• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A syncretic representation for image classification and face recognition

    2016-03-20 07:11:26ZhongliQunyongLiuKiSunSuiZhn

    Zhongli M*,Qunyong LiuKi Sun,Sui Zhn

    aCollege of Automation,Harbin Engineering University,Harbin,China

    bShenzhen Sunwin Intelligent Corporation,Shenzhen,China

    cCollege of Computer Science and Electronic Engineering,Hunan University,Changsha,China

    Available online 5 October 2016

    A syncretic representation for image classification and face recognition

    Zhongli Maa,*,Quanyong Liua,Kai Sunb,Sui Zhanc

    aCollege of Automation,Harbin Engineering University,Harbin,China

    bShenzhen Sunwin Intelligent Corporation,Shenzhen,China

    cCollege of Computer Science and Electronic Engineering,Hunan University,Changsha,China

    Available online 5 October 2016

    For representation based image classification methods,it is very important to well represent the target image.As pixels at same positions of training samples and test samples of an object usually have different intensities,it brings difficulty in correctly classifying the object.In this paper,we proposed a novel method to reduce the effects of this issue for image classification.Our method first produces a new representation (i.e.virtual image)of original image,which can enhance the importance of moderate pixel intensities and reduce the effects of larger or smaller pixel intensities.Then virtual images and corresponding original images are respectively used to represent a test sample and obtain two representation results.Finally,this method fuses these two results to classify the test sample.The integration of original image and its virtual image is able to improve the accuracy of image classification.The experiments of image classification show that the proposed method can obtain a higher accuracy than the conventional classification methods.

    Image syncretic representation;Pixel intensity;Image classification;Face recognition

    1.Introduction

    Image classification is a significant branch of computer vision.In this branch,the representation based classification methods have attracted considerable attention.A good representation for target images is greatly beneficial to improve the performance of image classification[1,2].An object can be distinguished from the others when its image is well represented by the other images from this object.The combination of multiple representations of images is an effective method to improve the performance of representation based methods [3,4].Therefore,it is an important and meaningful topic tofind a proper representation for representation based image classification methods.

    At present,face recognition has been studied widely and many useful methods have been presented[5-9].However,westill face with some great challenges.Different poses and expressions,various intensities of illuminations and insufficient training samples seriously influence the recognition effects.In order to address these challenges,people have made many efforts.Forvariousilluminations,byhandlingtheoriginalimages to enhance pixels with moderate intensities of the original images and reduce the importance of other pixels,Xu et al.[10] obtained the complementary images to improve the accuracy of image classification.Producing the mirror image of the face and integrating the original face image and its mirror image are also usefulto improve the recognition accuracy of representation-based face recognition[11].For the problem of insufficient training samples,Huang et al.[12]proposed a robustkernelcollaborativerepresentation classification method based on virtual samples for face recognition to reduce the infl uence ofinsufficient training samples.The use of symmetrical face images generated from original face images is very useful to overcome the problem of varying appearances of faces [13,14].Until now,many works focus on generating virtual or synthesized face images to enhance the recognition accuracy[15-19].The simultaneous use of original face images and their virtual face images can improve the accuracy of face recognition.What is more,several works have shown that virtual image obtained by exploiting the adjacent rows of original image are also useful for image classification[20-24].

    Wright et al.[25]proposed the sparse representation classification(SRC)algorithm which can reach satisfactory result. There are many SRC algorithms[26-30].However,the original SRC algorithm with the constraint of l1minimization is time consuming.Zhang et al.[31]proved that the essence to obtain the satisfactory performance of the SRC algorithm is the collaborativerepresentation butnotthe sparsity,and proposed a collaborative representation classification(CRC)method with the constraint of l2minimization.CRC methods can obtain comparative performance to SRC algorithm,but is much faster than SRC algorithm.Various representation methods with the constraints of l2minimization are also proposed,such as linear regression classification(LRC)[32],and two phase sparse representation[33-35].They not only used simple constraint conditions but also achieved satisfactory recognition accuracy.

    In this paper,we propose a novel representation method which can enhance the significances of pixels with moderate intensities of images.The proposed method has the following merits.(1)The novel representation method can classify images effectively.(2)It highlights the regions which has great difference of pixel intensities,such as edges.Edges have been shown to be beneficial to improve the recognition accuracy. The method also exploits the correlation of adjacent rows in a good way.(3)It increases the number of training samples,and represents a test sample effectively by combining original and virtual images.

    The remainder of this paper is organized as follows.Section 2 presents the proposed novel representation method of images.Section 3 describes the underlying rationale of the proposed method.Section 4 shows the experimental results. Section 5 provides the conclusions of this paper.

    2.The proposed method

    The method proposed in[10]generated virtual images which can enhance pixels with moderate intensities of the original images.This method used the following scheme to generate virtual images.

    where J stands for virtual image and Jijrepresents the pixel intensity at the i-th row and j-th column of J.Then,it used the difference between adjacent sorted results to automatically decide syncretic coefficient.

    Our method mainly includes two procedures.By the first procedure,we obtain the novel representation of original imagesasfollows.LetIstandforanoriginalimagewhichhasbeen convertedintoa gray image,andIijrepresents the pixelintensity atthei-throwandj-thcolumnofI.Letmbethemaximumpixel intensity of the gray image.For conventional gray images, m=255.Then the novel representation of I is denoted as

    Because Jijmay be greater than 255,the normalization measure is applied toJij.

    By using Eq.(2),we obtain virtual images of corresponding original images.The second procedure of our method can be described as the method of fusing original and virtual images. After obtaining virtual images,a classification algorithm is respectively applied to the original and virtual images.Then, the residual between the test sample and train samples is calculated.Let roj(j=1,2,…,c)stand for the residual between the test sample and original training samples of the j-th class. Here,c is the number of classes in a database.Letrjv(j=1,2,…,c)stand for the residual between the test sample and virtual training samples of the j-th class.After that,the two residuals are fused based on their weight.The syncretic formula is

    where rfj(j=1,…,c)stands for the ultimate residual.a is the syncretic coefficient and it is a number between 0 and 1.In the end,the test sample will be classified into the r-th class based on the following formula

    The main steps of our method are presented as follows.

    Step 1.Separate the database into two sets,a set of training samples and a set of test samples.

    Step 2.Obtain virtual images of all original images using Eq.(2).Then all images are converted into unit column vectors with the norm of 1.

    Step 3.A classification algorithm is applied to the original and virtual images to obtain corresponding residuals rjoand,respectively.

    Step 4.Obtain residual rjfusing Eq.(3).

    Step 5.Use Eq.(4)to classify the test sample.

    3.Rationale of the proposed method

    Different intensities of pixels have different importance in image classification and we can exploit a subset of all image pixels for image classification[36].Hence,it seems that setting different weights to different pixels is reasonable. Furthermore,the important features of an image are mainly concentrated on the moderate intensities of pixels,so it should emphasize the moderate intensities of pixels[10].Fortunately, our method has the idea that different pixel intensities play different roles in representing the object.

    3.1.Analysis of the proposed method

    In Section 2,we know that the obtained virtual image is very different from its original image.From Eq.(2),we have the following propositions.

    Proposition 1.If Iijis very large,the computational result is quite small no matter what I(i+1)jis large or small.

    Proposition 2.If Iijis very small,the computational result changes overI(i+1)j.Moreover,the result is large whenIijand I(i+1)jhave great difference.The result makes the edges prominent.

    Proposition 3..If Iijis moderate,the result is moderate or small no matter what I(i+1)jis.

    It is very easy to prove the above propositions.We can also know that the importance of regions with moderate pixel will be enhanced in the novel representation.Otherwise,the regions with very large or small pixels except for edge regions have a relative small value in the novel representation.The virtual image is a nonlinear transform for the pixels of the original image,and this can be known intuitively from Fig.2 and Fig.3.Moreover,when Iijis closed toI(i+1)j,Eq.(2)can be regarded as a first and second order entry of the pixel value of original image.Compared with virtual images obtained by linear transform,virtual images obtained by nonlinear transform have more complementarity with corresponding original images.That's to say,the integration of original and corresponding virtual images can reflect more image information than any one of them.For the deformable original image,the pixel with moderate intensity may be more stable,so our method is reasonable.Moreover,in order to exploit the information contained in original and virtual images,our method simultaneously uses them to perform image classification.

    When fusing the two residuals in Eq.(3),α is selected according to the classification results of original and virtual images.When the classification result of original images is more reliable than virtual images,α is set to be a large value. Otherwise,α is set to be a small value.

    3.2.Insight into the proposed method

    In this part,we give an intuitive explanation to the rationale of our method.We take the ORL database as an example to illustrate the difference between original and virtual images. Fig.1 shows five original images and their corresponding virtual images of the first subject in the ORL database.From these images,we know that virtual images are directly associated with the corresponding original images but they also have clear differences in image appearance.Since original and virtual images contain different features in different aspects for a same subject,the simultaneous use of them allows the image to be better recognized.

    Fig.1.The original and corresponding virtual images of the first subject in the ORL database.

    Fig.2.The gray histogram of original image of the first sample of the first subject in the ORL database.

    Fig.2 shows original pixel intensities of the first sample of the first subject in the ORL database.Fig.3 shows pixel intensities of reconstitution images came from different methods of the same sample.From these figures,we see that most of small and large intensities in Fig.2 are converted into small intensities(almost zero)in Fig.3(a).In the virtual image in Fig.3(a),pixel intensities mainly concentrate on central area and only a few distribute in high intensity area(such as the edges).Compared with Fig.3(b)and(c),most pixels in Fig.3 (a)are concentrated on regions with moderate intensity. Though Fig.3(d)also has this merit,some large pixels in Fig.3(a)are distributed in the regions which can easily reflect image features.These illustrate that our method has more advantage in representing images.

    4.Experiments and results

    We conduct image classification and face recognition experiments to test our method.As shown later,the recognition accuracy obtained by using our method is satisfactory.Three databases including a non-face image database,the COIL20 database,are used in these experiments.Moreover,in order to balance the classification results of different training samples, α is set to be different value in CRC and LRC.

    4.1.Experiment on the ORL database

    In this section,we use the ORL database to test our method. The ORL database[37]includes 400 face images taken from 40 subjects each providing 10 face images.For some subjects, the images were taken at different times,with varying lighting, facial expressions,and facial details.Each image was resized to a 92 by 112 image matrix.They are all converted into gray images.In experiments of the ORL database,α=0.3 for CRC and α=0.7 for LRC.Fig.4 shows examples in the ORL database.

    We take the first 3,5 and 7 images of each subject as original training samples and treat the remaining images as test samples.The experimental results on the ORL database are shown in Table 1.From it,we can see the rates of classification errors have been reduced effectively.When thenumber of training samples is 3,the rates of classification errors of original CRC is 13.21%and our method's is 8.93%. That is,our method can improve 4.28%for the recognition accuracy.We also know that our method is better than the method proposed in[10].

    Fig.3.The gray histogram of reconstitution image of different methods of thefirst sample of the first subject in the ORL database.

    Fig.4.The examples in the ORL database.

    Table 1The rates of classification errors(%)of different methods on the ORL database.

    4.2.Experiment on the FERET database

    In this section,we use FERET database to test our method. The used the FERET database[38]consists of 1400 images from 200 subjects each providing 7 images.We resized each image to a 40 by 40 image matrix.They are all converted into gray images.In experiments of the FERET database,α=0.7 for CRC and LRC.Fig.5 shows examples in the FERET database.

    We take the first 4 to 6 images of each subject as original training samples and treat the remaining images as test samples.Table 2 shows the rate of classification errors on the FERET database.From it,we can see the rates of classification errors have been reduced effectively.When the number of training samples is 4,the rates of classification errors of original CRC are 44.67%and our method's is 39.17%.That is, our method can improve 5.50%for the recognition accuracy. Moreover,it is better than the method proposed in[10].This means that our method is greatly useful for representing the images.

    4.3.Experiment on the COIL-20 database

    Fig.5.The examples in the FERET database.

    Table 2The rates of classification errors(%)of different methods on FERET database.

    Fig.6.The examples in the COIL-20 database.

    In this section,we use the COIL-20 database[39]to test our method.The used database contains 360 images taken from 20 classes and each class has 18 images.Images were taken from several angles and we take an image for every 20°for a subject.We resized each image to a 128 by 128 image matrix.They are all converted into gray images.In experiments of COIL-20 database,α=0.3 for CRC and LRC.Fig.6 shows examples in the COIL-20 database.

    We take the first 9,11 and 13 images of each subject as original training samples and treat the remaining images as test samples.Table 3 shows the rates of classification errors in the COIL-20 database.From it,we can see the rates of classification errors have been reduced effectively.When the number of training samples is 11,the rates of classification errors of original CRC is 20.71%and our method's is 13.57%. That is,our method can improve 7.14%for the recognition accuracy.Compared with the recognition accuracy of the method proposed in[10],our method is better.

    4.4.Experiment on the AR database

    In this section,we use the AR database[40]to test our method.The AR database contains over 4000 color face images of 126 people.In this paper,we only choose 120 people of them.Hence,the used database contains 3120 images taken from 120 people and each people has 26 images.We resized each image to a 50 by 40 image matrix.In experiments of the AR database,α=0.7 is set for CRC and LRC.Fig.7 shows image examples in the AR database.

    We take the first 7 to 9 images of each subject as original training samples and treat the remaining images as test samples.Table 4 shows the rate of classification errors on the AR database.From it,we can see the rates of classification errors have been reduced effectively.When the number of training samples is 9,the rate of classification errors of original LRC is 42.84%and our method's is 37.21%.That is,our method can

    Table 3The rates of classification errors(%)of different methods on the COIL-20 database.

    Fig.7.The image examples of two classes in the AR database.

    Table 4The rates of classification errors(%)of different methods on the AR database.

    improve 5.63%for the recognition accuracy.This means that our method is very helpful for image classification.

    5.Conclusions

    In this paper,we proposed a novel representation based classification method for image classification.This method can effectively enhance the recognition rate by fusing original and virtual images.Moreover,as original and virtual images are simultaneously used,it can improve the number of training samples for each subject and adequately exploit detail features of each target so as to improve the recognition accuracy. Compared with other algorithms which generate the virtual images,our method is extremely simple and the computation is quite efficient.The analyses and experimental results suffi ciently show the rationales of the proposed method.

    Acknowledgments

    The authors are grateful to College of Automation Harbin Engineering University,this paper is supported by National Natural Science Foundation of China(No.51109047),Natural Science Foundation of Heilongjiang Province (No. LC201425),and the Fundamental Research Funds for the Central Universities(No.HEUCF0415).

    [1]J.Chen,S.-G.Shan,C.He,G.-Y.Zhao,M.Pietik ainen,X.-L.Chen, W.Gao,IEEE Trans.Pattern Anal.Mach.Intell.32(9)(2010) 1705-1720.

    [2]X.-P.Hong,G.-Y.Zhao,M.Pietik ainen,X.-L.Chen,IEEE Trans.Image Process 23(6)(2014)2557-2568.

    [3]A.F.Mansano,J.A.Matsuoka,Luis C.S.Afonso,Jo~ao P.Papa, F abio Augusto Faria,Ricardo da Silva Torres,Improving imageclassification through descriptor combination,in:Proceedings of SIBGRAPI,2012,pp.324-329.

    [4]Z.Ma,J.Wen,Q.Liu,J.Mod.Opt.62(9)(2015)745-753.

    [5]Y.Xu,J.Yang,Z.Jin,Pattern Recognit.36(12)(2003)3031-3033.

    [6]L.Gan.,Phys.Procedia 24(C)(2012)1689-1695.

    [7]Y.Xu,IEEE Trans.Cybernet.44(10)(2013)1738-1746.

    [8]A.Eftekhari,M.Forouzanfar,H.A.Moghaddam,Inf.Process.Lett.110 (17)(2010)761-766.

    [9]I.Naseem,R.Togneri,M.Bennamoun,IEEE Trans.Pattern Anal.Mach. Intell.32(11)(2010)2106-2112.

    [10]Y.Xu,B.Zhang,Z.Zhong,Pattern Recognit.Lett.68(2015)9-14.

    [11]Y.Xu,X.Li,J.Yang,D.Zhang,Neurocomputing 131(5)(2014) 191-199.

    [12]W.Huang,X.Wang,Y.Ma,Opt.Eng.54(5)(2015)053103.

    [13]S.Wu,J.Cao,Optik 125(2014)3530-3533.

    [14]Y.Xu,X.Zhu,Z.Li,G.Liu,Y.Lu,H.Liu,Pattern Recognit.46(2014) 1151-1158.

    [15]B.Tang,S.Luo,H.Huang,High performance face recognition system by creating virtual sample,in:Proceedings of International Conference on Neural Networks and Signal Processing,2003,pp.972-975.

    [16]H.-C.Jung,Authenticating corrupted face image based on noise model, in:Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition,2004,pp.272-277.

    [17]N.P.H.Thian,S.Marcel,S.Bengio,Improving face authentication using virtual samples,in:Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing,vol.3,2003, pp.III-233-III-236.

    [18]Y.-S.Ryu,S.-Y.Oh,Pattern Recognit.Lett.23(7)(2002)833-841.

    [19]Y.Xu,X.Fang,X.Li,IEEE Trans.44(10)(2014)1950-1961.

    [20]T.Payne,M.C.Nicely.Non-rectangularand/ornon-orthogonal arrangement of gambling elements in a gaming apparatus U.S.Patent 6,676,511[P].2004-1-13.

    [21]T.Fukuoka,A.G.Engel,B.Lang,Ann.Neurology 22(2)(1987) 193-199.

    [22]H.P.Killackey,G.R Belford,J.Comp.Neurology 183(2)(1979) 285-303.

    [23]R.G.Hegg,M.J.Chern,A.Au.Virtual image display having a high effi ciency grid beamsplitter U.S.Patent 5,383,053[P].1995-1-17.

    [24]R.J.Hamers,R.M Tromp,J.E.Demuth,Phys.Rev.B 34(8)(1986)5343.

    [25]J.Wright,Y.Ma,J.Mairal,G.Sapiro,T.-S.Huang,S.-C.Yan,Proc. IEEE 98(2010)1031-1044.

    [26]Z.Zhang,Y.Xu,J.Yang,Access IEEE 3(2015)490-530.

    [27]J.Yang,J.Wright,T.S Huang,Image Process.IEEE Trans.19(11) (2010)2861-2873.

    [28]J.Mairal,M.Elad,G.Sapiro,Image Process.IEEE Trans.17(1)(2008) 53-69.

    [29]R.Rubinstein,A.M Bruckstein,M.Elad,Proc.IEEE 98(6)(2010) 1045-1057.

    [30]S.Zhao,Z.P Hu,Inf.Process.Lett.115(2015)677-683.

    [31]L.Zhang,M.Yang,X.Feng,Sparse representation or collaborative representation:which helps face recognition?,in:Proceedings of IEEE International Conference on Computer Vision,2011,pp.471-478.

    [32]I.Naseem,R.Togneri,M.Bennamoun,Pattern Recognit.45(1)(2012) 104-118.

    [33]F.Dornaika,Y.Traboulsi,C.Hernandez,A.Assoum,Self-optimized two phase test sample sparse representation method for image classification, in:Proceedings of the 2nd International Conference on Advances in Biomedical Engineering,2013,pp.163-166.

    [34]Y.Xu,D.Zhang,J.Yang,J.-Y.Yang,IEEE Trans.Circuits Syst.Video Technol.25(2011)1255-1262.

    [35]F.Dornaika,Y.Traboulsi,A.Assoum,Adaptive two phase sparse representation classifier for face recognition,in:Proceedings of Advanced Concepts for Intelligent Vision Systems,2013,pp.182-191.

    [36]P.-C.Hsieh,P.-C.Tung,Neuro-computing 73(13)(2010)2708-2717.

    [37]Available:http://www.cl.cam.ac.uk/research/dtg/attarchiv-e/face database. html(Online).

    [38]P.J.Phillips,H.Moon,S.Rizvi,et al.,Pattern Analysis Mach.Intell. IEEE Trans.22(10)(2000)1090-1104.

    [39]S.A.Nene,S.K.Nayar,H.Murase,Columbia object Image Library (COIL-20),Technical Report CUCS-005-96,1996.

    [40]A.M.Martinez,The AR Face Database,CVC Technical Report,1998, p.24.

    Zhongli Mareceived the M.S.and Ph.D degrees at Harbin Engineering University(China)in 2003 and 2006,respectively.She is an associate professor with the Control Science and Engineering in Harbin Engineering University.She is a visiting scholar of the University of Louisiana at Lafayette(American)and the Texas A&M University(American)in 2006-2007 and 2013-2013,respectively.She has published more than 50 journal and conference papers.Her research interests include target detecting,tracking and recognition,image and video enhancement.

    Quanyong Liuis currently pursuing the M.S.degree with Control Science and Engineering at Harbin Engineering University,Harbin,China.His research interests include target tracking and recognition, image processing.

    Kai Sunreceived his M.S.degree in Harbin Institute of Technology,Harbin,China in 2009.His research interests include background modeling,multi-object tracking,and pedestrian detection.

    Sui Zhanis currently pursuing the M.S.degree with Communication Engineering at Hunan University, Changsha,China.Her research interests include target tracking and recognition,computer vision.

    *Corresponding author.

    E-mail address:mazhongli@hrbeu.edu.cn(Z.Ma).

    Peer review under responsibility of Chongqing University of Technology.

    http://dx.doi.org/10.1016/j.trit.2016.08.003

    2468-2322/Copyright?2016,Chongqing Universityof Technology.Productionandhostingby Elsevier B.V.Thisis an openaccess article under the CCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Copyright?2016,Chongqing University of Technology.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    亚洲精品中文字幕在线视频| av在线老鸭窝| 人妻少妇偷人精品九色| 2021少妇久久久久久久久久久| 王馨瑶露胸无遮挡在线观看| av国产精品久久久久影院| 亚洲色图综合在线观看| 男男h啪啪无遮挡| 国产成人免费无遮挡视频| 观看美女的网站| 日本爱情动作片www.在线观看| 亚洲情色 制服丝袜| 夜夜骑夜夜射夜夜干| 嫩草影院入口| 免费观看无遮挡的男女| 黄片播放在线免费| 久久久久久久精品精品| 男男h啪啪无遮挡| 日韩亚洲欧美综合| 美女cb高潮喷水在线观看| 好男人视频免费观看在线| 一区二区三区四区激情视频| 成人18禁高潮啪啪吃奶动态图 | av不卡在线播放| 美女国产高潮福利片在线看| 中文字幕精品免费在线观看视频 | 午夜老司机福利剧场| 我要看黄色一级片免费的| 人妻少妇偷人精品九色| 狂野欧美激情性bbbbbb| 亚洲精品成人av观看孕妇| 亚洲国产欧美日韩在线播放| 妹子高潮喷水视频| 亚洲av不卡在线观看| 嘟嘟电影网在线观看| 丝瓜视频免费看黄片| 97在线人人人人妻| 美女中出高潮动态图| 久久狼人影院| 欧美变态另类bdsm刘玥| 欧美激情 高清一区二区三区| kizo精华| 免费看光身美女| 久久久久久久久久人人人人人人| 午夜福利在线观看免费完整高清在| 两个人的视频大全免费| 91久久精品电影网| av在线观看视频网站免费| 成人黄色视频免费在线看| 3wmmmm亚洲av在线观看| 99热网站在线观看| 女人精品久久久久毛片| 大片电影免费在线观看免费| 国产精品一区二区在线不卡| 久久99热这里只频精品6学生| 国产免费一区二区三区四区乱码| 日韩免费高清中文字幕av| 女性被躁到高潮视频| 麻豆乱淫一区二区| 蜜桃久久精品国产亚洲av| 久久精品国产亚洲av天美| 新久久久久国产一级毛片| 国产免费又黄又爽又色| 国产午夜精品一二区理论片| 99国产精品免费福利视频| 免费大片黄手机在线观看| 亚洲经典国产精华液单| 国产成人精品福利久久| 高清午夜精品一区二区三区| 色网站视频免费| 久久热精品热| 国产 一区精品| 欧美bdsm另类| 成人国产av品久久久| 亚洲国产精品国产精品| 国产色爽女视频免费观看| 一级毛片aaaaaa免费看小| 国产探花极品一区二区| 美女脱内裤让男人舔精品视频| 男女啪啪激烈高潮av片| 亚洲美女黄色视频免费看| 美女国产视频在线观看| 国国产精品蜜臀av免费| 18禁在线播放成人免费| 国产免费视频播放在线视频| 老司机影院成人| 欧美丝袜亚洲另类| 亚洲国产精品国产精品| 人妻 亚洲 视频| 精品酒店卫生间| 亚洲欧美一区二区三区黑人 | 成年av动漫网址| 成人综合一区亚洲| 人人妻人人爽人人添夜夜欢视频| 欧美三级亚洲精品| 国产极品天堂在线| 3wmmmm亚洲av在线观看| 大片电影免费在线观看免费| 最近中文字幕高清免费大全6| 国产亚洲精品久久久com| 少妇 在线观看| 内地一区二区视频在线| 欧美97在线视频| 亚洲,欧美,日韩| 在线天堂最新版资源| 亚洲av中文av极速乱| 欧美日韩视频精品一区| 亚洲精品色激情综合| 亚洲情色 制服丝袜| 我要看黄色一级片免费的| a级毛色黄片| 亚洲精品日韩av片在线观看| 少妇人妻久久综合中文| 激情五月婷婷亚洲| 人妻人人澡人人爽人人| 日韩 亚洲 欧美在线| av线在线观看网站| 国产精品人妻久久久久久| 国产有黄有色有爽视频| 久久99一区二区三区| 大香蕉久久成人网| 日韩制服骚丝袜av| 久久午夜综合久久蜜桃| 亚洲成人手机| 久久人人爽人人片av| 伊人久久国产一区二区| 国产午夜精品一二区理论片| 国产成人精品在线电影| 亚洲av国产av综合av卡| 女人精品久久久久毛片| 美女xxoo啪啪120秒动态图| 最后的刺客免费高清国语| 日韩一区二区三区影片| 日本91视频免费播放| 国产成人一区二区在线| 寂寞人妻少妇视频99o| 精品久久久久久久久亚洲| 黑人高潮一二区| av在线播放精品| 国产 精品1| 亚洲国产精品国产精品| 亚洲性久久影院| 人妻夜夜爽99麻豆av| 国产一区二区三区av在线| 久久久久久伊人网av| 中文字幕最新亚洲高清| videossex国产| 一级黄片播放器| 伊人久久国产一区二区| 亚洲性久久影院| 国产成人精品无人区| 69精品国产乱码久久久| 国产精品免费大片| 99九九在线精品视频| 91精品国产九色| 一级毛片aaaaaa免费看小| 亚洲av二区三区四区| 亚洲精品,欧美精品| 一本—道久久a久久精品蜜桃钙片| 成人影院久久| 久久国内精品自在自线图片| 晚上一个人看的免费电影| 国产av一区二区精品久久| 久久国产精品大桥未久av| 大香蕉久久成人网| 2018国产大陆天天弄谢| 国产高清有码在线观看视频| 97精品久久久久久久久久精品| 国产亚洲精品第一综合不卡 | 麻豆成人av视频| 免费观看av网站的网址| 国产精品一国产av| 成人国语在线视频| 91久久精品国产一区二区成人| 少妇熟女欧美另类| 国产精品麻豆人妻色哟哟久久| 日韩熟女老妇一区二区性免费视频| 在线观看免费日韩欧美大片 | 精品亚洲成国产av| 欧美激情国产日韩精品一区| 人成视频在线观看免费观看| 99热网站在线观看| 久久97久久精品| 热re99久久精品国产66热6| 国产淫语在线视频| 美女脱内裤让男人舔精品视频| 欧美人与性动交α欧美精品济南到 | 人人妻人人添人人爽欧美一区卜| 曰老女人黄片| 国产在线一区二区三区精| 久久久久久久久久成人| 两个人的视频大全免费| 成人国产av品久久久| 伦理电影大哥的女人| 18在线观看网站| 激情五月婷婷亚洲| 美女国产高潮福利片在线看| videos熟女内射| 少妇高潮的动态图| 只有这里有精品99| 午夜久久久在线观看| 中文字幕精品免费在线观看视频 | 乱人伦中国视频| 精品酒店卫生间| 一区在线观看完整版| 人人妻人人添人人爽欧美一区卜| 亚洲五月色婷婷综合| av在线app专区| 久久久国产精品麻豆| 日韩av在线免费看完整版不卡| 成人国语在线视频| 国产免费一区二区三区四区乱码| 中文字幕亚洲精品专区| 91精品一卡2卡3卡4卡| 满18在线观看网站| 一本—道久久a久久精品蜜桃钙片| 国产免费视频播放在线视频| 婷婷色av中文字幕| 麻豆成人av视频| 国产极品天堂在线| 美女国产高潮福利片在线看| 国产亚洲精品第一综合不卡 | 亚洲av二区三区四区| 欧美日韩精品成人综合77777| 中国国产av一级| 三级国产精品片| 日韩在线高清观看一区二区三区| 亚洲精品亚洲一区二区| 人人妻人人澡人人看| 丰满迷人的少妇在线观看| 午夜激情av网站| 80岁老熟妇乱子伦牲交| 天天操日日干夜夜撸| 国产精品免费大片| 丝袜脚勾引网站| 亚洲三级黄色毛片| 肉色欧美久久久久久久蜜桃| 久久久久久伊人网av| 一区二区三区免费毛片| 九九爱精品视频在线观看| 亚洲国产日韩一区二区| 国产精品无大码| 日韩成人av中文字幕在线观看| 美女视频免费永久观看网站| 亚洲国产精品999| 18在线观看网站| 黑人欧美特级aaaaaa片| 亚洲精品成人av观看孕妇| 国产午夜精品一二区理论片| 久久热精品热| 多毛熟女@视频| 成年人午夜在线观看视频| 天天影视国产精品| 熟女电影av网| 成人国产av品久久久| 视频区图区小说| av国产精品久久久久影院| 国产精品蜜桃在线观看| 女人久久www免费人成看片| 亚洲av成人精品一二三区| 国产免费一区二区三区四区乱码| 亚洲国产精品国产精品| 欧美最新免费一区二区三区| 精品久久久久久电影网| videossex国产| 亚洲av不卡在线观看| 91精品三级在线观看| 人成视频在线观看免费观看| 日韩伦理黄色片| 亚洲,一卡二卡三卡| 美女视频免费永久观看网站| 亚洲精品一二三| 制服丝袜香蕉在线| 成人国语在线视频| 国产精品久久久久久av不卡| 久久久久久久大尺度免费视频| 国产伦理片在线播放av一区| 天天躁夜夜躁狠狠久久av| 99久久中文字幕三级久久日本| 亚洲欧美日韩卡通动漫| 久久久久久久大尺度免费视频| 人妻一区二区av| 超色免费av| av天堂久久9| 国产黄色视频一区二区在线观看| 中文字幕人妻熟人妻熟丝袜美| 老司机影院毛片| 国产国语露脸激情在线看| 久久久久久久精品精品| 国产无遮挡羞羞视频在线观看| 国产毛片在线视频| 亚洲av国产av综合av卡| 国产精品免费大片| 中文乱码字字幕精品一区二区三区| 亚洲不卡免费看| 不卡视频在线观看欧美| 午夜av观看不卡| 91精品国产国语对白视频| 蜜桃国产av成人99| 国产一区二区三区综合在线观看 | 国产高清不卡午夜福利| 少妇人妻 视频| 精品少妇内射三级| 欧美日韩亚洲高清精品| 久久久久久久亚洲中文字幕| 精品亚洲成a人片在线观看| 天堂俺去俺来也www色官网| 国产精品一区二区在线不卡| 这个男人来自地球电影免费观看 | 午夜福利视频精品| 啦啦啦啦在线视频资源| 少妇高潮的动态图| 国产成人免费观看mmmm| 五月天丁香电影| 亚洲精华国产精华液的使用体验| 免费观看a级毛片全部| 日韩欧美精品免费久久| 欧美97在线视频| 只有这里有精品99| 亚洲婷婷狠狠爱综合网| 日韩视频在线欧美| 日产精品乱码卡一卡2卡三| 精品少妇内射三级| 亚洲欧美色中文字幕在线| 午夜日本视频在线| 国产黄片视频在线免费观看| av黄色大香蕉| 成人毛片a级毛片在线播放| 在线观看美女被高潮喷水网站| 成年av动漫网址| 欧美精品一区二区大全| 在线观看美女被高潮喷水网站| 九九爱精品视频在线观看| 两个人的视频大全免费| av天堂久久9| 亚洲美女搞黄在线观看| 交换朋友夫妻互换小说| 久久青草综合色| 伊人久久国产一区二区| 伊人亚洲综合成人网| 日韩av在线免费看完整版不卡| 夫妻午夜视频| 狠狠精品人妻久久久久久综合| 欧美三级亚洲精品| 国产男人的电影天堂91| 青春草国产在线视频| 日韩熟女老妇一区二区性免费视频| 97超视频在线观看视频| 日韩一区二区三区影片| 久久国产精品大桥未久av| 日本猛色少妇xxxxx猛交久久| 亚洲精品日本国产第一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 热re99久久国产66热| av专区在线播放| 如日韩欧美国产精品一区二区三区 | 国产精品女同一区二区软件| 精品99又大又爽又粗少妇毛片| 国产av精品麻豆| 精品久久国产蜜桃| 特大巨黑吊av在线直播| 欧美xxⅹ黑人| 久久久久久久精品精品| 久久国产精品男人的天堂亚洲 | 街头女战士在线观看网站| 亚洲国产最新在线播放| 黄色欧美视频在线观看| 亚洲精品,欧美精品| 日韩免费高清中文字幕av| 久久毛片免费看一区二区三区| 少妇人妻 视频| 日韩 亚洲 欧美在线| 91精品三级在线观看| 97超视频在线观看视频| 性色av一级| 欧美三级亚洲精品| 久久久久久久精品精品| 久久久久久久亚洲中文字幕| 黄片无遮挡物在线观看| 最近手机中文字幕大全| 午夜免费男女啪啪视频观看| 精品久久久久久电影网| 亚洲精品成人av观看孕妇| 国产成人精品在线电影| 亚洲欧洲日产国产| 久久久久久久国产电影| 纵有疾风起免费观看全集完整版| 久久人人爽av亚洲精品天堂| 日日啪夜夜爽| 国产精品成人在线| 一本大道久久a久久精品| 精品少妇黑人巨大在线播放| 精品久久蜜臀av无| 亚洲精品456在线播放app| 欧美精品人与动牲交sv欧美| 王馨瑶露胸无遮挡在线观看| 欧美激情 高清一区二区三区| 国产一区二区在线观看av| 亚洲精品成人av观看孕妇| 国产av码专区亚洲av| 亚洲av电影在线观看一区二区三区| 午夜福利视频在线观看免费| 国产精品一国产av| 亚洲精品日本国产第一区| 国产精品一区二区在线观看99| 在线观看国产h片| 免费少妇av软件| 少妇丰满av| 免费黄色在线免费观看| 久久久久久久久久人人人人人人| 男女高潮啪啪啪动态图| 欧美成人午夜免费资源| 婷婷色麻豆天堂久久| 中文字幕精品免费在线观看视频 | 亚洲精品美女久久av网站| 国产精品三级大全| 亚洲少妇的诱惑av| av在线观看视频网站免费| 国内精品宾馆在线| 国产成人一区二区在线| 在线观看三级黄色| 蜜桃久久精品国产亚洲av| 婷婷色麻豆天堂久久| 午夜福利影视在线免费观看| 91精品三级在线观看| 亚洲精品乱久久久久久| 狠狠精品人妻久久久久久综合| 边亲边吃奶的免费视频| 成人无遮挡网站| 亚洲久久久国产精品| 免费不卡的大黄色大毛片视频在线观看| 丰满饥渴人妻一区二区三| 亚洲av日韩在线播放| 一二三四中文在线观看免费高清| 九色成人免费人妻av| 国产精品蜜桃在线观看| 日韩av在线免费看完整版不卡| 成人无遮挡网站| 欧美+日韩+精品| 一边亲一边摸免费视频| 国产深夜福利视频在线观看| 免费人妻精品一区二区三区视频| 国产亚洲精品久久久com| 免费看光身美女| 欧美少妇被猛烈插入视频| 亚洲国产毛片av蜜桃av| 少妇被粗大猛烈的视频| 久久人人爽人人片av| 国产免费福利视频在线观看| 久久午夜福利片| 九草在线视频观看| 久久人人爽av亚洲精品天堂| 中文字幕久久专区| 日本vs欧美在线观看视频| 国产精品久久久久久久久免| 美女大奶头黄色视频| 一区二区三区乱码不卡18| www.av在线官网国产| 午夜久久久在线观看| 精品亚洲成国产av| 国产极品粉嫩免费观看在线 | 97超碰精品成人国产| 一级片'在线观看视频| 免费观看a级毛片全部| 天堂8中文在线网| 免费人成在线观看视频色| 国产成人91sexporn| 欧美成人精品欧美一级黄| 日韩av不卡免费在线播放| 在线观看免费视频网站a站| 亚洲欧洲国产日韩| 麻豆精品久久久久久蜜桃| 两个人的视频大全免费| 丰满少妇做爰视频| 免费大片黄手机在线观看| 激情五月婷婷亚洲| 涩涩av久久男人的天堂| 欧美bdsm另类| 妹子高潮喷水视频| 亚洲一区二区三区欧美精品| 老司机亚洲免费影院| 波野结衣二区三区在线| 中国国产av一级| 久久精品国产鲁丝片午夜精品| 日韩中字成人| 久久久久久久大尺度免费视频| 一区在线观看完整版| 麻豆乱淫一区二区| 一级,二级,三级黄色视频| 中文乱码字字幕精品一区二区三区| 熟女电影av网| 精品国产国语对白av| 日韩熟女老妇一区二区性免费视频| 亚洲av电影在线观看一区二区三区| 久久婷婷青草| 欧美精品国产亚洲| av在线老鸭窝| 色吧在线观看| 亚洲精品乱码久久久v下载方式| 一区在线观看完整版| 欧美丝袜亚洲另类| 日产精品乱码卡一卡2卡三| a 毛片基地| 国产男女超爽视频在线观看| 国产成人a∨麻豆精品| 人妻制服诱惑在线中文字幕| 视频中文字幕在线观看| 国产午夜精品一二区理论片| 日本猛色少妇xxxxx猛交久久| 国产免费又黄又爽又色| 九九久久精品国产亚洲av麻豆| 午夜精品国产一区二区电影| 如日韩欧美国产精品一区二区三区 | 99九九线精品视频在线观看视频| 免费少妇av软件| 啦啦啦在线观看免费高清www| 午夜影院在线不卡| 国产亚洲欧美精品永久| 国产日韩欧美在线精品| 亚洲伊人久久精品综合| 中文字幕免费在线视频6| 日韩伦理黄色片| 国产欧美日韩一区二区三区在线 | 欧美成人精品欧美一级黄| av免费观看日本| 欧美亚洲日本最大视频资源| 日本av免费视频播放| 成人二区视频| 五月伊人婷婷丁香| 如何舔出高潮| 久久久久精品久久久久真实原创| 亚洲人成网站在线播| 日韩不卡一区二区三区视频在线| 久久久久久人妻| 精品一区二区免费观看| 极品少妇高潮喷水抽搐| 女人精品久久久久毛片| 国产高清三级在线| 亚洲精品色激情综合| 亚洲第一av免费看| 又粗又硬又长又爽又黄的视频| 免费人成在线观看视频色| 国产精品三级大全| 久久毛片免费看一区二区三区| 男女国产视频网站| 午夜福利,免费看| 黄色怎么调成土黄色| 尾随美女入室| 国产成人av激情在线播放 | 国产精品成人在线| 美女视频免费永久观看网站| 亚洲天堂av无毛| 蜜桃久久精品国产亚洲av| 国产伦精品一区二区三区视频9| 亚洲精品一区蜜桃| 九九久久精品国产亚洲av麻豆| 精品人妻一区二区三区麻豆| av免费在线看不卡| 日本欧美视频一区| 国产男女内射视频| 人妻 亚洲 视频| 国产高清国产精品国产三级| 欧美激情国产日韩精品一区| 91在线精品国自产拍蜜月| 伦理电影大哥的女人| 能在线免费看毛片的网站| 免费观看在线日韩| 一本一本综合久久| 交换朋友夫妻互换小说| 狂野欧美激情性bbbbbb| 亚洲精品久久久久久婷婷小说| 欧美3d第一页| 久久久久精品久久久久真实原创| 高清在线视频一区二区三区| 色吧在线观看| 夜夜爽夜夜爽视频| 一级a做视频免费观看| 国产又色又爽无遮挡免| 黄色怎么调成土黄色| 久久久久久久久久久免费av| 久久午夜福利片| 美女脱内裤让男人舔精品视频| 亚洲av免费高清在线观看| 天天躁夜夜躁狠狠久久av| 久久99热6这里只有精品| 3wmmmm亚洲av在线观看| av线在线观看网站| 精品久久蜜臀av无| av视频免费观看在线观看| 人人妻人人添人人爽欧美一区卜| 五月开心婷婷网| 成人无遮挡网站| 高清黄色对白视频在线免费看| 秋霞在线观看毛片| 3wmmmm亚洲av在线观看| 中文字幕人妻熟人妻熟丝袜美| 九色成人免费人妻av| 精品人妻在线不人妻| 观看美女的网站| 国产成人精品在线电影| 99久国产av精品国产电影| 天天躁夜夜躁狠狠久久av| 欧美3d第一页| 亚洲怡红院男人天堂| 亚洲第一av免费看| 日韩强制内射视频| 黄色一级大片看看| 国产亚洲精品久久久com| 91午夜精品亚洲一区二区三区| 超碰97精品在线观看| 极品人妻少妇av视频| 精品一品国产午夜福利视频| 在线观看美女被高潮喷水网站| 久久女婷五月综合色啪小说| 在线 av 中文字幕|