• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Simulation of Adsorption of Quinoline Homologues on FAU Zeolite

    2016-03-22 09:18:17
    中國煉油與石油化工 2016年4期

    (School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical of Ministry of Education, Wuhan Institute of Technology, Wuhan 430070)

    Molecular Simulation of Adsorption of Quinoline Homologues on FAU Zeolite

    Shen Xizhou; Yan Fang; Li Meiqing; Xiao Yun

    (School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical of Ministry of Education, Wuhan Institute of Technology, Wuhan 430070)

    The Grand Canonical Monte Carlo (GCMC) simulation method was used to investigate the adsorption properties of quinoline homologues (quinoline, 2-methyl quinoline, and 2,4-dimethyl quinoline) on the FAU zeolite. The adsorption heat, adsorption isotherms, and adsorption sites of them were obtained. At the temperature ranging from 673.15 to 873.15 K, the Henry constant of quinoline homologues calculated on the FAU zeolite was applied to simulate their adsorption heat. And its value was more in accordance with the related data reported in the literature. The results showed that their isosteric heat decreased in the following order: 2,4-dimethyl quinoline (118.63 kJ/mol) > 2-methyl quinoline (110.45 kJ/mol) > quinoline (98 kJ/mol), and complied with the order of their adsorbate basicity. The competitive adsorption of three components of quinoline homologues on the FAU zeolite was calculated numerically at a temperature of 773.15 K and a pressure range of 0.1—100 MPa under the Universal force feld. Their adsorption capacity decreased in the following order: quinoline > 2-methyl quinoline >2,4-dimethyl quinoline. The smaller the molecule size of the adsorbate, the greater the saturated adsorption capacity would be. It was found that the quinoline homologues could be adsorbed in the main channels of 12- membered-ring framework of the zeolite. Simultaneously, the infuence of silica/alumina ratio on the adsorption property of quinoline homologues in FAU zeolite was studied. The smaller the silica/alumina ratio, the greater the isosteric heat and adsorption capacity would be.

    FAU zeolite; adsorption; molecular simulation; quinoline nitrides; silica alumina ratio

    1 Introduction

    At present, most domestic and foreign refneries process the FCC feedstock, in which the coker gas oil (CGO) is blended according to a certain proportion to produce light oil. Molecular sieves are widely used as the adsorbent and the catalyst in the refning and chemical processes[1-8]. The FAU-type zeolite is an important catalyst, and the silicon/ aluminum ratio is an important factor affecting the properties of molecular sieves[9-10].

    The catalytic cracking reaction is generally a gas-solid catalytic reaction in which the surface adsorption is an important step. The nitrogen compounds in CGO are preferentially adsorbed on acid sites of the cracking catalyst, which can result in the decrease of catalyst activity or even inactivation and can seriously affect the light oil yield from catalytic cracking process[11-15].

    Molecular simulation is a simple and effective way to study the nature of adsorption competition. Although some studies regarding the molecular simulation of the adsorption mechanism of basic nitrogen compounds (pyridine, amine, etc.) on the catalyst surface have been reported[16-23], there are few reports about the molecular simulation of the adsorption of quinoline homologues that are also important basic nitrogen compounds in CGO on the FAU zeolite[24-26]. Therefore, it is important to study the mechanism of catalyst poisoning caused by basic nitrogen compounds contained in CGO to carry out the molecular simulation of quinoline homologues adsorption on the surface of molecular sieves.

    2 Computational Model and Simulation Method

    2.1 Model construction

    The Y zeolite has a framework type of FAU with Fd-3 m space group and cell parameters comprisinga=b=c=2.434 5 nm andα=β=γ=90°, and a pore diameter of about 0.74 nm which is composed of 12 tetrahedra of TO4groups. The 2×2×2 unit cells of Y zeolite were used to construct the simulation boxes. The periodic boundary conditions were applied to simulate an infinite system.

    2.2 Simulation method

    The Grand Canonical Ensemble is the one of μVT, which is composed of an infnite open system by the constantVandT, namely the constants of volume, temperature and chemical potential. The adsorption process is an open system for the fuid in the adsorbent hole. The adsorption process carried out in the molecular sieve is one in which the exchange of materials and energy between the fluid in adsorbent hole and the bulk fluid while the chemical potential is kept equal. Hence, the adsorption behavior of quinoline in the zeolite Y was studied by the Grand Canonical Monte Carlo (GCMC) method.

    The Henry constant is presented below:

    in whichNis the simulation step size.

    The adsorption heat can be achieved by van’t Hoff’s formula:

    2.3 Parameters of force fi eld

    Here, the quinoline and faujasite were selected as the research materials. The Henry constant under different force felds was calculated when the temperature was increased from 623 K to 773 K[27]and 1.1×106steps were performed. The Henry constant is presented below in Figure 1. According to Formula (2), the values of isosteric heat of quinoline in FAU zeolite could be obtained under different force-felds as shown in Figure 1, with the results presented in Table 1.

    It can be seen that the difference in the isosteric heat is significant under different force fields as depicted in Table 1. The value of isosteric heat is 97.5 kJ/mol, which agrees well with the literature value[27]measured under the Universal force-field. Hence, the Universal force-feld was selected for investigating the adsorption properties of quinoline homologues on the FAU zeolite.

    Table 1 The values of isosteric heat of quinoline obtained under different force-fields

    Figure 1 Henry constant of quinoline under different force- fi elds

    3 Results and Discussion

    3.1 Henry constant and isosteric heat

    The relationship between the Henry constant and the temperature of adsorption of quinoline homologues in the FAU zeolite is shown in Figure 2.

    The isosteric heat of quinoline homologues on the FAU zeolite can be obtained under Universal force feld by using the ftting data in Figure 2 and Formula (2), with the results shown in Table 2.

    Table 2 The isosteric heat of quinoline homologues on FAU zeolite

    It can be seen that the isosteric heat of quinoline homologues decreased in the following order: 2,4-dimethyl quinoline (118.63 kJ/mol) > 2-methyl quinoline (110.45 kJ/mol) > quinoline (98 kJ/mol) as depicted in Table 1, which is in agreement with the order of the adsorbate basicity.

    3.2 Adsorption isotherm

    Figure 2 Henry constants of quinoline homologues on FAU zeolite at 673.15—873.15 K

    While the Universal force feld was selected, the adsorption isotherms for the quinoline homologues can be calculated respectively at 773.15 K and under 0.01—100 MPa, with the one-component adsorption isotherm shown in Figure 3. It is shown in Figure 3 that the adsorption capacity of quinoline homologues decreased in the following order: quinoline > 2-methyl quinoline > 2,4-dimethyl quinoline. The adsorption capacity of quinoline homologues increased with an increasing pressure. The adsorption capacity has no signifcant increase when the pressure is above 40 MPa.

    Figure 3 Adsorption isotherms of quinoline homologues on FAU zeolite at 773.15 K

    3.3 Adsorption isotherm fi tting

    3.3.1 Langmuir isothermal equation

    The Langmuir model is given by Formula (3)

    whereqis the absolute amount adsorbed in the unit;qmis the maximum adsorption capacity andbis the Langmuir equilibrium constant, which represents the affinity between the adsorbent and the adsorbate;pis the effective pressure, i.e. the fugacity. The data in Figure 3 is fitted according to Formula (3), with the results shown in Table 3.

    Table 3 The fit Langmuir coefficients for quinoline homologues on FAU zeolite

    It is indicated that the Langmuir model fts the data well at 773K as evidenced by the data listed in Table 3. The saturated capacity for adsorption of quinoline homologues on the FAU zeolite decreased in the following order: quinoline > 2-methyl quinoline > 2,4-dimethyl quinoline. Therefore, the smaller the molecular size, the larger the saturated adsorption capacity. Thus, we can conclude that the saturated adsorption capacity correlates well with the molecular size.

    3.4 Competitive adsorption of three quinoline homologues on the FAU zeolite

    3.4.1 Adsorption isotherms

    Adsorption isotherms of three quinoline homologues, the molar ratio of which is 1:1:1, on the FAU zeolite can be obtained at 773.15 K under Universal force feld when the pressure of the system varies from 0.01 kPa to 420 kPa, with the results shown in Figure 4.

    It can be seen that the competitive adsorption capacity of three quinoline homologues on the FAU zeolite decreased in the following order: quinoline > 2-methyl quinoline > 2,4-dimethyl quinoline. Therefore, the smaller the molecule size is, the greater the adsorption capacity would be. The pore diameter of the FAU zeolite is about 0.74 nm, and the diameter of hexagonal prism, β cage and supercage is 0.26 nm, 0.66 nm and 1.2 nm, respectively, while the molecular diameter of quinoline, 2-methyl quinoline and 2,4-dimethyl quinoline is about 0.73 nm, 0.78 nm and 0.83 nm, respectively.

    Quinoline has a molecular size of 0.73 nm that is commensurate with the size of the channel of FAU zeolite. So quinoline can be adsorbed on acid sites in the channels of FAU zeolite easily. In contrast, 2-methyl quinoline and 2,4-dimethyl quinoline have a bigger size than the diam-eter of the channels of FAU zeolite. Then 2,4-dimethyl quinoline would enter the channels of FAU zeolite with diffculty because of the steric hindrance effect. At present, the molecular size of quinoline homologues plays a dominant role in their competitive adsorption capacity.

    Figure 4 Adsorption isotherms of quinoline nitrides on FAU zeolite

    3.4.2 Adsorption sites

    It can be seen that the competitive adsorption of quinoline homologues occupied the main channel of the twelvemembered-ring pores primarily when the quinoline homologues were adsorbed in FAU zeolite simultaneously as shown in Figure 5. Then 2,4-dimethyl quinoline could only occupy the main channels of the twelve-memberedring pores because of their relatively larger diameter. Therefore 2,4-dimethyl quinoline molecules could be adsorbed in the biggest supercages of FAU zeolite, whereas quinoline and 2-methyl quinoline could occupy the smaller four-membered-ring channels and six-membered-ring channels in a random distribution.

    Figure 5 Adsorption sites of quinoline homologues on FAU zeolite

    4 Silica/Alumina Ratio

    The formula for FAU zeolite is as follows:

    in whichnis the value of silica/alumina ratio.

    The silica/alumina ratio is an important factor which affects the properties of molecular sieves. The adsorption heat and capacity for adsorption of quinoline homologues on FAU zeolites with a silica/alumina ratio of 1:1 can be obtained when the temperature increases from 573 K to 873 K under a pressure ranging from 0 to100 MPa after the simulation of 4×105steps.

    4.1 Influence of silica/alumina ratio on adsorption heat

    The adsorption heat of quinoline homologues on FAU zeolite with different silica/alumina ratio at 573.15 K to 873.15 K is calculated, with the results shown in Table 4.

    Table 4 Adsorption heat of quinoline homologues on FAU zeolite with different silica/alumina ratios

    It can be concluded from Table 4 that the smaller the silica/alumina ratio, the greater the isosteric heat formed on the molecular sieves with the same crystal cell. The reason might be that silicon atoms have much less activity than that of aluminum atoms, and the aluminum atoms can form stronger protonic acid in zeolites.

    4.2 Influence of silica/alumina ratio on adsorption capacity

    The capacity for adsorption of quinoline homologues on the FAU zeolite with different silica/alumina ratios at 573.15 K under a pressure ranging from 0 to 100 MPa ispresented in Figure 6—8.

    Figure 6 Adsorption isotherms of quinoline on FAU zeolite with different silica/alumina ratio

    Figure 7 Adsorption isotherms of isoquinoline on FAU zeolite with different silica/alumina ratios

    Figure 8 Adsorption isotherms of 2-methyl quinoline on FAU zeolite with different/silica alumina ratios

    It can be concluded that the influence of silica/alumina ratio on the adsorption heat and the capacity for adsorption of quinoline homologues in FAU zeolite are consistent with the results presented in Figures 6—8. During the initial adsorption stage, the bigger the silica/alumina ratio was, the smaller the adsorption capacity would be. The difference between them gradually tapers off with the increase in the pressure. At a pressure of 100 MPa, the adsorption capacity is basically identical. It has been shown that aluminum atoms can form stronger protonic acid under smaller pressure. However, the quinoline homologues have stronger alkalinity than other compounds. Thus, the smaller the silica/alumina ratio was, the greater the isosteric capacity would be. The saturated adsorption is basically identical with the case of operation under increased pressure.

    5 Conclusions

    (1) Universal force-feld was more favorable for calculating the isosteric heat of quinoline in the FAU zeolite the Si/Al ratio of which was 1.1 than that calculated by the Compass and Dreiding force-feld methods. The value of isosteric heat of quinoline was 97.5 kJ/mol which was in accordance with the literature value obtained under the Universal force-feld.

    (2) It was shown that the isosteric heat of quinoline homologues decreased in the following order: 2,4-dimethyl quinoline > 2-methyl quinoline > quinoline, which complied with the order of quinoline homologues in terms of their adsorbate basicity

    (3) The Langmuir model can be utilized to ft the adsorption isotherms of quinoline homologues on FAU zeolite under the Universal force feld.

    (4) The competitive adsorption capacity of three quinoline homologues on the FAU zeolite decreased in the following order: quinoline > 2-methyl quinoline > 2,4-dimethyl quinoline. The saturated adsorption capacity is related to the molecular size of quinoline homologues. The smaller the molecule size was, the greater the adsorption capacity would be.

    (5) The quinoline homologues occupied the main channels of twelve-membered-ring pore system primarily. Quinoline and 2-methyl quinoline occupied the fourmembered-ring channels and six-membered-ring channels in a small quantity and at random distribution, while 2,4-dimethyl quinoline only occupied the main twelvemembered-ring channels.

    (6) The adsorption heat and adsorption capacity of quinoline homologues on the FAU zeolite increased with thedecrease of silica/alumina ratio.

    Reference

    [1] Sang Y, Jiao Q Z, Li H S, et al. HZSM-5/MCM-41 composite molecular sieves for the catalytic cracking of endothermic hydrocarbon fuel: nano-ZSM-5 zeolites as the source[J]. Journal of Nanoparticle Research, 2014, 16(12): 2755-2765

    [2] Hong X, Tang K. Modification and nitrogen adsorption properties of zeolite NaY [J]. Journal of Fuel Chemistry and Technology, 2015, 43(2): 214-220 (in Chinese)

    [3] De Baerdemaeker T, Yilmaz B, Muller U, et al. Catalytic applications of OSDA-free Beta zeolite[J]. Journal of Catalysis, 2013, 308: 73-81

    [4] Xu X Y, Sun Y, Shen J, et al. Adsorption behavior of basic nitrides in model oil on HY and USY molecular sieves [J]. Chemical Industry and Engineering Progress, 2014, 33(4): 1035-1040 (in Chinese)

    [5] Bastiani R, Lam Y L, Henriques C A, et al. Application of ferrite zeolite in high-olefn catalytic cracking[J]. Fuel, 2013, 107: 680-687

    [6] Lai J L, Song L J, Sun Z L. A frequency-response study on sorption of thiophene and benzene on NiY zeolite [J]. China Petroleum Processing and Petrochemical Technology, 2011, 13(2): 24-28

    [7] Tang L, Shen J. USY zeolite adsorption properties of basic nitrogen in CGO and its application in dentrification [J]. Specialty Petrochemicals, 2014, 31(4): 18-21(in Chinese)

    [8] Liu Yibin, Li Yuzhen, Ding Xue. Adsorption Simulation of Basic Nitrogen Compounds in ZSM-5 and USY Zeolites by Grand Canonical Monte Carlo Method [A]. Advanced Materials Research, 2015, 1096:189-193

    [9] Jiang H, Sun W, Wang P. Molecular simulation of adsorption properties of propane on NanZSM-5 zeolites with different Si/Al ratios [J]. Yunnan Chemical Industry, 2011, 38(6): 1-5 (in Chinese)

    [10] Sethia G, PillaiR S, Dangi G P, et al. Sorption of methane, nitrogen, oxygen, and argon in ZSM-5 with different SiO2/ Al2O3ratios: Grand Canonical Monte Carlo simulation and volumetric measurements [J]. Industrial & Engineering Chemistry Research, 2010, 49(5): 2353-2362

    [11] Chen X B, Sun J P, Shen B Y, et al. Effect of basic nitrogen compounds of USY and ZSM-5-type catalytic cracking catalysts and catalytic properties[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2012, 36(5): 164-168, 174(in Chinese)

    [12] Li Z K, Wang G, Liu Y D, et al. Study on reaction performance and competitive adsorption effect during coker gas oil catalytic cracking[J]. Fuel Process Technol, 2013, 115: 1-10

    [13] Li Z K, Wang G, Shi Q, et al. Retardation effect of basic nitrogen compounds on hydrocarbons catalytic cracking in coker gas oil and their structural identifcation[J]. Ind Eng Chem Res, 2011, 50(7): 4123-4132

    [14] Shen B X, Chen X B, Sun J P, et al. FCC catalyst poisoning mechanism of nitrogen-containing compounds and their countermeasures[J]. Petrochemical Technology, 2013, 44(4): 457-462

    [15] Wang G, Liu Y D, Wang X Q, et al. Studies on the catalytic cracking performance of coker gas oil[J]. Energy Fuels, 2009, 23(4): 1942–1949

    [16] Wang B, Zhang Y, Zuo M, et al. Kinetics of pyridine desorption from acid sites on HY zeolite and characterization of its acid strength[J]. Petrochemical Technology, 2014, 43(3): 264-268.(in Chinese)

    [17] Liu Y J, Sun X Y, Long Y Z, et al. H-STI zeolite adsorption molecular simulation of ammonia molecules[J]. Journal of Jilin Institute of Chemical Technology, 2010, 27 (1): 12-14(in Chinese)

    [18] Shen X Z, Li M Q, Zhou H, et al. Molecular simulation of adsorption of amine on FAU zeolite nitride[J]. Computers and Applied Chemistry, 2011, 28(1): 1-4(in Chinese)

    [19] Zhang J F, Burke N, Yang Y X. Molecular simulation of propane adsorption in FAU zeolites[J]. Journal of Physical Chemistry C, 2012, 116(17): 9666-9674

    [20] Ding X, Liu Y B, Yang C H, et al. Molecular simulation and thermodynamic analysis of FCC dry gas adsorption in ZSM-5 zeolite[J]. Petroleum Processing and Petrochemicals, 2015, 46(9): 58-64 (in Chinese)

    [21] Ding X, Liu Y B, Yang C H, et al. Molecular simulations of FCC dry gas components adsorption in zeolite Y[J]. China Petroleum Processing and Petrochemical Technology, 2016, 18 (1): 99-107

    [22] Zhang J F, Burke N, Zhang S C, et al. Thermodynamic analysis of molecular simulations CO2and CH4adsorption in FAU zeolites[J]. Chemical Engineering Science, 2014, 113: 54-61

    [23] Sun X Y, Li J W, Li Y X, et al. Adsorption of benzeneand propylene in zeolite ZSM-5: Grand Canonical Monte Carlo simulations[J]. Chem Res Chin Univ, 2009, 25(3): 377-382

    [24] Wang Y F, Bu C J, Chi Z M, et al. Adsorption of quinoline on zeolite Al-MCM-41[J]. Journal of Chemical Industry and Engineering (China), 2015, 9: 3597-3604 (in Chinese)

    [25] Santarossa G, Iannuzzi M, Vargas A, et al. Adsorption of naphthalene and quinoline on Pt, Pd and Rh: A DFT study [J].Chem Phys Chem, 2008, 9(3): 401-413

    [26] Yu D Y, Xu H, Que G H, et al. Study on conversion of basic nitrogen compound quinoline in FCC [J]. Journal of Fuel Chemistry and Technology, 2004, 32(1): 43-47(in Chinese)

    [27] Tkhoang K S, Romanovskiy B V, Topchieva K V, et al. Adsorptive capacity and catalytic activity of zeolites. II. Heats of adsorption of several hydrocarbons and nitrogencontaining compounds on type-Y zeolite[J]. Journal of Catalysis,1968, 10(2): 209-211

    Received date: 2016-09-18; Accepted date: 2016-10-24.

    Prof. Shen Xizhou, Telephone:+86-13886050956; E-mail: xzhoush@163.com

    欧美+日韩+精品| 免费看日本二区| 亚洲欧美精品综合久久99| 99热这里只有是精品50| 国内精品一区二区在线观看| 亚洲成人精品中文字幕电影| 麻豆国产97在线/欧美| 一边摸一边抽搐一进一小说| 成人二区视频| 午夜免费男女啪啪视频观看| 成人毛片60女人毛片免费| 草草在线视频免费看| 国产精品三级大全| 简卡轻食公司| 免费观看精品视频网站| 九九在线视频观看精品| 日本色播在线视频| 69人妻影院| 久久久久性生活片| 少妇的逼水好多| 天堂中文最新版在线下载 | 亚洲无线观看免费| 亚洲真实伦在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av不卡在线观看| 一级av片app| 特大巨黑吊av在线直播| 成人一区二区视频在线观看| 国产精品一区二区三区四区免费观看| 看十八女毛片水多多多| 亚洲精品亚洲一区二区| 久久久成人免费电影| 色哟哟·www| 观看美女的网站| 国产高清有码在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久久久久av不卡| 男人的好看免费观看在线视频| 久久久国产成人免费| 久热久热在线精品观看| 国产色婷婷99| 中文字幕av在线有码专区| 久久久久久久久久成人| 亚洲精品aⅴ在线观看| 久久欧美精品欧美久久欧美| 日本黄大片高清| 亚洲成色77777| 我的老师免费观看完整版| 边亲边吃奶的免费视频| 国产熟女欧美一区二区| 高清午夜精品一区二区三区| 插逼视频在线观看| 91午夜精品亚洲一区二区三区| 免费看a级黄色片| 少妇被粗大猛烈的视频| 亚洲伊人久久精品综合 | 欧美激情在线99| 大香蕉97超碰在线| 亚洲精品乱码久久久v下载方式| 国内精品一区二区在线观看| 草草在线视频免费看| 一二三四中文在线观看免费高清| 精品久久久久久成人av| 熟女电影av网| 国产私拍福利视频在线观看| 亚洲欧美日韩高清专用| 成人欧美大片| 日韩av在线免费看完整版不卡| 久久久久久大精品| 亚洲av不卡在线观看| 99久久九九国产精品国产免费| 日韩中字成人| 最后的刺客免费高清国语| 老师上课跳d突然被开到最大视频| 在线观看66精品国产| 久久婷婷人人爽人人干人人爱| 亚洲高清免费不卡视频| 亚洲在线自拍视频| ponron亚洲| 国产一区亚洲一区在线观看| 精品免费久久久久久久清纯| 亚洲精品影视一区二区三区av| 午夜激情福利司机影院| 麻豆av噜噜一区二区三区| 国产单亲对白刺激| 精品人妻一区二区三区麻豆| 国产午夜精品一二区理论片| .国产精品久久| 只有这里有精品99| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 狠狠狠狠99中文字幕| 免费搜索国产男女视频| 国产精品三级大全| 亚洲国产精品合色在线| 免费av不卡在线播放| 国产午夜福利久久久久久| av在线蜜桃| www日本黄色视频网| 国产成人精品婷婷| 欧美zozozo另类| 最近2019中文字幕mv第一页| 99久久成人亚洲精品观看| 亚洲成av人片在线播放无| 你懂的网址亚洲精品在线观看 | 99久久无色码亚洲精品果冻| 热99re8久久精品国产| av黄色大香蕉| 成人高潮视频无遮挡免费网站| 永久网站在线| 深爱激情五月婷婷| 欧美成人免费av一区二区三区| 国产午夜精品一二区理论片| 日韩欧美 国产精品| 看十八女毛片水多多多| 最近视频中文字幕2019在线8| 国产单亲对白刺激| 亚洲国产精品国产精品| 日本-黄色视频高清免费观看| 久久久久久久久久黄片| 韩国av在线不卡| 欧美+日韩+精品| 成人国产麻豆网| 免费观看的影片在线观看| 夜夜爽夜夜爽视频| 午夜日本视频在线| 国产免费视频播放在线视频 | 免费观看性生交大片5| 国产精品一区www在线观看| 国产伦精品一区二区三区四那| 亚洲av中文av极速乱| 一级毛片久久久久久久久女| 真实男女啪啪啪动态图| 日产精品乱码卡一卡2卡三| av视频在线观看入口| videos熟女内射| 大话2 男鬼变身卡| 嫩草影院精品99| 免费看av在线观看网站| 天堂中文最新版在线下载 | 1000部很黄的大片| 久久99热这里只频精品6学生 | 精品人妻视频免费看| 国产精品久久久久久av不卡| 赤兔流量卡办理| 美女大奶头视频| 日韩欧美精品免费久久| 啦啦啦观看免费观看视频高清| 国产亚洲5aaaaa淫片| 亚洲av熟女| 日韩欧美国产在线观看| 久久欧美精品欧美久久欧美| 国模一区二区三区四区视频| 久久久久久久久中文| 色噜噜av男人的天堂激情| 一区二区三区乱码不卡18| 国产色爽女视频免费观看| 国产免费福利视频在线观看| 最近中文字幕高清免费大全6| 久久久久久久久久久丰满| 国产极品精品免费视频能看的| 欧美bdsm另类| 天天躁日日操中文字幕| 国产激情偷乱视频一区二区| 久久久久精品久久久久真实原创| 插阴视频在线观看视频| 国产精品永久免费网站| 日本黄色视频三级网站网址| 麻豆国产97在线/欧美| 国模一区二区三区四区视频| 国产成人a区在线观看| 国产极品天堂在线| 一区二区三区乱码不卡18| 精品久久久久久久人妻蜜臀av| 久久国产乱子免费精品| 亚洲av免费高清在线观看| 精品久久久久久久人妻蜜臀av| 亚洲精品,欧美精品| 国产高清视频在线观看网站| 国产老妇伦熟女老妇高清| 国产伦一二天堂av在线观看| 亚洲精品乱久久久久久| 欧美3d第一页| 午夜福利在线观看免费完整高清在| a级毛片免费高清观看在线播放| 午夜激情福利司机影院| 欧美三级亚洲精品| 观看美女的网站| 久久人妻av系列| 久久久午夜欧美精品| 亚洲婷婷狠狠爱综合网| 麻豆成人av视频| 色吧在线观看| 嘟嘟电影网在线观看| 天堂中文最新版在线下载 | 国产 一区精品| 一边摸一边抽搐一进一小说| 国产免费男女视频| 天堂√8在线中文| 一级av片app| 国产成人精品久久久久久| av在线天堂中文字幕| 高清在线视频一区二区三区 | 亚洲欧美清纯卡通| 高清视频免费观看一区二区 | 亚洲欧美清纯卡通| 91狼人影院| 在线免费观看的www视频| 久久人人爽人人片av| 看十八女毛片水多多多| 青青草视频在线视频观看| 精品人妻一区二区三区麻豆| 村上凉子中文字幕在线| 国产老妇伦熟女老妇高清| 久久鲁丝午夜福利片| 久久久久久久久久黄片| 亚洲美女搞黄在线观看| 人人妻人人澡欧美一区二区| 大香蕉97超碰在线| 波野结衣二区三区在线| 欧美一区二区国产精品久久精品| 亚洲一区高清亚洲精品| 亚洲成av人片在线播放无| 国产亚洲av片在线观看秒播厂 | 亚洲精品成人久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 人体艺术视频欧美日本| 国产精品av视频在线免费观看| 亚洲五月天丁香| 国产久久久一区二区三区| www.av在线官网国产| 久久久久精品久久久久真实原创| 久久韩国三级中文字幕| 99久久人妻综合| 一个人看的www免费观看视频| 精品久久久久久电影网 | www.av在线官网国产| 只有这里有精品99| 亚洲综合色惰| 国产精品爽爽va在线观看网站| 久99久视频精品免费| 久久久久久久亚洲中文字幕| 日韩av在线免费看完整版不卡| 国产亚洲午夜精品一区二区久久 | 少妇丰满av| 国产黄色小视频在线观看| 99热全是精品| 日韩国内少妇激情av| 国产真实伦视频高清在线观看| 噜噜噜噜噜久久久久久91| 精品人妻熟女av久视频| 97超碰精品成人国产| 2022亚洲国产成人精品| 在线观看美女被高潮喷水网站| 久久99热6这里只有精品| 日韩在线高清观看一区二区三区| 成人三级黄色视频| 日本av手机在线免费观看| 欧美精品一区二区大全| 国产精品人妻久久久影院| 最近手机中文字幕大全| 秋霞伦理黄片| 欧美日本亚洲视频在线播放| 国产精品女同一区二区软件| 欧美极品一区二区三区四区| av在线观看视频网站免费| 日本欧美国产在线视频| 天天一区二区日本电影三级| 舔av片在线| 高清在线视频一区二区三区 | 99久久精品国产国产毛片| 97超碰精品成人国产| 亚洲av.av天堂| 干丝袜人妻中文字幕| 国产高潮美女av| 精品久久久久久久末码| 熟妇人妻久久中文字幕3abv| 欧美精品国产亚洲| 天堂影院成人在线观看| 热99在线观看视频| 亚洲人与动物交配视频| 1000部很黄的大片| 亚洲va在线va天堂va国产| 伊人久久精品亚洲午夜| 97在线视频观看| 99久久人妻综合| 日韩欧美精品v在线| 久99久视频精品免费| 欧美区成人在线视频| 搡老妇女老女人老熟妇| 看片在线看免费视频| 久久久久久伊人网av| 一级av片app| 日韩一本色道免费dvd| 久久久久九九精品影院| 黄色日韩在线| 欧美zozozo另类| 久久久久久久久中文| 国产精品一区二区三区四区久久| 国产在视频线在精品| 黄片wwwwww| 国产中年淑女户外野战色| 夜夜看夜夜爽夜夜摸| 91精品伊人久久大香线蕉| 中文资源天堂在线| 一级毛片电影观看 | 亚洲美女视频黄频| 亚洲人成网站在线播| 2022亚洲国产成人精品| 中文字幕精品亚洲无线码一区| 亚洲国产高清在线一区二区三| 99国产精品一区二区蜜桃av| 国产探花极品一区二区| 欧美性感艳星| 18+在线观看网站| 一边亲一边摸免费视频| 中文字幕久久专区| 亚洲综合色惰| 日韩欧美国产在线观看| 日日撸夜夜添| 又爽又黄a免费视频| av免费观看日本| 少妇熟女欧美另类| 久久欧美精品欧美久久欧美| 精品无人区乱码1区二区| 边亲边吃奶的免费视频| av女优亚洲男人天堂| 最近中文字幕2019免费版| 99国产精品一区二区蜜桃av| 精品酒店卫生间| av在线天堂中文字幕| 国产午夜精品一二区理论片| 综合色av麻豆| 在线播放无遮挡| 精品久久久久久久久av| 99久久精品一区二区三区| 日韩大片免费观看网站 | 自拍偷自拍亚洲精品老妇| 在线免费十八禁| 大话2 男鬼变身卡| 精品一区二区三区视频在线| 国产免费一级a男人的天堂| 最后的刺客免费高清国语| 国产黄片美女视频| 久久午夜福利片| 少妇高潮的动态图| 性插视频无遮挡在线免费观看| 九草在线视频观看| 一二三四中文在线观看免费高清| 亚洲色图av天堂| 搡老妇女老女人老熟妇| 久久久久国产网址| 91精品伊人久久大香线蕉| 黄色配什么色好看| 性插视频无遮挡在线免费观看| 岛国毛片在线播放| 性插视频无遮挡在线免费观看| 久久久久久久久中文| 免费播放大片免费观看视频在线观看 | 久久国内精品自在自线图片| 国产伦一二天堂av在线观看| 国产成人精品婷婷| 欧美高清性xxxxhd video| 麻豆久久精品国产亚洲av| 最近视频中文字幕2019在线8| 中文字幕免费在线视频6| 亚洲欧美精品自产自拍| 日本免费a在线| videos熟女内射| 蜜臀久久99精品久久宅男| 国产免费视频播放在线视频 | 伦精品一区二区三区| 亚洲精品乱久久久久久| 中文字幕免费在线视频6| ponron亚洲| 亚洲国产精品成人综合色| 天堂av国产一区二区熟女人妻| 亚洲av成人精品一二三区| 午夜激情欧美在线| 你懂的网址亚洲精品在线观看 | 一个人看视频在线观看www免费| 国产成年人精品一区二区| 又爽又黄无遮挡网站| 久久精品91蜜桃| 一夜夜www| 特级一级黄色大片| 亚洲av熟女| 国产黄片美女视频| 午夜福利视频1000在线观看| 91久久精品电影网| 久久精品夜色国产| 2021天堂中文幕一二区在线观| 国产精品国产三级国产专区5o | 日韩欧美国产在线观看| 欧美精品国产亚洲| 99久久精品一区二区三区| 久久久久久大精品| 国产探花极品一区二区| 亚洲精品影视一区二区三区av| 亚洲经典国产精华液单| 插阴视频在线观看视频| 国内精品美女久久久久久| 亚洲av免费高清在线观看| 日韩欧美 国产精品| 最近的中文字幕免费完整| 久久久亚洲精品成人影院| 少妇人妻精品综合一区二区| 久久国产乱子免费精品| 99久久人妻综合| 亚洲一级一片aⅴ在线观看| 欧美一级a爱片免费观看看| 日本猛色少妇xxxxx猛交久久| 欧美变态另类bdsm刘玥| 搡老妇女老女人老熟妇| 三级男女做爰猛烈吃奶摸视频| 国产精华一区二区三区| 边亲边吃奶的免费视频| 少妇熟女欧美另类| 日韩中字成人| 国产 一区 欧美 日韩| 国产欧美另类精品又又久久亚洲欧美| 麻豆一二三区av精品| 国产高清国产精品国产三级 | 性色avwww在线观看| 亚洲中文字幕一区二区三区有码在线看| 在线免费十八禁| 久久久午夜欧美精品| 久久精品国产99精品国产亚洲性色| 3wmmmm亚洲av在线观看| 国产乱人偷精品视频| av又黄又爽大尺度在线免费看 | av国产久精品久网站免费入址| 欧美日韩综合久久久久久| 亚洲欧美清纯卡通| 亚洲精品乱码久久久久久按摩| 亚洲一区高清亚洲精品| 久久99热这里只有精品18| 国产高清三级在线| 国产视频首页在线观看| 黄色一级大片看看| 久久久久九九精品影院| 日韩av不卡免费在线播放| 成人鲁丝片一二三区免费| 成人国产麻豆网| 日韩欧美国产在线观看| 天堂√8在线中文| 亚洲成av人片在线播放无| 69人妻影院| 亚洲av二区三区四区| 久久久久九九精品影院| 亚洲精品自拍成人| 国产v大片淫在线免费观看| 亚洲国产精品专区欧美| 国产综合懂色| 成人特级av手机在线观看| 欧美日韩国产亚洲二区| 国产精品久久视频播放| 偷拍熟女少妇极品色| 亚洲,欧美,日韩| 性插视频无遮挡在线免费观看| 精品熟女少妇av免费看| 精品人妻熟女av久视频| 亚洲精品成人久久久久久| 亚洲天堂国产精品一区在线| 精品久久久久久久久av| 国产精品乱码一区二三区的特点| 久久午夜福利片| 亚洲精品aⅴ在线观看| 麻豆av噜噜一区二区三区| 国产免费视频播放在线视频 | 亚洲自偷自拍三级| 日韩成人伦理影院| 美女内射精品一级片tv| 久久热精品热| 亚洲av电影不卡..在线观看| 五月玫瑰六月丁香| 麻豆成人av视频| 国产精品久久视频播放| 国产乱人视频| 久久久久久久国产电影| 亚洲av免费在线观看| 看片在线看免费视频| 久久精品久久精品一区二区三区| 欧美区成人在线视频| 亚洲欧美一区二区三区国产| 欧美bdsm另类| 大又大粗又爽又黄少妇毛片口| 嫩草影院精品99| 一个人看的www免费观看视频| 精品一区二区三区视频在线| 97人妻精品一区二区三区麻豆| 老师上课跳d突然被开到最大视频| 97在线视频观看| 九草在线视频观看| 精品一区二区三区视频在线| 日韩制服骚丝袜av| 久久久国产成人免费| 欧美人与善性xxx| 亚洲精品日韩av片在线观看| 国产免费视频播放在线视频 | 日日撸夜夜添| 午夜爱爱视频在线播放| 日韩欧美在线乱码| 精品国产三级普通话版| 午夜激情欧美在线| 国产毛片a区久久久久| 狂野欧美激情性xxxx在线观看| 蜜桃久久精品国产亚洲av| 美女大奶头视频| 欧美色视频一区免费| 免费无遮挡裸体视频| 最近中文字幕高清免费大全6| 国产免费又黄又爽又色| 日韩制服骚丝袜av| 国产精品蜜桃在线观看| 国产三级中文精品| 国产精品嫩草影院av在线观看| www.av在线官网国产| 天美传媒精品一区二区| 天堂网av新在线| 黄片wwwwww| 午夜激情福利司机影院| 亚洲中文字幕一区二区三区有码在线看| 女人十人毛片免费观看3o分钟| 波多野结衣巨乳人妻| 国产成人91sexporn| 国产一级毛片在线| 国产精品国产三级专区第一集| 日韩欧美精品免费久久| 亚洲,欧美,日韩| 又粗又硬又长又爽又黄的视频| 亚洲久久久久久中文字幕| 午夜福利在线在线| 一级毛片我不卡| 亚洲欧美日韩东京热| 亚洲一级一片aⅴ在线观看| 特大巨黑吊av在线直播| 只有这里有精品99| 三级毛片av免费| av在线蜜桃| 国产亚洲av嫩草精品影院| 国产伦理片在线播放av一区| 校园人妻丝袜中文字幕| 日韩在线高清观看一区二区三区| 久久久精品94久久精品| 国产在视频线在精品| www.色视频.com| 欧美成人精品欧美一级黄| 日韩人妻高清精品专区| 国产精品熟女久久久久浪| 全区人妻精品视频| av国产久精品久网站免费入址| 看十八女毛片水多多多| 青青草视频在线视频观看| 中国美白少妇内射xxxbb| av在线天堂中文字幕| 日日摸夜夜添夜夜添av毛片| 亚洲内射少妇av| 又黄又爽又刺激的免费视频.| 黄片wwwwww| 欧美另类亚洲清纯唯美| 亚洲精品日韩av片在线观看| 国产单亲对白刺激| 国产精品福利在线免费观看| 国产亚洲一区二区精品| 亚洲真实伦在线观看| 免费在线观看成人毛片| 亚洲中文字幕一区二区三区有码在线看| av视频在线观看入口| 国产精品1区2区在线观看.| 丰满少妇做爰视频| 久久久久国产网址| 日日摸夜夜添夜夜爱| 老司机影院毛片| 麻豆成人午夜福利视频| 在线观看av片永久免费下载| 欧美色视频一区免费| 国产免费一级a男人的天堂| 日韩 亚洲 欧美在线| 日韩精品青青久久久久久| 久久精品国产亚洲网站| 边亲边吃奶的免费视频| 国产精华一区二区三区| 国产高清不卡午夜福利| 一个人免费在线观看电影| 免费看光身美女| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩东京热| 天美传媒精品一区二区| 亚洲,欧美,日韩| av在线播放精品| 看十八女毛片水多多多| 国产成人a∨麻豆精品| 成人亚洲欧美一区二区av| 亚洲av一区综合| 麻豆一二三区av精品| 色哟哟·www| 波多野结衣巨乳人妻| 一级二级三级毛片免费看| 伦精品一区二区三区| 欧美zozozo另类| 亚洲色图av天堂| 亚洲欧美日韩卡通动漫| 国产成人freesex在线| 青青草视频在线视频观看| 搞女人的毛片| 偷拍熟女少妇极品色| 1024手机看黄色片| 亚洲精品乱码久久久久久按摩| 一级黄片播放器| 久久久午夜欧美精品| 亚洲欧美一区二区三区国产| av在线观看视频网站免费| 性色avwww在线观看| 你懂的网址亚洲精品在线观看 | 色5月婷婷丁香|