| 一进一出好大好爽视频| 久久久午夜欧美精品| 国产主播在线观看一区二区| 日本-黄色视频高清免费观看| 亚洲av五月六月丁香网| 三级男女做爰猛烈吃奶摸视频| 一区二区三区高清视频在线| 欧美又色又爽又黄视频| 热99在线观看视频| 日本精品一区二区三区蜜桃| 久久国产乱子免费精品| 村上凉子中文字幕在线| 麻豆国产97在线/欧美| 欧美xxxx黑人xx丫x性爽| aaaaa片日本免费| 精品一区二区三区视频在线| 亚洲va在线va天堂va国产| av在线蜜桃| 少妇人妻一区二区三区视频| 久久久久久久精品吃奶| 日本三级黄在线观看| 99久久九九国产精品国产免费| 97人妻精品一区二区三区麻豆| 乱人视频在线观看| 国产精品伦人一区二区| 欧美日韩瑟瑟在线播放| 亚洲美女视频黄频| 男人的好看免费观看在线视频| 欧美另类亚洲清纯唯美| 日本成人三级电影网站| 深夜精品福利| 美女cb高潮喷水在线观看| av黄色大香蕉| 亚洲成人免费电影在线观看| 国产男人的电影天堂91| 国产人妻一区二区三区在| 啦啦啦观看免费观看视频高清| 精品一区二区三区视频在线观看免费| 床上黄色一级片| 欧美色视频一区免费| 久久久久久久亚洲中文字幕| 亚洲专区中文字幕在线| 国产精品女同一区二区软件 | 免费人成在线观看视频色| 亚洲国产高清在线一区二区三| 久久久久久久久大av| 久久久久国内视频| 大又大粗又爽又黄少妇毛片口| 国产极品精品免费视频能看的| 久久久久久久久久黄片| 别揉我奶头~嗯~啊~动态视频| 中文字幕久久专区| 久久久午夜欧美精品| 我要看日韩黄色一级片| 成人国产麻豆网| АⅤ资源中文在线天堂| 久久久久久大精品| 又爽又黄无遮挡网站| 欧美高清成人免费视频www| 亚洲一区二区三区色噜噜| 美女高潮喷水抽搐中文字幕| 国产亚洲av嫩草精品影院| 亚洲在线观看片| 人妻夜夜爽99麻豆av| 国产欧美日韩精品亚洲av| 最近在线观看免费完整版| 国内精品久久久久精免费| 免费在线观看影片大全网站| 亚洲狠狠婷婷综合久久图片| 亚洲欧美精品综合久久99| 日本熟妇午夜| 国产精品一及| 狂野欧美白嫩少妇大欣赏| 成人精品一区二区免费| 一级a爱片免费观看的视频| 亚洲七黄色美女视频| 成人亚洲精品av一区二区| 精品福利观看| 99热只有精品国产| 99热6这里只有精品| 国产亚洲精品综合一区在线观看| 色噜噜av男人的天堂激情| 男女视频在线观看网站免费| 久久国产精品人妻蜜桃| 日韩精品青青久久久久久| 国产精品日韩av在线免费观看| 中文字幕精品亚洲无线码一区| 欧美高清成人免费视频www| 亚洲自拍偷在线| 欧美成人性av电影在线观看| 国产精品久久电影中文字幕| 中文亚洲av片在线观看爽| 88av欧美| 亚洲人与动物交配视频| 亚洲欧美日韩东京热| 在线观看一区二区三区| 给我免费播放毛片高清在线观看| 色综合婷婷激情| av天堂在线播放| 日本免费a在线| 成年免费大片在线观看| 日日摸夜夜添夜夜添小说| 给我免费播放毛片高清在线观看| 中文字幕精品亚洲无线码一区| 女人被狂操c到高潮| 国产在线男女| 小说图片视频综合网站| 内射极品少妇av片p| 日本成人三级电影网站| 日本黄大片高清| 亚洲精品在线观看二区| 亚洲欧美日韩无卡精品| 国产精品国产三级国产av玫瑰| 听说在线观看完整版免费高清| 国产精品久久久久久av不卡| 午夜福利在线观看吧| 亚洲成人久久爱视频| 热99re8久久精品国产| 国产在视频线在精品| 精品久久久久久久久久免费视频| 国产亚洲精品综合一区在线观看| 三级国产精品欧美在线观看| 国产精品福利在线免费观看| 国产精品国产三级国产av玫瑰| 亚洲欧美清纯卡通| 直男gayav资源| 亚洲无线观看免费| 丰满人妻一区二区三区视频av| 免费大片18禁| 淫妇啪啪啪对白视频| 亚洲av中文av极速乱 | 亚洲精华国产精华液的使用体验 | 22中文网久久字幕| 一夜夜www| 直男gayav资源| 国产精品一区二区性色av| 丰满乱子伦码专区| 一卡2卡三卡四卡精品乱码亚洲| 一级黄色大片毛片| 无遮挡黄片免费观看| 日本精品一区二区三区蜜桃| 天堂网av新在线| 日韩在线高清观看一区二区三区 | 久9热在线精品视频| 直男gayav资源| 99久久九九国产精品国产免费| 免费看a级黄色片| 深夜精品福利| 综合色av麻豆| 乱系列少妇在线播放| 欧美另类亚洲清纯唯美| 亚洲人成网站高清观看| 国产伦一二天堂av在线观看| 欧美绝顶高潮抽搐喷水| 看免费成人av毛片| 国产黄片美女视频| 亚洲成人中文字幕在线播放| 一个人观看的视频www高清免费观看| 欧美性猛交黑人性爽| 日本撒尿小便嘘嘘汇集6| 中文在线观看免费www的网站| 国产欧美日韩精品一区二区| 又粗又爽又猛毛片免费看| 男女边吃奶边做爰视频| 久久久久久久精品吃奶| 免费观看的影片在线观看| 中出人妻视频一区二区| 中文字幕免费在线视频6| 中文字幕人妻熟人妻熟丝袜美| 麻豆一二三区av精品| 变态另类成人亚洲欧美熟女| av在线蜜桃| 日日撸夜夜添| 欧美+亚洲+日韩+国产| 搡老岳熟女国产| 长腿黑丝高跟| 99久久无色码亚洲精品果冻| 亚洲国产色片| 99热精品在线国产| 伦理电影大哥的女人| 国产真实伦视频高清在线观看 | av福利片在线观看| 我要看日韩黄色一级片| 亚洲不卡免费看| 国产女主播在线喷水免费视频网站 | 亚洲国产精品合色在线| 男女边吃奶边做爰视频| 国产aⅴ精品一区二区三区波| 男人舔奶头视频| 亚洲七黄色美女视频| 国产成人a区在线观看| 精品人妻1区二区| 欧美在线一区亚洲| 免费av观看视频| 久久99热这里只有精品18| bbb黄色大片| 黄色一级大片看看| 国产一区二区亚洲精品在线观看| 中文在线观看免费www的网站| 午夜福利在线在线| 男插女下体视频免费在线播放| 尾随美女入室| 国产精品国产三级国产av玫瑰| 日本黄色片子视频| 国产高潮美女av| 免费搜索国产男女视频| 色5月婷婷丁香| 国产精品免费一区二区三区在线| 人妻久久中文字幕网| 人妻夜夜爽99麻豆av| 久久6这里有精品| a级一级毛片免费在线观看| 日韩中字成人| 可以在线观看的亚洲视频| 国产精品一区二区三区四区免费观看 | 国产国拍精品亚洲av在线观看| 免费看日本二区| 国产精品乱码一区二三区的特点| 天天一区二区日本电影三级| 午夜亚洲福利在线播放| 69人妻影院| 国产欧美日韩一区二区精品| 国产在线精品亚洲第一网站| 色综合色国产| 久久国产乱子免费精品| 亚洲av熟女| 欧美日韩亚洲国产一区二区在线观看| 成人一区二区视频在线观看| 精品不卡国产一区二区三区| 国产主播在线观看一区二区| 天天躁日日操中文字幕| 中文字幕免费在线视频6| 婷婷亚洲欧美| 男人舔女人下体高潮全视频| 国产黄色小视频在线观看| 国产69精品久久久久777片| 欧美日韩国产亚洲二区| 精品久久久久久久久亚洲 | 色5月婷婷丁香| 国产高清视频在线观看网站| 久久久久久久久久久丰满 | 国产人妻一区二区三区在| 国语自产精品视频在线第100页| 亚洲最大成人av| 精品久久久久久久久久久久久| 午夜福利在线在线| 亚洲四区av| 99久久九九国产精品国产免费| 综合色av麻豆| 国产色婷婷99| 亚洲一级一片aⅴ在线观看| 久久久国产成人精品二区| 1000部很黄的大片| 日本欧美国产在线视频| 在线观看66精品国产| 我要搜黄色片| 日日摸夜夜添夜夜添小说| 99热网站在线观看| 午夜福利成人在线免费观看| 国产一区二区三区av在线 | 美女cb高潮喷水在线观看| 国内精品一区二区在线观看| 乱人视频在线观看| 国产精品电影一区二区三区| 在线免费观看的www视频| 精品日产1卡2卡| 波多野结衣高清无吗| 99久久精品国产国产毛片| 少妇高潮的动态图| 最近中文字幕高清免费大全6 | www.色视频.com| 日本黄色片子视频| 国产男靠女视频免费网站| 久久九九热精品免费| 欧美日韩瑟瑟在线播放| 精品免费久久久久久久清纯| 欧美人与善性xxx| 久久久久久久午夜电影| 成人一区二区视频在线观看| 婷婷六月久久综合丁香| 欧美高清性xxxxhd video| 国产一区二区三区av在线 | 毛片女人毛片| 精品不卡国产一区二区三区| 中国美女看黄片| 少妇熟女aⅴ在线视频| АⅤ资源中文在线天堂| 啦啦啦啦在线视频资源| 一本精品99久久精品77| 精品久久久久久久末码| 欧美高清性xxxxhd video| 黄色配什么色好看| 最新中文字幕久久久久| 日日干狠狠操夜夜爽| 18禁黄网站禁片午夜丰满| 日日摸夜夜添夜夜添av毛片 | 一本一本综合久久| 欧美一级a爱片免费观看看| 亚洲一区二区三区色噜噜| 久久人人爽人人爽人人片va| 18禁黄网站禁片午夜丰满| av在线亚洲专区| 婷婷六月久久综合丁香| 午夜免费激情av| 亚洲av成人精品一区久久| 人妻夜夜爽99麻豆av| 亚洲狠狠婷婷综合久久图片| 老司机福利观看| 亚洲中文字幕日韩| 啪啪无遮挡十八禁网站| 老熟妇乱子伦视频在线观看| 久久亚洲真实| .国产精品久久| 日韩av在线大香蕉| 白带黄色成豆腐渣| 久久亚洲真实| 一级黄色大片毛片| 亚洲精品久久国产高清桃花| 日本成人三级电影网站| 高清毛片免费观看视频网站| 在线a可以看的网站| 免费观看人在逋| 亚洲精华国产精华液的使用体验 | 我的女老师完整版在线观看| 午夜久久久久精精品| 精品久久久久久久久亚洲 | 久久久久久久久久黄片| 亚洲在线自拍视频| 天堂√8在线中文| 淫妇啪啪啪对白视频| 国产精品,欧美在线| 别揉我奶头 嗯啊视频| 成人国产麻豆网| 一卡2卡三卡四卡精品乱码亚洲| 美女大奶头视频| 国产视频内射| 亚洲乱码一区二区免费版| 热99re8久久精品国产| 22中文网久久字幕| x7x7x7水蜜桃| 午夜福利18| 麻豆av噜噜一区二区三区| 此物有八面人人有两片| aaaaa片日本免费| 99国产极品粉嫩在线观看| 三级毛片av免费| 欧美+亚洲+日韩+国产| 18禁黄网站禁片午夜丰满| 日本免费一区二区三区高清不卡| 久久午夜亚洲精品久久| 久久久久久九九精品二区国产| av女优亚洲男人天堂| 中文亚洲av片在线观看爽| 欧美成人一区二区免费高清观看| 一级黄色大片毛片| 美女cb高潮喷水在线观看| 亚洲国产高清在线一区二区三| 嫁个100分男人电影在线观看| 婷婷精品国产亚洲av| 性插视频无遮挡在线免费观看| 人妻制服诱惑在线中文字幕| 岛国在线免费视频观看| 久久久久国产精品人妻aⅴ院| 亚洲av熟女| 欧美精品啪啪一区二区三区| 亚洲精品影视一区二区三区av| 在线观看舔阴道视频| 久久婷婷人人爽人人干人人爱| 老熟妇仑乱视频hdxx| 18禁黄网站禁片免费观看直播| 乱人视频在线观看| 国产日本99.免费观看| 特级一级黄色大片| 美女免费视频网站| 熟女人妻精品中文字幕| 搞女人的毛片| 一级a爱片免费观看的视频| 天堂√8在线中文| 国产成人av教育| 欧美激情国产日韩精品一区| 免费av毛片视频| 国产成人av教育| 免费观看在线日韩| 69av精品久久久久久| 午夜日韩欧美国产| 免费不卡的大黄色大毛片视频在线观看 | 女同久久另类99精品国产91| 免费观看人在逋| 可以在线观看毛片的网站| 久久久成人免费电影| 国产69精品久久久久777片| ponron亚洲| 嫁个100分男人电影在线观看| 亚洲国产高清在线一区二区三| 亚洲四区av| 1000部很黄的大片| 久久精品国产亚洲网站| 国产真实伦视频高清在线观看 | 国产精品人妻久久久影院| 淫妇啪啪啪对白视频| 国产成人福利小说| 亚洲性久久影院| 国产伦人伦偷精品视频| 婷婷精品国产亚洲av| 久久久久九九精品影院| 亚洲成人久久性| 中文字幕精品亚洲无线码一区| 亚洲精品一区av在线观看| 久久精品国产亚洲网站| 国产不卡一卡二| 久久久久久久久久久丰满 | 国产久久久一区二区三区| 高清日韩中文字幕在线| 精品久久久噜噜| 女生性感内裤真人,穿戴方法视频| 久久久久久久久中文| 我要搜黄色片| av天堂中文字幕网| 精品欧美国产一区二区三| 国产高潮美女av| 韩国av在线不卡| 美女免费视频网站| 国产大屁股一区二区在线视频| 欧美精品国产亚洲| 人人妻人人看人人澡| 我要搜黄色片| 一级黄色大片毛片| 国产人妻一区二区三区在| av在线观看视频网站免费| 精品午夜福利视频在线观看一区| 国产91精品成人一区二区三区| 大又大粗又爽又黄少妇毛片口| 狂野欧美激情性xxxx在线观看| 国产免费男女视频| 日韩欧美精品免费久久| 在线观看av片永久免费下载| 亚洲一区高清亚洲精品| 国产蜜桃级精品一区二区三区| 欧美成人性av电影在线观看| 日韩欧美精品v在线| 三级毛片av免费| 国内少妇人妻偷人精品xxx网站| 一区二区三区免费毛片| 不卡视频在线观看欧美| 琪琪午夜伦伦电影理论片6080| 国产aⅴ精品一区二区三区波| 国内揄拍国产精品人妻在线| 免费看av在线观看网站| 精品人妻偷拍中文字幕| 久久九九热精品免费| .国产精品久久| 一区二区三区四区激情视频 | 欧美日韩中文字幕国产精品一区二区三区| 十八禁国产超污无遮挡网站| 热99在线观看视频| 成年女人毛片免费观看观看9| 欧美又色又爽又黄视频| 伦精品一区二区三区| 成人毛片a级毛片在线播放| 99久久无色码亚洲精品果冻| 亚洲在线观看片| 他把我摸到了高潮在线观看| 免费观看精品视频网站| 俄罗斯特黄特色一大片| 看十八女毛片水多多多| 久久九九热精品免费| 又粗又爽又猛毛片免费看| 女人被狂操c到高潮| 久久这里只有精品中国| 中文字幕久久专区| 偷拍熟女少妇极品色| 亚洲国产精品合色在线| 午夜福利视频1000在线观看| 波多野结衣高清无吗| 午夜福利成人在线免费观看| 亚州av有码| 国产欧美日韩精品一区二区| 在线观看美女被高潮喷水网站| 国产黄片美女视频| 麻豆成人午夜福利视频| 亚洲欧美日韩无卡精品| 日韩欧美国产在线观看| 成人特级av手机在线观看| 国产精品99久久久久久久久| 一个人观看的视频www高清免费观看| 麻豆成人av在线观看| av女优亚洲男人天堂| 2021天堂中文幕一二区在线观| 亚洲人成网站在线播| 亚洲av免费在线观看| 日日摸夜夜添夜夜添av毛片 | 22中文网久久字幕| 欧美另类亚洲清纯唯美| 亚洲精品粉嫩美女一区| 国产精品国产高清国产av| 成年人黄色毛片网站| 亚洲乱码一区二区免费版| 级片在线观看| 乱人视频在线观看| 久久香蕉精品热| 非洲黑人性xxxx精品又粗又长| 成人国产麻豆网| av专区在线播放| 国产黄色小视频在线观看| 日本黄色视频三级网站网址| 两人在一起打扑克的视频| 久久久久久伊人网av| 亚洲av中文字字幕乱码综合| 欧美成人a在线观看| 日韩人妻高清精品专区| 亚洲美女搞黄在线观看 | 18禁黄网站禁片午夜丰满| 一级a爱片免费观看的视频| 观看免费一级毛片| 我要看日韩黄色一级片| 熟女电影av网| 麻豆精品久久久久久蜜桃| 久久99热这里只有精品18| 小蜜桃在线观看免费完整版高清| 欧美在线一区亚洲| 中文字幕av成人在线电影| 欧美极品一区二区三区四区| 长腿黑丝高跟| 日韩,欧美,国产一区二区三区 | 最好的美女福利视频网| 日韩欧美在线二视频| 九色成人免费人妻av| 免费看光身美女| a在线观看视频网站| 悠悠久久av| 久久久国产成人精品二区| 免费电影在线观看免费观看| 亚洲中文日韩欧美视频| 天天躁日日操中文字幕| 国内少妇人妻偷人精品xxx网站| 精品午夜福利视频在线观看一区| 波多野结衣高清作品| 中国美白少妇内射xxxbb| 最后的刺客免费高清国语| 久久久午夜欧美精品| 直男gayav资源| 乱人视频在线观看| 成年女人看的毛片在线观看| 男人狂女人下面高潮的视频| 亚洲自偷自拍三级| 特级一级黄色大片| 麻豆成人午夜福利视频| 男女下面进入的视频免费午夜| 亚洲三级黄色毛片| 夜夜爽天天搞| av天堂在线播放| 九色国产91popny在线| 天美传媒精品一区二区| 免费在线观看影片大全网站| 国产精品久久电影中文字幕| 久久久久久大精品| 日韩中文字幕欧美一区二区| 国产亚洲欧美98| 亚州av有码| 欧美+日韩+精品| 午夜精品在线福利| 婷婷色综合大香蕉| 联通29元200g的流量卡| 女人十人毛片免费观看3o分钟| 99久久久亚洲精品蜜臀av| 欧美中文日本在线观看视频| 十八禁网站免费在线| 欧美激情久久久久久爽电影| 熟女人妻精品中文字幕| 婷婷六月久久综合丁香| 日韩在线高清观看一区二区三区 | 又黄又爽又免费观看的视频| av女优亚洲男人天堂| 成人国产麻豆网| 午夜免费男女啪啪视频观看 | 最近最新中文字幕大全电影3| 久久人人爽人人爽人人片va| 少妇高潮的动态图| 51国产日韩欧美| 亚洲美女视频黄频| 久久久久久久久中文| 18禁裸乳无遮挡免费网站照片| 亚洲精品一区av在线观看| 日本一本二区三区精品| 狠狠狠狠99中文字幕| 国产精品综合久久久久久久免费| 亚洲国产精品久久男人天堂| 亚洲最大成人av| 一区二区三区激情视频| 干丝袜人妻中文字幕| 国产蜜桃级精品一区二区三区| 伦精品一区二区三区| 真人一进一出gif抽搐免费| 日韩精品有码人妻一区| 亚洲无线观看免费| 成人性生交大片免费视频hd| 男女做爰动态图高潮gif福利片| 国产精品人妻久久久久久| 久久九九热精品免费| 久久这里只有精品中国| 成人永久免费在线观看视频| 麻豆国产av国片精品| 日韩欧美一区二区三区在线观看| 亚洲性久久影院| 亚洲成人久久爱视频| 88av欧美|