董志珍,姚登福
(南通大學附屬醫(yī)院診斷學教研室,江蘇南通226001)
MicroRNA作為原發(fā)性肝癌新標志物的應用前景*
董志珍,姚登福
(南通大學附屬醫(yī)院診斷學教研室,江蘇南通226001)
原發(fā)性肝癌(primary liver cancer,PLC)發(fā)病率高,進展快,早期發(fā)現(xiàn)難,易產(chǎn)生多藥耐藥(MDR)和復發(fā)轉移,治療難度大,且預后差,仍是嚴重威脅人類健康的常見惡性腫瘤,亟待探索新的診治方法[1-2]。體內(nèi)廣泛存在由20~25個核苷酸組成的非編碼微小RNA(microRNAs,miRNAs),在轉錄后水平調(diào)節(jié)基因表達,參與胚胎發(fā)育、細胞增殖與分化、凋亡等生命過程,在新血管生成、干細胞分化、浸潤及轉移等過程中發(fā)揮重要作用。循環(huán)血中穩(wěn)定的miRNAs,不易被RNA酶消化,不受高或低pH、反復凍融和長期儲存等影響,提示有可能成為新的肝癌標志物,近年倍受臨床關注[3-4],在超過1 000多種miRNAs中,發(fā)現(xiàn)其中部分miRNAs有助于肝癌篩查或診斷、監(jiān)測、治療和預后評估。本文述評了肝癌miRNAs的診斷價值。
體內(nèi)的miRNAs是一類內(nèi)源性的具有調(diào)控功能的miRNAs,由較長的初級轉錄物(pri-miRNAs)經(jīng)核酸酶(Drosha酶,Dicer酶)剪切加工而產(chǎn)生,隨后組裝進RNA誘導的沉默復合體(RNA-induced silencing complex,RISC),以堿基互配方式識別靶mRNA,按互補程度不同指導沉默復合體降解或阻遏靶mRNA翻譯。肝miRNAs參與多種調(diào)節(jié)途徑包括發(fā)育、病毒防御、造血過程、器官形成、細胞增殖和凋亡、脂肪代謝等[5-6]。始于內(nèi)胚層上皮細胞的肝細胞,在不同發(fā)育階段miRNAs表達異同,在胚胎肝miRs-18a、miRs-92a、miRs-409-3p、miRs-451和miRs-483-3p高表達;成熟肝miRs-22、miRs-23b、miRs-99a、miRs-125b、miRs-192和let-7a、let-7b及l(fā)et-7c高表達。
廣泛存在非編碼miRNAs,在轉錄后水平調(diào)節(jié)基因表達,參與胚胎發(fā)育、細胞增殖、細胞分化、細胞凋亡等維持機體正常生理功能。miRNAs可調(diào)控肝細胞再生如miRs-21、miRs-127和miRs-26a,在肝再生早期miR-21明顯上調(diào),其靶基因如Btg2、RhoB和Peli1。另如miR-34a靶向Met和Inhbb基因和miR-221靶向CDK抑制劑p27和p57基因。在其它臟器很難檢出的miR-122,是肝特異miRNA占肝miRNAs總量的70%,可作用于肝轉錄調(diào)節(jié)因子FoxA1和HNF4α,間接促進胚胎干細胞分化為成熟肝細胞。在肝細胞分化中,miRNAs可調(diào)節(jié)膽管形成,如miRs-30a、miRs-30c是膽管特異性miRNAs。經(jīng)生物信息學分析,肝miRNAs涉及細胞增殖與分化,與靶mRNA共同作用,發(fā)揮生物學作用[7-8]。
肝癌組織存在miRNA異常表達,以miRNA芯片技術對癌、癌周圍組織及慢性肝炎組織,鑒定出差異表達miRNAs有30個,發(fā)現(xiàn)與分化相關的miRNAs有miR-92、miR-20和miR-18等,且表達水平與分化程度呈負相關[9-10]。miRNA異常表達促進肝癌的發(fā)生、發(fā)展,在癌組織有10種miRNAs表達明顯上調(diào),有16種miRNAs表達明顯下調(diào)包括iR-199a-3p/miR-199b-3p等,可發(fā)生在肝細胞惡性轉化過程中,即可見于慢性肝炎、肝硬化患者的肝組織[6-11]。肝miRNAs有多種上,可分為兩類:致癌性miRNAs和抑癌性miRNAs。
2.1 致癌性miRNAs與功能
肝癌組織中明顯上調(diào)、高表達的miRNAs,在肝癌發(fā)展過程中出現(xiàn),其功能類似于癌基因的作用[12-22](表1)。以實時定量PCR(qRT-PCR)法分析,發(fā)現(xiàn)在肝癌早期階段miR-155、miR-221、miR-222和miR-21表達上調(diào),其中miR-155異常表達促進癌細胞增殖[17]。在癌組織中miR-224、miR-34a和miR-362-5p表達顯著上調(diào),與肝癌發(fā)展密切相關。應用siRNA抑制肝癌細胞miR-362-5p表達,可顯著降低細胞的增殖、克隆形成、侵襲和遷移及裸鼠肝癌生長和轉移,通過靶基因CYLD激活NF-κB信號通路促進肝癌進展;肝癌組織和細胞株中miR-543表達升高,通過靶基因PAQR3促進肝癌細胞增殖及侵襲,發(fā)揮癌基因作用;miR-494通過直接靶向調(diào)控TET1(Ten eleven translocation 1)基因,使多種侵襲抑制miRNAs基因組DNA去甲基化,使基因沉默致肝癌血管浸潤[23]。
肝癌組織miR-106a表達較癌旁組織明顯升高,其啟動子甲基化狀態(tài)與其表達呈負相關,作用靶基因為TP53INP1和CDKN1A;與低表達miR-106a肝癌細胞株相比,高表達miR-106a細胞株更具侵襲性、更快細胞周期進程及更強的凋亡抵抗[24];癌組織miR-520g表達上調(diào),促進癌細胞侵襲、遷移和上皮間質轉化(EMT),直接作用的靶點是Smad7。肝癌組織中miR-181a表達明顯上調(diào),TGF-β可促進miR-181a上調(diào),誘導細胞發(fā)生EMT樣變化[25]。癌組織miR-106b過度表達,與腫瘤分級顯著相關,可通過Rho GTP酶、RhoA和RhoC來促進細胞遷移,促進轉移。
表1 肝癌時上調(diào)的miRNAs及其生物學功能
2.2 抑癌性miRNAs與功能
肝癌組織另一類miRNA稱為“抑癌性miRNA”,在正常肝組織中高表達、癌組織低表達(表2)如miR-122、miR-126和miR-375等[26-36]。肝癌組織miR-122、miR-125a/b、miR-26、miR-199和miR-375下調(diào),在肝癌進展中發(fā)揮作用。肝癌組織miR-122下調(diào)致染色體不穩(wěn)定性,而解除細胞周期G1期相關蛋白調(diào)控,間接地經(jīng)細胞周期調(diào)節(jié)蛋白P53依賴途徑發(fā)揮作用,使PPZA磷酸酶去磷酸化,激活Mdm-2致p53失活,抑制癌細胞增殖,促進凋亡,還可抑制血管內(nèi)皮細胞分化,抑制血管生成。在非酒精性脂肪性肝病中miR-122基因沉默是個體早期事件,可作為評估患者發(fā)生癌變風險的理想指標。肝癌miRNA-21、miRNA-222和miRNA-145,經(jīng)下游靶基因PTEN、p27和MAP3K發(fā)揮抑制作用[37]。
表2 肝癌時表達下調(diào)miRNAs及其生物學功能
肝癌組織及細胞株中miR-744明顯下調(diào),恢復其表達能降低癌細胞的增殖及引起細胞周期G1期阻滯,可通過靶向調(diào)控c-myc基因發(fā)揮抑制功能[38]。肝癌組織miR-148b表達顯著低于對照肝組織,與肝癌血管浸潤及TNM分期顯著相關。多種肝癌細胞株如HepG2、MHCC97H、Hep3B及MHCC97L等miR-26b表達下降與肝癌分級顯著相關,而恢復miR-26b表達能抑制肝癌細胞株侵襲及遷移力,伴隨上皮標志物E-cadherin表達降低、間質標志物Vimentin表達增高及USP9X和Smad4受抑,miR-26b能經(jīng)USP9X、Smad4和TGF-β信號通路抑制肝癌細胞EMT。眾多miRNAs中,肝癌組織miR-125b表達下調(diào),與細胞分化程度明顯相關,可抑制肝癌細胞的EMT;主要通過Smad2和Smad4抑制EMT,改善肝癌細胞的化療耐藥等。肝癌miR-31可調(diào)節(jié)細胞周期蛋白(如HDAC2、CDK2)及EMT蛋白(如N-cadherin、E-cadherin和Vimentin等)表達,發(fā)揮抑癌功能[39]。
肝癌發(fā)生與HBV及HCV感染、慢性酒精攝入、非酒精性脂肪性肝病及亞硝胺類物質、黃曲霉毒素及有害化學物質等諸多致病因素有關。以往不被重視的酒精性肝病、脂肪性肝病等慢性肝病發(fā)病率也急劇上升,成人酒精性脂肪性肝病患病率為4.5%,非酒精性脂肪性肝病(NAFLD)的患病率達15%,直追西方發(fā)達國家。如果不進行干預治療,非酒精性脂肪性肝炎(NASH)也可發(fā)展為肝纖維化、肝硬化甚至肝癌[40]。綜合有關肝癌的miRNAs表達的研究報道,很少見到一致性結果。探索的關鍵是發(fā)現(xiàn)肝癌特異miRNAs和腫瘤特異miRNAs。依據(jù)Columbia大學醫(yī)學中心的報道,首先發(fā)現(xiàn)miRNAs表達與肝癌的致病因素相關(表3)。
表3 肝癌致病因素與特異miRNAs異常關系[41]
對癌癥基因組圖譜(TCGA)和肝癌數(shù)據(jù)庫中9種實體瘤的臨床、流行病學和miRNA表達譜資料綜合比較分析,發(fā)現(xiàn)肝癌與癌周組織33種miRNAs差異表達(2倍以上),其中絕多數(shù)(28 miRNAs)呈下調(diào)表達。在酒精性相關的79例肝癌組織中,發(fā)現(xiàn)有12種miRNAs改變明顯,其中顯著上調(diào)4種,顯著下調(diào)8種;在HBV感染相關的79例肝癌組織中,其有7種miRNAs明顯改變,其中miR-532,miR-93和miR-21呈明顯上調(diào)表達,miR-424,miR-139, miR-24-1和miR-26b明顯下調(diào);在HCV相關的31例肝癌中,miR-93和miR-500a明顯表達,而miR-424和miR-3607顯著下調(diào)表達,提示有12種,7種和4種miRNAs分別對酒精性攝入、HBV和HCV感染具特異性并顯著相關[41]。
PLC惡性程度高、病情進展快,發(fā)病隱匿,多數(shù)患者在診斷時即已出現(xiàn)肝內(nèi)或肝外轉移,失去了根治性手術治療機會,且放、化療效果也不理想。理想的肝癌標志物需要有較高的特異性,能將肝癌與肝硬化、肝炎、肝臟再生結節(jié)等區(qū)別開來:同時還需要較高的敏感性,早期診斷肝癌,且易檢測、可重復、侵入少特點[42]。肝miRNA含量穩(wěn)定,盡管血RNA酶會影響miRNA,但血miRNA表達穩(wěn)定,可能是保護miRNA附加結構如膜性物質,包裹miRNA分子避免與RNA酶接觸,或修飾miRNA以免于降解。肝癌患者血miR-122、miR-222和miR-223顯著上調(diào),miR-122可作為在HBV相關肝癌的潛在標志物;肝癌患者癌組織和血miR-21增高,改變比AFP早,可反映肝癌發(fā)生;以qRT-PCR法定量肝癌、慢性肝炎血miR-143和mi R-215表達水平,可作為肝癌診斷的潛在標志物[43]。
表4 人48配對肝癌與非癌組織中miRNAs的差異表達[41]
臨床常用的肝癌標志物如外周血AFP、肝癌特異AFP(HS-AFP或AFP-L3)、異常凝血酶原、磷脂酰肌醇蛋白聚糖-3(GPC-3)[44]、肝癌特異γ-谷氨酰轉移酶(HS-GGT)[45]、高爾基體蛋白酶-73、轉化生長因子-β1、肝細胞生長因子、表皮生長因子受體和腫瘤特異生長因子等,它們單獨或聯(lián)合使用均有助于肝癌診斷,然而除HS-GGT和GPC-3外,良性肝病均有不同程度陽性率。肝癌、慢性肝病及健康人群血miRNAs如miR-106b、miR-10b及miR-181a均有表達,三者可鑒別良、惡性肝病,但單一miRNA與常規(guī)肝癌標志間尚未見優(yōu)勢,且不及Wnt3a的診斷與鑒別價值。miRNA篩選或診斷肝癌需大規(guī)模臨床研究,以驗證其診斷的特異價值。
肝miRNAs為重要的生物調(diào)節(jié)劑,在轉錄后水平上調(diào)控編碼蛋白基因的表達。據(jù)估計約1/3人類基因直接或間接受其支配,并影響到肝細胞發(fā)生惡性轉化的多種信號通路。有關肝癌組織及血miRNAs表達譜的研究,大多分析miRNAs異常與肝癌的臨床病理學特征,并未涉及miRNAs表達與肝癌致病因素間的相互關系。在HBV相關肝癌和慢性肝病患者血中都見miR-155-5p、miR-24-3p、miR-490-3p、miR-210-3p和miR-335-5p表達,但miR-24-3p明顯異常,且與肝癌患者血管浸潤相關,可診斷和鑒別肝癌,ROC曲線下面積是0.636,AFP為0.627,兩者聯(lián)檢可提高至0.834,可顯著增加診斷準確度。另miR-125和miR-233可用于HBV陽性肝癌患者的早期診斷。縱觀已報道m(xù)iRNAs診斷肝癌的結果間差異很大。面臨的最大挑戰(zhàn)是miRNAs如何區(qū)別肝癌與其它實體腫瘤,尚未見肝癌特異miRNAs報道,臨床大規(guī)模應用受限[14,16]。
令人高興是新的肝癌特異miRNAs和腫瘤共有miRNAs被發(fā)現(xiàn)。在48對肝癌與癌周自身配對組織中miRNAs豐度的比較分析,發(fā)現(xiàn)miRNAs上調(diào)表達僅5種(miR-10b,miR-183,miR-182,miR-452和miR-21),下調(diào)表達居多為28種,有33種miRNAs可準確判別肝癌與非癌組織(表4)。
以上述33種miRNAs對癌與非癌的分類準確度較高,靈敏度為91.7%,特異性為100%,陽性預測值為100%,陰性預測值為92.3%,判別準確率95.8%和錯判率為4.1%;以33種miRNAs用于302例非配對肝癌組織具同樣效果,靈敏度為99.0%,特異性為97.9%,陽性預測值為99.7%,陰性預測值為94.0%,判別準確率為98.5%和錯判率僅為1.5%。至于外周血中33種miRNAs的表達如何及其臨床價值尚未見報道[41]。
綜上所述,肝癌相關miRNAs研究已取得較大進展,已為其診斷、治療和預后等引入了新思路。因肝癌發(fā)生機制極其復雜,肝細胞惡性轉化中涉及miRNA譜異常,除miRNA作用機制外,還需臨床大規(guī)模研究包括不同病因、性別、年齡及進展階段肝癌患者miRNAs動態(tài)表達,以篩選肝癌特異性miRNAs。miRNAs臨床應用尚存亟待解決問題[46]:①內(nèi)參miRNAs,以不同內(nèi)參或非人源性miRNAs作為外參照,致各研究數(shù)據(jù)間兼容性和可比性差;②血miRNAs檢測雖創(chuàng)傷小、可重復優(yōu)勢,需統(tǒng)一樣本如血清或血漿;③許多因素可致結果偏倚,應流程標準化確保準確;④臨床普及和提高對miRNAs的認識;⑤文獻報道資料中miRNAs表達差異較大;⑥已篩選出識別肝癌與非癌的miRNAs譜,循環(huán)血中表達如何及其該成果轉化亟待解決問題。但有理由相信,miRNAs應用在肝癌預防、臨床診斷和治療中具有前景[47,48]。
1.Wang L,Yue Y,Wang X,et al.Function and clinical potential of microRNAs in hepatocellular carcinoma[J].Oncol Lett,2015,10(6):3345-3353.
2.Reichl P,Mikulits W.Accuracy of novel diagnostic biomarkers for hepatocellular carcinoma:An update for clinicians[J].Oncol Rep,2016,36(2):613-625.
3.Fiorino S,Bacchi-Reggiani ML,Visani M,et al.MicroRNAs as possible biomarkers for diagnosis and prognosis of hepatitis B-and C-related-hepatocellular carcinoma [J].World J Gastroenterol,2016,22(15):3907-3936.
4.Vychytilova-Faltejskova P,Pesta M,Radova L,et al. Genome-wide microRNA expression profiling in primary tumors and matched liver metastasis of patients with colorectal cancer[J].Cancer Genomics Proteomics,2016,13 (4):311-316.
5.Yan IK,Wang X,Asmann YW,et al.Circulating extracellular RNA markers of liver regeneration[J].PLoS One,2016,11(7):0155888.
6.Gu JJ,Yao M,Yao DB,et al.Nonalcoholic lipid accumulation and hepatocyte malignant transformation[J].J Clin Transl Hepatol,2016,4(2):123-130.
7.Xiao Y,Tian Q,He J,et al.MiR-503 inhibits hepatocellular carcinoma cell growth via inhibition of insulin-like growth factor 1 receptor[J].Onco Targets Ther,2016,9: 3535-3544.
8.Kanda M,Sugimoto H,Kodera Y.Genetic and epigenetic aspects of initiation and progression of hepatocellular carcinoma[J].World J Gastroenterol,2015,21(37):10584-10597.
9.Kim GW,Lee SH,Cho H,et al.Hepatitis C virus core protein promotes miR-122 destabilization by inhibiting GLD-2[J].PLoS Pathog,2016,2(7):1005714.
10.Yen CS,Su ZR,Lee YP,et al.miR-106b promotes cancer progression in hepatitis B virus-associated hepatocellular carcinoma[J].World J Gastroenterol,2016,22(22): 5183-5192.
11.Zhang YC,Xu Z,Zhang TF,et al.Circulating microRNAs as diagnostic and prognostic tools for hepatocellular carcinoma[J].World J Gastroenterol,2015,21(34):9853-9862.
12.Lyra-González I,Flores-Fong LE,González-García I,et al.MicroRNAs dysregulation in hepatocellular carcinoma: Insights in genomic medicine[J].World J Hepatol,2015,7 (11):1530-1540.
13.Zhang Y,Wei W,Cheng N,et al.Hepatitis C virus-induced up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating Wnt signaling[J].Hepatology,2012,56(5):1631-1640.
14.Liu WH,Yeh SH,Lu CC,et al.MiRNAs in hepatocellular carcinoma expression,promoting proliferation of hepatocellular carcinoma cells[J].Gastroenterology,2009, 136(2):683-693.
15.Yan Y,Luo YC,Wan HY,et al.MicroRNA-10a is involved in the metastatic process by regulating Eph tyrosine kinase receptor A4-mediated epithelial mesenchymal transition and adhesion in hepatoma cells[J].Hepatology,2013, 57(2):667-677.
16.Zhang LY,Liu M,Li X,et al.miR-490-3p modulates cell growth and epithelial to mesenchymal transition of hepatocellular carcinoma cells by targeting endoplasmic reticulum-Golgi intermediate compartment protein 3 (ERGIC3)[J].J Biol Chem,2013,288(6):4035-4047.
17.El Tayebi HM,Hosny KA,Esmat G,et al.miR-615-5p is restrictedly expressed in cirrhotic and cancerous liver tissues and its overexpression alleviates the tumorigenic effects in hepato-cellular carcinoma[J].FEBS Lett,2012, 586(19):3309-3316.
18.Tomimaru Y,Eguchi H,Nagano H,et al.MicroRNA-21 induces resistance to the antitumour effect of interferon-α/5-fluorouracil in hepatocellular carcinoma cells[J]. Br J Cancer,2010,103(10):1617-1626.
19.Xu N,Shen C,Luo Y,et al.Upregulated miR-130a increases drug resistance by regulating RUNX3 and Wnt signaling in cisplatin-treated HCC cell[J].Biochem Biophys Res Commun,2012,425(2):468-472.
20.Li J,Fu H,Xu C,et al.miR-183 inhibits TGF-beta1-induced apoptosis by downregulation of PDCD4 expression in human hepatocellular carcinoma cells[J].BMC Cancer,2010,10(1):354.
21.Yang W,Sun T,Cao J,et al.Downregulation of miR-210 expression inhibits proliferation,induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro[J].Exp Cell Res,2012,318(8):944-954.
22.Fornari F,Milazzo M,Chieco P,et al.In hepatocellular carcinoma miR-519d is up-regulated by p53 and DNA hypomethylationandtargetsCDKN1A/p21,PTEN, AKT3 and TIMP2[J].J Pathol,2012,227(3):275-285.
23.Chuang KH,Whitney-Miller CL,Chu CY,et al.MicroRNA-494 is a master epigenetic regulator of multiple invasion-suppressor microRNAs by targeting ten eleven translocation 1 in invasive human hepatocellular carcinoma tumors[J].Hepatology,2015,62(2):466-480.
24.Hong ZS,Hong HY,Liu J,et al.miR-106a is downregulated in peripheral blood mononuclear cells of chronic hepatitis B and associated with enhanced levels of interleukin-8[J].Mediators Inflamm,2015,2015:629862.
25.Tan JYL,Habib NA,Chuah YW,et al.Identification of cellular targets of microRNA-181a in HepG2 cells:a new approach for functional analysis of microRNAs[J].PLoS One,2015,10(4):0123167.
26.Di Fazio P,Montalbano R,Neureiter D,et al.Downregulation of HMGA2 by the pan-deacetylase inhibitorpanobinostat is dependent on hsa-let-7b expression in liver cancer cell lines[J].Exp Cell Res,2012,318(15): 1832-1843.
27.Au SL,Wong CC,Lee JM,et al.Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis[J].Hepatology,2012,56(2):622-631.
28.Vecchio FD,Gallo F,Marco AD,et al.Bioinformatics approach to predict target genes for dysregulated microRNAs in hepatocellular carcinoma:study on a chemically-induced HCC mouse model[J].BMC Bioinformatics,2015, 16(1):408.
29.Fornari F,Milazzo M,Chieco P,et al.MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells[J].Cancer Res, 2010,70(12):5184-5193.
30.Hopcraft SE,Azarm KD,Israelow B,et al.Viral determinants of miR-122-independent hepatitis C virus replication[J].mSphere,2015,1(1):9-15.
31.Guo Y,Li S,Qu J,et al.MiR-34a inhibits lymphatic metastasis potential of mouse hepatoma cells[J].Mol Cell Biochem,2011,354(1):275-282.
32.Shen Q,Cicinnati VR,Zhang X,et al.Role of microRNA-199a-5p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion[J].Mol Cancer,2010,9 (1):227.
33.Chang Y,Yan W,He X,et al.miR-375 inhibits autophagy and reduces viability of hepato-cellular carcinoma cells under hypoxic conditions[J].Gastroenterology, 2012,143(1):177-187.
34.Kim JK,Noh JH,Jung KH,et al.Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b[J].Hepatology,2013,57(3):1055-1067.
35.Shih TC,Tien YJ,Wen CJ,et al.MicroRNA-214 downregulation contributes to tumor angiogenesis by inducing secretion of the hepatoma-derived growth factor in human hepatoma[J].J Hepatol,2012,57(3):584-591.
36.Wei X,Xiang T,Ren G,et al.miR-101 is down-regulated by the hepatitis B virus x protein and induces aberrant DNA methylation by targeting DNA methyltransferase 3A[J].Cell Signal,2013,25(2):439-446.
37.He XD,Li JJ,Guo WD,et al.Targeting the microRNA-21/AP1 axis by 5-fluorouracil and pirarubicin in human hepatocellular carcinoma[J].Oncotarget,2015,6(4):2302-2314.
38.Lin F,Ding RL,Zheng S,et al.Decrease expression of microRNA-744 promotes cell proliferation by targeting c-Myc in human hepatocellular carcinoma[J].Cancer Cell Int,2014,14:58.
39.Kim HK,Lee KS,Bae HJ,et al.MicroRNA-31 functions as a tumor suppressor by regulating cell cycle and epithelial-mesenchymal transition regulatory proteins in liver cancer[J].Oncotarget,2015,6(10):8089-8102.
40.Gu JJ,Yao M,Yao DB,et al.Nonalcoholic lipid accumulation and hepatocyte malignant transformation[J].J Clin Transl Hepatol,2016,4(2):123-130.
41.Shen J,Siegel AB,Remotti H,et al.Identifying microRNA panels specifically associated with hepatocellular carcinoma and its different etiologies[J].Hepatoma Res,2016, 2(6):151-162.
42.Della Corte C,Triolo M,Iavarone M,et al.Early diagnosis of liver cancer:an appraisal of international recommendations and future perspectives[J].Liver Int,2016,36(2): 166-176.
43.Wang L,Yao M,Dong ZZ,et al.Circulating specific biomarkers in diagnosis of hepato-cellular carcinoma and its metastasis monitoring[J].Tumor Biol,2014,35(1):9-20.
44.Yao M,Yao DF,Bian YZ,et al.Oncofetal antigen glypican-3 as a promising early diagnostic marker for hepatocellular carcinoma[J].Hepatobiliary Pancreat Dis Int,2011, 10(3):289-294.
45.Yao D,Jiang D,Huang Z,et al.Abnormal expression of hepatoma specific gamma-glutamyl transferase and alteration of gamma-glutamyl transferase gene methylation status in patients with hepatocellular carcinoma[J].Cancer, 2000,88(4):761-769.
46.Mao B,Wang G.MicroRNAs involved with hepatocellular carcinoma[J].Oncol Rep,2015,34(6):2811-2820.
47.Yao M,Wang L,Yao Y,et al.Biomarker-based microRNA therapeutic strategies for hepato-cellular carcinoma[J]. J Clin Transl Hepatol,2014,2(4):253-258.
48.Huang JT,Liu SM,Ma H,et al.Systematic review and Meta-analysis:circulating miRNAs for diagnosis of hepatocellular carcinoma[J].J Cell Physiol,2016,231(2):328-335.
(2016-7-30收稿)
R446.11
A
10.3969/j.issn.1000-2669.2016.05.002
*國家國際科技合作項目(2013DFA32150),江蘇省“六大人才高峰”項目(2014-YY-028)
姚登福,男,教授,博士生導師。E-mail:yaodf@ahnmc.com