• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Safety control strategy for vertebral lamina milling task

    2016-03-20 08:16:28LupingFnPengGoBolingZhoYuSunXioxioXinYingHuShoubinLiuJinweiZhng

    Luping Fn,Peng Go,Boling Zho,Yu Sun,Xioxio Xin,Ying Hu,*, Shoubin Liu,Jinwei Zhng

    aShenzhen Graduate School,Harbin Institute of Technology,Shenzhen,China

    bShenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen,China

    cCAS Key Laboratory of Human-Machine Intelligence-Synergy Systems,Shenzhen Institutes of Advanced Technology,Shenzhen,China

    dUniversity of Hamburg,Hamburg,Germany

    Available online 5 November 2016

    Safety control strategy for vertebral lamina milling task

    Luping Fana,b,c,Peng Gaob,c,Baoliang Zhaob,c,Yu Suna,b,c,Xiaoxiao Xina,b,c,Ying Hub,c,*, Shoubin Liua,Jianwei Zhangd

    aShenzhen Graduate School,Harbin Institute of Technology,Shenzhen,China

    bShenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen,China

    cCAS Key Laboratory of Human-Machine Intelligence-Synergy Systems,Shenzhen Institutes of Advanced Technology,Shenzhen,China

    dUniversity of Hamburg,Hamburg,Germany

    Available online 5 November 2016

    Vertebral lamina milling task is one of the high-risk operations in spinal surgeries.The operation is to remove part of vertebral lamina and release the pressure on the spinal nerve.Because many important vessels and nerves are under the vertebral lamina,any incorrect operation may cause irreparable damage to patients.To improve the safety of lamina milling task,a fuzzy force control strategy is proposed in this paper. Primary experiments have been conducted on bone samples from different animals.The results show that,with the fuzzy force control strategy, the bone milling system can recognize all surgery states and halt the tool at the proper location,achieving satisfactory surgery performance. Copyright?2016,Chongqing University of Technology.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Safety control;Force feedback;Fuzzy logic control;Vertebral lamina milling;Spinal surgery

    1.Introduction

    Advances in science and technology have led to the use of various robots in the field of medical application.In recent years,surgical robots have been widely applied in different types of orthopedic surgery,such as laminectomy,total knee arthroplasty,artificial disc replacement[1-3],etc.Spinal surgery is believed to be high-risk since any damage to the spinal cord may cause paralysis or even death to the patients. Traditionally,the spinal surgery is performed manually,and the long duration time will cause surgeons'fatigue,reducing the surgery quality.

    Laminectomy is to restore the function of the compressed spinal nerve by expanding the spinal canal space.The vertebral lamina milling operation is regarded as one of the most critical and risky operations.In the surgery,the surgeon needs to hold the high-speed-rotating bone drill to mill the vertebral lamina from the surface to the inner cortical bone, removing the spike process part and releasing the pressure on the spinal nerve[4,5](Fig.1).

    Laminectomy has been widely used to treat patients with lumbarspinalstenosis[7,8],toreleasetheoppressedspinalnerve andrecoverthefunctionofspinalcord.Thekeytothesuccessof Laminectomyistoensuretheproperamountoflaminaremained. Too small amount of residual volume may cause harm to the spinal canal and spinal nerve,and too large amount cannot achieve the effect of spinal nerve decompression[9].

    Researchers have tried using robots to assist surgeons to improve the surgery accuracy and efficiency.An Israel company has marketed a parallel robot to help surgeons to guide the tools and implants(Renaissance Guidance System,Mazor Robotics?,Caesarea,Israel)[10];Ortmaier has designed a robot for accurate placement of pedicle screws with the help of an optical navigation system[11];Chung has designed a robot to insert pedicle screws in the spinal fusion procedure[12];Huhas developed a spinal surgical robot and successfully recognized the different states during the pedicle screw insertion process with a real-time force sensing algorithm[13].For the vertebral lamina milling task,some safety control strategies have been studied.Wang et al.[14,15]milled the vertebral layer by layer from the outer cortical bone to the inner cortical bone at a constant depth.Based on the analysis of typical characteristic parameters of the force profiles,the crosscorrelation to the standard profiles are adopted to judge the milling status.Because this method was unable to adapt to the complex surfaces of the vertebrae,the profile pattern is in close relation to the three-layer structure,which is to the disadvantage of milling status distinguishment.Zhang et al. [16]proposed a fuzzy logic control method for bone drilling operation to treat laminectomy.Based on surgeons'experience,the database of fuzzy rules was established.The pressure on the drill and the thickness of the bone are set as input, the drilling depth and drilling velocity are set as output.The fuzzy logic control system was simulated with MATLAB and SIMULINK,and the result showed its feasibility.Deng et al. [17]designed a fuzzy force controller for vertebral lamina milling operation.The force control was implemented to adjust the milling parameters to adjust for the complex anatomical structure of the vertebral lamina.For safety purposes,a state detection method based on energy consumption was also proposed.The results of contrast experiments showed that the milling operation under fuzzy force control took shorter time and was with more stable longitudinal contact force.The state detection method could detect the three milling states successfully,resulting in an acceptable vertebral lamina residue.

    Fig.1.The laminectomy operation[6].

    In this paper,we firstly describe the anatomical structure of the vertebral lamina and the milling procedure.Then,the fuzzy force control theory is introduced.The milling force in the horizontal direction is controlled constant,and the milling force in the vertical direction is used to distinguish the structure of the bone layer.The principle of milling state distinguishment is established through six groups of vertebral lamina milling experiments.Then,twelve groups of experiments are conducted to validate the robustness of the safety control strategy based on this principle.

    The paper is organized as follows.The fuzzy force control strategy is proposed in Section 2 and 3.The principle of milling state distinguishment is established and validated in Section 4 and 5.The conclusions are presented in Section 6.

    2.Safety control strategy

    In laminectomy,vertebral lamina milling is the key and most difficult procedure.Orthopedists must handle the tool to mill vertebral lamina very carefully to ensure that the pressure on the spinal nerve is relieved but the spinal nerve and its surrounding vessels are not damaged.During the vertebral lamina milling operation,the bone drill needs to drill through the outer cortical bone,cancellous bone,and the inner cortical bone(Fig.2).During the actual operation,if not controlled well,the bone drill may drill through the inner cortical bone and seriously damage the spinal cord and nerves,this will cause paralysis or even death of the patients(Fig.3).Therefore,it is very important to detect the milling state and ensure the safety in a robot-assisted surgery.

    Fig.2.Physiological structure of lamina.

    The interacting force between the bone drill and vertebral lamina is affected by manyfactorsduring the milling operation. It mainly includes:bone density,rotating speed,milling speed andmillingdepth.Inourcase,themillingspeedandtherotating speed of bone drill are both set to a constant value.With the bone drill mills different layers and the milling depth changes, the interacting force between the vertebrae lamina and bone drill will change.During the milling operation,the bone drill needs to work on three bone layers including outer cortical bone,cancellousboneandinnercorticalbone.Thebonedensity of the cortical bone is larger than that of the cancellous bone [18,19].With the same milling depth,the interacting force between bone drill and cortical bone is larger than that of the cancellous bone.The interacting force between the bone drill and vertebral lamina is analyzed to recognize the milling state.

    During the milling operation,the bone drill mills along the surface of the vertebral lamina,and the milling force can be decomposedintotwocomponents:axialforceFyandtangential force Fz(Fig.4).To ensure the safety of the surgery,a safety controlstrategybasedonfuzzylogicisproposed(Fig.5).Atthe beginning of milling operation,an initial milling depth is given, and the tangential force with this milling depth is set to be the reference value.The real-time tangential force signal is introduced into the fuzzy logic controller.By adjusting the milling depth of the bone drill,the tangential force is kept in a constant range.At the same time,the axial force signal generated in milling operation is used to estimate the state of the vertebral lamina milling;if the bone drill is milling in the outer cortical bone layer and cancellous bone layer,the milling operation continues;if the bone drill is milling in the inner cortical bone layer,the milling operation stops.

    3.Fuzzy force control

    Fuzzy control system is a closed loop control system based on fuzzy language representation and logic inference.Its core component is fuzzy logic controller(FLC)[20].It transforms the measured values by various sensors into the fuzzy quantities suitable for the fuzzy operation.Then fuzzy rules are constructed to infer the output result.In the end,the fuzzy quantity in the operation result is converted to the exact quantity,in order to carry out the specific operation of the actuator control(Fig.6).Since the control output of the fuzzy logic control system is calculated from the fuzzy inference,it does not need the system mathematical model.The parameters of the membership functions and fuzzy rules need to be planned by the expert or based on experience[21].

    Fig.3.Dangerous operation[4].

    Fig.4.Analysis of the milling force.

    Fig.5.Safety control strategy.

    In order to test the safety control strategy presented in this paper,the milling experiments have been conducted with the three-axis robot system.The experiment setup is shown in Fig.7.The bone mill is with diameter of?4 mm and its rotating speed can be regulated from 0 r/min to 80000 r/min. The interacting force between the bone dill and bone sample is measured by the force/torque sensor with sampling frequency of 1000 Hz.The milling speed is 1.5 mm/s,the initial milling depth is 0.5 mm.

    The original force signal is noisy,caused by motor vibration,so the collected force signal needs to be filtered before subsequent processing.In this study,recursion averagefiltering is used to process the original force signal.Fig.8 shows the filtering result of the original force signal.

    The force controller is based on admittance control,constructed with milling depth?d,horizontal milling force FZand reference milling force Fref,as shown in Eqs.(1)and(2).

    Fig.6.The structure of fuzzy logic controller.

    Fig.7.Milling experiments.

    Where Geis the contact admittance between the ends of the bone drill and the lamina,y and yrefare the actual space coordinate and the reference space coordinate of the bone drill in the direction of milling depth for the bone drill.

    We define linguistic variables“E”in the domain of system error e.We define the linguistic variable“Ec”in the domain of the error changing rate ec.We define the linguistic variable“U”in the domain of control u,as shown in Eqs.(3)-(5).

    Fuzzification is the first step of fuzzy combiner,which transforms the input and output variables into the fuzzy quantity.In the discrete domain,the input and output variables are denoted as{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}, respectively.Their corresponding fuzzy quantities are defined for the rule base as{NB(negative big),NM(negative middle), NS(negative small),ZO(zero),PS(positive small),PM (positive middle),PB(positive big)}[19].

    The values of the e and u are scaled to the interval of[-0.5, 0.5]and the interval of[-0.09,0.09]for the ec,as shown in Eqs.(6)-(11).

    Fig.8.Original force signal and its short-time recursion average.

    where keand kecdenote the quantization factors of input,and kudenote the scaling factor of output.

    After fuzzification,fuzzy inference is used to establish the fuzzy rules.In this study,the triangular membership function is used for all variables,as shown in Fig.9.

    The fuzzy rules are constructed using if-then statements, and 49 rules are defined to form the fuzzy rule base for the fuzzy combiner,as shown in Table 1.

    FLC is developed using the Fuzzy Logic Toolbox for MATLAB and Simulink.Surface viewer is utilized for the determination of the characteristics of the proposed fuzzy controller,as shown in Fig.10.

    In order to show the advantages of fuzzy force control strategy,twogroupsofexperimentshavebeenconductedonthesame bone sample,which is a vertebra bone of pig with thickness of 57 mm.The rotating speed of the bone drill is set to be 15000 r/ min.In the first experiment,the milling depth remains constant; the bone drill mills down 0.5 mm layer by layer,until the inner cortical bone.In the second experiment,the milling depth is adjustedwith the tangential millingforcebasedonfuzzycontrol strategy,keeping the tangential force a constant value.

    Themillingforcesignalsofthetwoexperimentsareshownin Figs.11 and 12.There are 10 layers in Figs.11 and 7 layers in Fig.12 in the milling process until milling to the inner cortical bone.Comparing the two figures,it is noticed that the experiment with fuzzy force control has less milling layers(meaning less time used)and obtains a more regulated drill-bone interacting force,which will benefit the milling operation[22].

    4.State recognition of vertebral lamina milling

    To ensure the safety of milling operation,the bone drill needs to stop when it gets to the inner cortical bone.To obtain the relationship between the axial force and the state recognition,the experiment below has been conducted.Three kinds of bone samples including vertebra of pig,vertebra of sheep and vertebra of cattle are used in the experiment,with bone drill rotating speed of 15000 r/min and 20000 r/min separately. The initial milling depth is set to be 0.5 mm,and the tangential force during the milling operation is controlled to be constant with the fuzzy logic.The mean value of the axial force isrecorded for each layer,until the bone drill gets to the inner cortical bone.Table 2 shows that the axial milling forces are different on different bone samples and the force value is also affected by drilling speed.

    Fig.9.Membership functions of the input and output variables.

    Table 1 The rule base for FLC.

    Fig.10.Surface viewer.

    Fig.11.Result of the first experiment.

    Fig.12.Result of the second experiment.

    To prove that the surgical system can detect the milling states for all the cases,the data is normalized.By using the normalized mean feature,the characteristic parameter range of the axial force is mapped to the[0,1],as shown in Fig.13.

    After normalizing the data of these 6 groups,we found that the axial force of the cancellous layer are always in the range of(0.4,0.5)and the axial force of the cortical layer are always greater than 0.9.

    With the above experimental results,we has obtained the relationship between the axial force and milling state,and the control program is written,as shown in Fig.14.Firstly parameters are initialized,then the system starts milling operation.In the initial milling stage,S=1,the bone drill is located in the outer cortical bone.The average milling force of the first two layers is used to determine the maximum milling force Fo.

    Table 2 Axial milling force(unit:Newton).

    Fig.13.Normalized axial force.

    Fig.14.Program control flow chart.

    Table 4 Experimental result.

    Fig.15.Normalized force features in different milling situations.

    When the average milling force of the i-th layer is less than Fo/2,S=2.Bone drill is located in the cancellous bone,the milling operation continues.When the milling force is larger than 0.9*Fo,S=3.The bone drill is located in the inner cortical bone,the milling operation stops immediately.

    5.Experiment validation

    According to the surgeons'experience,the vertebra lamina residue with thickness of 1-2 mm can meet the safety requirement of the operation,and the surgeons can easily open the spinal canal wall.

    In order to verify the effectiveness of the safety control strategy in the lamina milling operation,we conducted 6 groups of experiments,2 times in each group,with parameters shown in Table 4.

    The experimental method is based on the three-axis robot system,usingthevertebraofpig,vertebraofsheep,andvertebra of cattle for the milling experiment.We check the state of the milling process and measure the residual lamina thickness.

    Table 3 shown the data collected with the 6 groups of experiments.In Fig.15,the test data are normalized,and it is clearly shown that the normalized force feature of 0.4-0.5 for the milling in cancellous bone,and the normalized force feature higher than 0.9 for the milling in cortical bone.The data trend in Fig.15 is similar to that in Fig.13.

    TheexperimentalresultisshowninTable4.Bymeasuringthe thickness of the residual lamina,we found that the experimental resultsofthe6groupsarealllocatedbetween1and2mm,which guarantees the safety of the vertebral lamina milling operation.

    6.Conclusions

    In this study,a safety control strategy based on fuzzy force control is proposed for vertebral lamina milling task.The anatomical structure of the vertebral lamina is described and the interacting force between the bone drill and the lamina is analyzed.The milling force in the horizontal direction is controlled constant with fuzzy force control logic,and the milling force in the vertical direction is used to distinguish the structure of the bone layer.Through several experiments on different bone samples,the milling state distinguishment principle is recognized,and by data normalization,a safety control strategy is designed and validated.The experiment results shows that,with the control strategy proposed in this paper,the system can obtain a regulated bone-tool interacting force and take less milling time.The state detection method can protect the vertebral lamina from being milled through and ensure an acceptable thickness of vertebral lamina residue.

    Acknowledgements

    This research is supported by the National Nature Science Foundation of China(No.61573336,61473278),National High-tech R&D Program of China(No.2015AA043201),Key Fundamental Research Program of Shenzhen (No. JCYJ20150529143500954).

    [1]S.Wang,P.Gao,L.Fan,et al.,J.Med.Devices 10(3)(2016)030924.

    [2]C.Plaskos,P.Cinquin,S.Lavallee,et al.,Int.J.Med.Robotics Comput. Assisted Surg.1(4)(2005)67-79.

    [3]H.Tian,D.Wu,Z.Du,et al.,Design and analysis of a 6-DOF parallel robot used in artificial cervical disc replacement surgery,in:IEEE International Conference on Information and Automation,2010.

    [4]M.S.Patel,M.Newey,P.Sell,Bone Jt.J.97-B(3)(2015)366-371.

    [5]E.Y.L.Teo,B.S.Kelley,I.H.Black,J.Clin.Anesth.26(8)(2014) 606-610.

    [6]T.Osa,C.F.Abawi,N.Sugita,et al.,IEEE/ASME Trans.Mechatron.20 (6)(2015)3018-3027.

    [7]Z.Ghogawala,J.Dziura,W.E.Butler,et al.,N.Engl.J.Med.374(15) (2016)1424-1434.

    [8]G.M.Overdevest,W.Jacobs,C.Vleggeert-Lankamp,Cochrane Database Syst.Rev.24(10)(2015)2244-2263.

    [9]J.Chen,N.J.Shen,M.X.Lin,et al.,Orthop.J.China 16(19)(2008) 1510-1511.

    [10]http://www.mazorrobotics.com/surgeons/how-it-works/,visited on 11/6/ 2015.

    [11]T.Ortmaier,H.Weiss,U.Hagn,et al.,A hands-on-robot for accurate placement of pedicle screws,in:IEEE International Conference on Robotics and Automation,2006.

    [12]G.B.Chung,S.Kim,S.G.Lee,et al.,Int.J.Control Automation Syst.4 (1)(2006)30-41.

    [13]Y.Hu,H.Jin,L.Zhang,et al.,IEEE-ASME Trans.Mechatron.19(1) (2014)357-365.

    [14]T.M.Wang,S.Luan,L.Hu,et al.,Med.Robot.Comput.Assist.Surg.6 (2)(2010)178-185.

    [15]T.M.Wang,J.L.Zhang,Z.J.Liu,et al.,Robot 29(5)(2007)463-468.

    [16]J.L.Zhang,T.M.Wang,S.Luan,et al.,Mater.Sci.Technol.14(2006) 77-82.

    [17]Z.Deng,H.Y.Jin,Y.Hu,et al.,Mechatronics 35(2016)1-10.

    [18]D.T.Reilly,A.H.Burstein,J.Bone Jt.Surg.(1974)1001-1022.

    [19]X.Banse,T.J.Sims,A.J.Bailey,J.Bone Mineral Res.17(9)(2002) 1621-1628.

    [20]C.C.Lee,IEEE Trans.Syst.Man.Cybern.20(Apr.1990)404-418.

    [21]P.J.King,E.H.Mamdani,Automatica 13(3)(1977)235-242.

    [22]H.C.Shin,Y.S.Yoon,J.Biomech.39(1)(2006)33-39.

    LupingFan was born in Hebei,China.He received the B.S.degree in mechanical engineering from Hunan University of Technology,Zhuzhou,Hunan, China,in 2013and he is currently pursuing the M.S. degree in mechanical engineering from Harbin Institute of Technology,Shenzhen,China.He is currently a guest student in Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences(Shenzhen,Guangdong,China).His research interest is surgical robots.

    Peng Gao received the Bachelor's and Master's degrees from the hebei university of engineering,Handan,China,in 2010 and 2013,respectively.He is currently a engineer in the Center for Cognitive Technology,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen.His research interest include surgical robot,parallel robot and optimal design of robot.

    Baoliang Zhao was born in Hebei,China.He received the B.S.degree in mechanical engineering from Yanshan University,Qinhuangdao,Hebei, China,in 2008 and M.S.degree in mechanical engineering from Tongji University,Shanghai,China, in 2011.He completed the Ph.D.degree in mechanical engineering and applied mechanics at the University of Nebraska-Lincoln,Lincoln,NE,USA in 2015.He is currently a postdoctor in Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences(Shenzhen,Guangdong,China). His research interests include haptics,teleoperation,surgical robots and rehabilitation robots.

    Yu Sun received the Bachelor's and Master's degrees from Harbin Institute of Technology,China,in 2012 and 2015,respectively.He is the Ph.D student in Harbin Institute of Technology Shenzhen Graduate School,China,from 2015.He is currently a guest Ph.D student in Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences(Guangdong,China).His research interests include surgical robots,image navigation,control and signal processing and analysis.

    Xiaoxiao Xin was born in Henan,China.She received the B.S.degree in mechanical engineering from North China University of Water Resources and Electric Power,zhengzhou,China.She is currently studying in Harbin Institute of Technology.Shenzhen, China.She is currently a guest student in the Center for Cognitive Technology,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen.Her research interests is surgical robots.

    Ying Hu(M'11)received the B.S.degree from Shanghai Jiaotong University,Shanghai,China,in 1991,and the M.S.and Ph.D.degrees in mechanical engineering from Harbin Institute of Technology, Shenzhen,China,in1998and2007,respectively.Sheis currently a Professor in the Center for Cognitive Technology,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen.She is the author or coauthor of more than 60 scientific papers published in refereed journals and conference proceedings.Her research interests include parallel robots,medical assistant robots,and mobile robots.

    Shoubin Liu received the Bachelor's and Master's degrees from Shandong University China,in 1985 and 1990 respectively,and the Ph.D.degree from City University of Hong Kong.He is currently a associate Professor in Harbin Institute of Technology Shenzhen,China.

    Jianwei Zhang(M'91)received the Bachelor's and Master's degrees from the Department of Computer Science,Tsinghua University,Beijing,China,in 1986 and 1989 respectively,and the Ph.D.degree from the Department of Computer Science,Institute of Real-Time Computer Systems and Robotics,University of Karlsruhe,Karlsruhe,Germany,in1994.Heiscurrently aProfessorandHeadoftheTAMSGroup,Universityof Hamburg,Hamburg,Germany.His research interests includemultimodalperception,robotlearning,andmobileservicerobots.Intheseareashehaspublishedmore than200journalandconferencepapers,technicalreports,fourbookchapters,and two research monographs.Dr.Zhang has received several awards,including the IEEE ROMAN and IEEE AIM Best Paper Awards.

    *Corresponding author.Xueyuan Avenue 1068,Shenzhen 518055, Guangdong,China.

    E-mail addresses:lp.fan@siat.ac.cn(L.Fan),peng.gao@siat.ac.cn(P. Gao),bl.zhao@siat.ac.cn(B.Zhao),yu.sun@siat.ac.cn(Y.Sun),xx.xin@ siat.ac.cn(X.Xin),ying.hu@siat.ac.cn(Y.Hu),mesbliu@hitsz.edu.cn(S. Liu),zhang@informatik.uni-hamburg.de(J.Zhang).

    Peer review under responsibility of Chongqing University of Technology.

    http://dx.doi.org/10.1016/j.trit.2016.10.005

    2468-2322/Copyright?2016,Chongqing University of Technology.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NCND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    国产精品人妻久久久久久| av免费在线看不卡| 国产午夜精品一二区理论片| 亚洲国产欧美日韩在线播放| 热re99久久国产66热| 人人妻人人添人人爽欧美一区卜| av一本久久久久| 少妇的丰满在线观看| 极品人妻少妇av视频| 国产精品无大码| av网站免费在线观看视频| 色网站视频免费| 91国产中文字幕| 亚洲欧美日韩另类电影网站| 在线 av 中文字幕| 啦啦啦视频在线资源免费观看| 国产男女内射视频| 亚洲av成人精品一二三区| 国产黄频视频在线观看| 婷婷色麻豆天堂久久| 午夜福利在线观看免费完整高清在| 亚洲中文av在线| 欧美激情国产日韩精品一区| 久久久久久久久久成人| 老女人水多毛片| 欧美日韩亚洲高清精品| 91精品国产国语对白视频| 99久久综合免费| 亚洲美女视频黄频| 国产白丝娇喘喷水9色精品| 成年av动漫网址| 青春草国产在线视频| 午夜福利视频精品| 国产综合精华液| 黄色视频在线播放观看不卡| 秋霞伦理黄片| 久久久亚洲精品成人影院| 日韩中文字幕视频在线看片| 美女内射精品一级片tv| 国产在线一区二区三区精| 欧美人与善性xxx| 欧美精品人与动牲交sv欧美| 精品午夜福利在线看| 久久综合国产亚洲精品| 少妇被粗大猛烈的视频| 日韩免费高清中文字幕av| 成人国产麻豆网| 精品熟女少妇av免费看| 韩国精品一区二区三区 | 狂野欧美激情性bbbbbb| 五月玫瑰六月丁香| 91国产中文字幕| 精品人妻偷拍中文字幕| 日韩熟女老妇一区二区性免费视频| 欧美成人午夜精品| 日日啪夜夜爽| 免费看不卡的av| 久久女婷五月综合色啪小说| 男女啪啪激烈高潮av片| 国产精品成人在线| 国产国语露脸激情在线看| 男女高潮啪啪啪动态图| 日韩欧美精品免费久久| 中文字幕亚洲精品专区| 久久这里有精品视频免费| 欧美+日韩+精品| 黄色一级大片看看| 日韩av不卡免费在线播放| 精品一区二区三区四区五区乱码 | 成人国产麻豆网| 久久精品国产自在天天线| 亚洲av男天堂| 在线观看美女被高潮喷水网站| av电影中文网址| 丰满饥渴人妻一区二区三| 少妇精品久久久久久久| 亚洲精品美女久久久久99蜜臀 | 免费久久久久久久精品成人欧美视频 | 视频区图区小说| 男女边吃奶边做爰视频| av卡一久久| 婷婷色av中文字幕| 巨乳人妻的诱惑在线观看| 亚洲精华国产精华液的使用体验| 香蕉丝袜av| 一级片免费观看大全| 如日韩欧美国产精品一区二区三区| 各种免费的搞黄视频| 精品第一国产精品| 一本久久精品| 免费黄色在线免费观看| 国产亚洲精品第一综合不卡 | 日韩制服骚丝袜av| av又黄又爽大尺度在线免费看| 国产亚洲最大av| 啦啦啦中文免费视频观看日本| 国产精品久久久久久av不卡| 热99国产精品久久久久久7| 黄色视频在线播放观看不卡| 飞空精品影院首页| 国产日韩欧美在线精品| 高清视频免费观看一区二区| 香蕉丝袜av| 久久国产精品大桥未久av| 久久精品熟女亚洲av麻豆精品| 午夜福利乱码中文字幕| 少妇的逼水好多| 看十八女毛片水多多多| 中文字幕另类日韩欧美亚洲嫩草| 亚洲第一区二区三区不卡| 欧美亚洲 丝袜 人妻 在线| av一本久久久久| 青春草国产在线视频| 国产毛片在线视频| 少妇人妻久久综合中文| 美国免费a级毛片| 欧美精品高潮呻吟av久久| 大话2 男鬼变身卡| 观看美女的网站| 三上悠亚av全集在线观看| 看十八女毛片水多多多| 九色成人免费人妻av| 九色亚洲精品在线播放| 黄色一级大片看看| 少妇的逼好多水| 亚洲欧美一区二区三区国产| 女人久久www免费人成看片| www.色视频.com| 最近手机中文字幕大全| 热99久久久久精品小说推荐| 久久精品国产自在天天线| 成人无遮挡网站| 亚洲欧美色中文字幕在线| 天天操日日干夜夜撸| av一本久久久久| 成人二区视频| 免费观看av网站的网址| 国产精品一区二区在线不卡| 97在线人人人人妻| 亚洲精品日韩在线中文字幕| 热re99久久国产66热| 国产日韩欧美亚洲二区| 亚洲精品自拍成人| 亚洲精品av麻豆狂野| 精品亚洲乱码少妇综合久久| 1024视频免费在线观看| 卡戴珊不雅视频在线播放| av黄色大香蕉| 大香蕉久久成人网| 午夜老司机福利剧场| 91成人精品电影| 深夜精品福利| 久久这里只有精品19| 夜夜骑夜夜射夜夜干| 亚洲丝袜综合中文字幕| 国产精品 国内视频| 久久精品久久久久久噜噜老黄| 99九九在线精品视频| 欧美丝袜亚洲另类| 捣出白浆h1v1| 五月玫瑰六月丁香| 香蕉精品网在线| videosex国产| 国产片内射在线| 美女视频免费永久观看网站| 久久人妻熟女aⅴ| 午夜久久久在线观看| 国产精品一二三区在线看| 黄色配什么色好看| 啦啦啦在线观看免费高清www| 少妇人妻精品综合一区二区| 国产免费现黄频在线看| 国产精品欧美亚洲77777| 天堂俺去俺来也www色官网| 国产成人精品福利久久| 精品久久国产蜜桃| 日韩制服丝袜自拍偷拍| 18在线观看网站| 亚洲,一卡二卡三卡| 精品亚洲乱码少妇综合久久| 一区二区三区精品91| 高清不卡的av网站| 青春草视频在线免费观看| 大香蕉久久成人网| 又黄又粗又硬又大视频| 亚洲久久久国产精品| 亚洲欧洲国产日韩| 中文乱码字字幕精品一区二区三区| 亚洲欧美成人精品一区二区| 最近最新中文字幕免费大全7| 日韩 亚洲 欧美在线| 亚洲在久久综合| av免费在线看不卡| 欧美3d第一页| 男女下面插进去视频免费观看 | videos熟女内射| 交换朋友夫妻互换小说| 亚洲精品久久午夜乱码| 在线观看免费视频网站a站| 国产 一区精品| 丰满少妇做爰视频| 99re6热这里在线精品视频| 亚洲国产av新网站| 久久午夜福利片| 欧美亚洲日本最大视频资源| 日韩成人伦理影院| 亚洲精品自拍成人| 大片电影免费在线观看免费| 亚洲国产精品一区三区| 1024视频免费在线观看| 黑人猛操日本美女一级片| 我要看黄色一级片免费的| 少妇精品久久久久久久| 免费观看av网站的网址| 亚洲国产欧美在线一区| 我要看黄色一级片免费的| 999精品在线视频| 久久热在线av| 国语对白做爰xxxⅹ性视频网站| 日韩制服丝袜自拍偷拍| 90打野战视频偷拍视频| 波多野结衣一区麻豆| 精品久久久精品久久久| 十八禁网站网址无遮挡| 丰满乱子伦码专区| 一个人免费看片子| 看非洲黑人一级黄片| a级毛片黄视频| 欧美日本中文国产一区发布| 伦理电影免费视频| 新久久久久国产一级毛片| 夫妻性生交免费视频一级片| 亚洲av.av天堂| 亚洲婷婷狠狠爱综合网| 新久久久久国产一级毛片| 日韩熟女老妇一区二区性免费视频| 黄片无遮挡物在线观看| av国产精品久久久久影院| 国产69精品久久久久777片| 人妻 亚洲 视频| 国产免费一级a男人的天堂| 日韩三级伦理在线观看| 水蜜桃什么品种好| 97超碰精品成人国产| 国产精品 国内视频| 有码 亚洲区| 欧美日韩av久久| 精品人妻在线不人妻| 边亲边吃奶的免费视频| 中国国产av一级| a级毛色黄片| 18禁国产床啪视频网站| 日本午夜av视频| 久久青草综合色| 香蕉精品网在线| 久久鲁丝午夜福利片| 亚洲成国产人片在线观看| 蜜桃国产av成人99| 2022亚洲国产成人精品| 国产成人aa在线观看| 美女脱内裤让男人舔精品视频| 国产日韩一区二区三区精品不卡| 久久久a久久爽久久v久久| 视频在线观看一区二区三区| 欧美人与性动交α欧美软件 | 久久ye,这里只有精品| 免费黄频网站在线观看国产| 亚洲欧美成人综合另类久久久| 最近的中文字幕免费完整| 熟女电影av网| 国产成人免费无遮挡视频| 国产精品国产av在线观看| 日本vs欧美在线观看视频| 婷婷成人精品国产| 91国产中文字幕| 亚洲国产色片| 免费观看在线日韩| av国产久精品久网站免费入址| 宅男免费午夜| 免费av中文字幕在线| 少妇精品久久久久久久| av免费在线看不卡| 高清在线视频一区二区三区| 人人妻人人澡人人看| 久久人人爽人人片av| 狠狠婷婷综合久久久久久88av| 久久青草综合色| 18+在线观看网站| 日韩三级伦理在线观看| 免费黄频网站在线观看国产| 七月丁香在线播放| 乱人伦中国视频| 亚洲色图 男人天堂 中文字幕 | 九九在线视频观看精品| 热re99久久国产66热| 深夜精品福利| 黄片播放在线免费| 亚洲精品一二三| 欧美精品国产亚洲| 夜夜爽夜夜爽视频| 黑人高潮一二区| 久久精品国产鲁丝片午夜精品| 男人操女人黄网站| 久久久精品区二区三区| 在线观看免费日韩欧美大片| 99热6这里只有精品| 全区人妻精品视频| 婷婷色综合www| 伦理电影大哥的女人| 亚洲av电影在线观看一区二区三区| 青春草视频在线免费观看| 最近最新中文字幕免费大全7| 熟妇人妻不卡中文字幕| av福利片在线| 中文字幕亚洲精品专区| av福利片在线| 18禁观看日本| 又大又黄又爽视频免费| 九九爱精品视频在线观看| 欧美日韩视频精品一区| 在线观看www视频免费| 国产永久视频网站| 欧美日韩av久久| 亚洲欧美一区二区三区黑人 | 日本91视频免费播放| 草草在线视频免费看| 国产精品蜜桃在线观看| 欧美日韩精品成人综合77777| 国产日韩欧美视频二区| 欧美精品人与动牲交sv欧美| a级毛片黄视频| 免费观看av网站的网址| 免费日韩欧美在线观看| 肉色欧美久久久久久久蜜桃| 中文字幕精品免费在线观看视频 | 水蜜桃什么品种好| 日韩av在线免费看完整版不卡| 亚洲国产精品成人久久小说| 国产福利在线免费观看视频| 女性被躁到高潮视频| 99视频精品全部免费 在线| 国产1区2区3区精品| 亚洲国产精品999| 伦理电影免费视频| 中国美白少妇内射xxxbb| 精品一区在线观看国产| kizo精华| 丰满迷人的少妇在线观看| 久久久精品免费免费高清| 午夜激情久久久久久久| 亚洲精品久久成人aⅴ小说| 精品久久蜜臀av无| 巨乳人妻的诱惑在线观看| 亚洲精品色激情综合| av在线老鸭窝| 国产精品人妻久久久影院| 男女午夜视频在线观看 | 亚洲精品久久成人aⅴ小说| 欧美精品国产亚洲| 一区二区日韩欧美中文字幕 | 高清在线视频一区二区三区| 中国三级夫妇交换| 夜夜爽夜夜爽视频| 国产精品欧美亚洲77777| 亚洲国产看品久久| 少妇的逼好多水| 日韩精品免费视频一区二区三区 | 极品少妇高潮喷水抽搐| 一级毛片 在线播放| 极品少妇高潮喷水抽搐| 大码成人一级视频| 成人综合一区亚洲| 多毛熟女@视频| 午夜视频国产福利| 成人影院久久| 热99久久久久精品小说推荐| 欧美日韩视频高清一区二区三区二| 尾随美女入室| 丰满迷人的少妇在线观看| 午夜福利视频在线观看免费| 精品国产乱码久久久久久小说| 女的被弄到高潮叫床怎么办| 丝袜人妻中文字幕| 精品国产国语对白av| 日本黄色日本黄色录像| 久久青草综合色| 国产欧美亚洲国产| 成人无遮挡网站| 99视频精品全部免费 在线| 日韩免费高清中文字幕av| 免费女性裸体啪啪无遮挡网站| 亚洲欧美清纯卡通| 成年美女黄网站色视频大全免费| 下体分泌物呈黄色| 最新的欧美精品一区二区| 国产乱来视频区| 免费高清在线观看视频在线观看| 香蕉精品网在线| 免费播放大片免费观看视频在线观看| 涩涩av久久男人的天堂| 国产国拍精品亚洲av在线观看| 亚洲三级黄色毛片| 国产视频首页在线观看| 欧美+日韩+精品| 国产av国产精品国产| 国产免费现黄频在线看| 国产精品久久久久成人av| 在线看a的网站| 久久久久精品性色| 最新的欧美精品一区二区| 欧美3d第一页| 日本wwww免费看| 男女午夜视频在线观看 | 人妻一区二区av| 最近中文字幕高清免费大全6| av有码第一页| 我要看黄色一级片免费的| 国产女主播在线喷水免费视频网站| 狂野欧美激情性bbbbbb| 久久99精品国语久久久| 香蕉精品网在线| 草草在线视频免费看| 国产色爽女视频免费观看| 高清av免费在线| 国产不卡av网站在线观看| 久久热在线av| 久久久国产精品麻豆| 精品久久久精品久久久| 欧美精品人与动牲交sv欧美| 妹子高潮喷水视频| 最新中文字幕久久久久| 丁香六月天网| 亚洲内射少妇av| av视频免费观看在线观看| 国产高清国产精品国产三级| 国产在线免费精品| 婷婷色综合www| 伊人亚洲综合成人网| 免费黄色在线免费观看| av免费观看日本| av线在线观看网站| 一边亲一边摸免费视频| 久久亚洲国产成人精品v| 日韩成人av中文字幕在线观看| 久久精品人人爽人人爽视色| 热99国产精品久久久久久7| 日韩av在线免费看完整版不卡| 免费看av在线观看网站| 日本wwww免费看| 天天影视国产精品| 搡老乐熟女国产| 精品少妇黑人巨大在线播放| av国产久精品久网站免费入址| 最近最新中文字幕大全免费视频 | 日韩精品有码人妻一区| 国产又爽黄色视频| 中文字幕最新亚洲高清| 日韩熟女老妇一区二区性免费视频| 春色校园在线视频观看| 国产精品 国内视频| 亚洲成人一二三区av| 一区二区av电影网| 精品一品国产午夜福利视频| 黄片播放在线免费| 99国产综合亚洲精品| 老司机影院成人| 视频在线观看一区二区三区| 久久久久久人妻| 十分钟在线观看高清视频www| 免费人成在线观看视频色| 青春草亚洲视频在线观看| www.av在线官网国产| 我要看黄色一级片免费的| 蜜桃在线观看..| 免费不卡的大黄色大毛片视频在线观看| 一区二区日韩欧美中文字幕 | 国产av一区二区精品久久| 久久人人爽av亚洲精品天堂| 亚洲经典国产精华液单| 美女国产高潮福利片在线看| 成人手机av| 老熟女久久久| 国产精品三级大全| 久久鲁丝午夜福利片| 夜夜骑夜夜射夜夜干| 视频在线观看一区二区三区| 九九爱精品视频在线观看| 欧美精品国产亚洲| 国产探花极品一区二区| 国产在视频线精品| 2022亚洲国产成人精品| 乱人伦中国视频| 色哟哟·www| 久久鲁丝午夜福利片| 中文字幕精品免费在线观看视频 | 99久久人妻综合| 国产亚洲欧美精品永久| 久久av网站| 久久午夜福利片| 伊人亚洲综合成人网| 欧美 日韩 精品 国产| 七月丁香在线播放| 亚洲精品一二三| 丝袜美足系列| 亚洲激情五月婷婷啪啪| 日韩制服丝袜自拍偷拍| 免费av中文字幕在线| 国产一区二区激情短视频 | 日韩一区二区视频免费看| 视频中文字幕在线观看| 亚洲第一区二区三区不卡| 丰满饥渴人妻一区二区三| 99热网站在线观看| 赤兔流量卡办理| 国产成人a∨麻豆精品| 久久99一区二区三区| 亚洲精品456在线播放app| 国产精品国产三级国产av玫瑰| 国产精品不卡视频一区二区| 好男人视频免费观看在线| 日韩av在线免费看完整版不卡| 久久久久久人妻| 有码 亚洲区| 国产一区二区激情短视频 | 另类亚洲欧美激情| 午夜福利视频精品| 男的添女的下面高潮视频| 纯流量卡能插随身wifi吗| 大码成人一级视频| 亚洲精品美女久久av网站| 五月天丁香电影| 69精品国产乱码久久久| 久久狼人影院| 亚洲精品av麻豆狂野| 天天操日日干夜夜撸| 在线亚洲精品国产二区图片欧美| 国产精品免费大片| 久久鲁丝午夜福利片| 男人爽女人下面视频在线观看| 99香蕉大伊视频| 免费人成在线观看视频色| 亚洲,一卡二卡三卡| 人成视频在线观看免费观看| 精品99又大又爽又粗少妇毛片| 国产成人精品婷婷| 免费大片黄手机在线观看| av女优亚洲男人天堂| 国产熟女午夜一区二区三区| 免费人成在线观看视频色| 国产免费视频播放在线视频| 亚洲精品自拍成人| 91成人精品电影| 美女xxoo啪啪120秒动态图| 99视频精品全部免费 在线| 天堂俺去俺来也www色官网| 亚洲成国产人片在线观看| 精品少妇黑人巨大在线播放| 精品一区二区三区视频在线| 日韩精品有码人妻一区| 国产精品国产av在线观看| 最后的刺客免费高清国语| av播播在线观看一区| 亚洲国产毛片av蜜桃av| 啦啦啦中文免费视频观看日本| 亚洲精品aⅴ在线观看| 九九爱精品视频在线观看| 狂野欧美激情性xxxx在线观看| 久久国产精品大桥未久av| 一边摸一边做爽爽视频免费| 国产成人免费观看mmmm| 精品少妇黑人巨大在线播放| 男人爽女人下面视频在线观看| 国产国语露脸激情在线看| 两个人免费观看高清视频| 欧美日韩国产mv在线观看视频| 久久99蜜桃精品久久| 丝袜喷水一区| 日本av手机在线免费观看| 永久免费av网站大全| 亚洲精品国产av蜜桃| 欧美国产精品一级二级三级| 国产av精品麻豆| 婷婷成人精品国产| 夫妻午夜视频| 亚洲中文av在线| 曰老女人黄片| 国产成人91sexporn| 尾随美女入室| 男人爽女人下面视频在线观看| 草草在线视频免费看| 欧美变态另类bdsm刘玥| 欧美日韩国产mv在线观看视频| 制服诱惑二区| 久久精品aⅴ一区二区三区四区 | 欧美激情 高清一区二区三区| 99久久精品国产国产毛片| 哪个播放器可以免费观看大片| 免费人成在线观看视频色| 99九九在线精品视频| 欧美日韩视频精品一区| 人妻 亚洲 视频| 婷婷色综合www| 26uuu在线亚洲综合色| 国产又色又爽无遮挡免| 亚洲综合精品二区| 一区在线观看完整版| 两个人免费观看高清视频| 春色校园在线视频观看| 久久精品久久久久久噜噜老黄| a级片在线免费高清观看视频| 国产亚洲精品久久久com| 五月伊人婷婷丁香| 久久婷婷青草| 午夜福利影视在线免费观看| 少妇被粗大猛烈的视频|